
!

Machine Learning (part II)

Regularization
for NNs

Angelo Ciaramella



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

2

Problem
Generalization
How to make an algorithm that will perform well not
just on the training data

Introduction

overfitting



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

3

Generalization
Bias-variance trade-off

Model simple and inflexible – large bias
Model too much flexibility – large variance

Controlling the effective complexity of the model
NNs – number of adaptive parameters

Regularization
Controlling the complexity of the model 
Addition of a penality term
Cross-validation

Introduction



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

4

MLP
Sum-of-squares error function
Single output

In the limit of an infinite data set

Bias and variance

conditional average or regression



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

5

Practical situation
finite training set D of N patterns

The error depends on the particular data set

Eliminating this dependence by average pver the 
complete ensemble of data sets 

Bias and variance

Expectation or ensemble average



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

6

Bias and variance

Consider

Bias and variance



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

7

Bias and variance

High bias and low variance

Low bias and high variance



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

8

Regularized objective function

Regularization

Hyperparameter

Penality term



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

9

Ridge regression (or Tikhonov regularization)
Drives weights closer to the origin

Objective function

L2 regularization



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

10

By mean squared error, the approximation is

Minimum

L2 regularization



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

11

Gradient

Learning 

L2 regularization



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

12

Consider the regularized error

Weight decay

Weight evolves

L2 regularization



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

13

L2 regularization

Illustration of the effect of a simple weight-decay regularizer on a quadratic 
error function 



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

14

L2 regularization

Regularization parameter = 40

Regularization parameter = 1000



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

15

Absolute value

Objective function

Gradient

L1 regularization



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

16

Approximation

Analytical solution

Sparse solution

L1 regularization



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

17

Minimize a function subject to constraints by 
constructing a generalized Lagrange function

Each penalty is a product between a coefficient
called a Karush–Kuhn–Tucker (KKT) multiplier

Contrain the penalty to be less than some constant
k

Solution

Constrained optimization



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

18

Constraints

Generalized Lagrangian

Minnimization

Generalized Lagrangian

equality inequality



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

19

Any time the constraints are satisfied

Any time the constraint is violated

Generalized Lagrangian



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

20

Addition of noise to the input vectors during the 
learning process

It has demonstrated that can indeed lead to 
improvements in network generalization
Closely related to the technique of regulraization
Reduce over-fitting

Considering random error

Training with noise



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

21

Taylor series

Integrating

Training with noise



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

22

Goal 
addition of noise with infinitesimal variance at the input 
of the model is equivalent to imposing a penalty on the 
norm of the weights
Noise applied to the hidden units is an important topic
Adding the noise to the weights

Recurrent NNs

Injecting Noise at the Output Targets
explicitly model the noise on the labels

Training with noise



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

23

Goal 
learning a representation so that examples from the 
same class have similar representations
application of principal components analysis as a pre-
processing step before applying a classifier

Semi-Supervised Learning



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

24

Training large models
training error decreases
validation set error rising

Early Stopping



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

25

Goal 
running our optimization algorithm until the error on the 
validation set has not improved for some amount of 
time
number of training steps is an hyperparameter

Early Stopping



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

26

Strategies
initialize the model again and retrain on all of the data

we train for the same number of steps as the early stopping
procedure determined in the first pass

keep the parameters obtained from the first round of 
training 

continue training but now using all of the data

Early Stopping



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

27

Strategies
the parameters of one model trained as a classifier in 
a supervised paradigm to be close to the parameters
of another model, trained in an unsupervised paradigm
to force sets of parameters to be equal

we interpret the various models or model components as
sharing a unique set of parameters

Parameter sharing



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

28

Strategy
adding to the loss function J a norm penalty on the 
representation

Orthogonal matching pursuit

Sparse representations



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

29

Bagging (Bootstrap Aggregating)
reducing generalization error by combining several models
ensemble methods
bagging involves constructing k different datasets

same number of examples as the original dataset
constructed by sampling with replacement from the original
dataset
Model i is then trained on dataset i

Boosting
constructs an ensemble with higher capacity than the 
individual models
incrementally adding neural networks to the ensemble

Bagging



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

30

Expected squared error (k regression models)

Bagging

error on each example average prediction

Error with zero-mean multivariate normal distributions

c



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

31

Bagging



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

32

Goal
Hold out method

Training, validation and test sets

Cross-validation



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

33

Cross-validation

Regularization coefficient v = 40

v = 1000



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

34

Cross-validation

Log of the regularization coefficient



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

35

Cross-validation

Partitionating of a data set into S segments for use cross-
validation



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

36

Goal
Worst-case performance for a particular trained
network

Theorem

Vapnik-Chervonenkis dimension



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

37

Vapnik-Chervonenkis dimension



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

38

NN
M units, W weights

Two layers and threshold units

Vapnik-Chervonenkis dimension

d inputs

For large networks 



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

39

Goal
making bagging practical for ensembles of very many
large neural networks
trains the ensemble consisting of all sub-networks that
can be formed by removing non-output units from an 
underlying base network
dropout algorithm multiplicating by zero

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

40

Dropout

Sixteen possible subsets



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

41

Train
we use a minibatch-based learning algorithm that makes
small steps

such as stochastic gradient descent

Each time we load an example into a minibatch
randomly sample a different binary mask to apply to all of the 
input and hidden units in the network
The mask for each unit is sampled independently from all of the 
others

Probability of sampling a mask value
hyperparameter fixed before training begins
e.g., input unit is included with probability 0.8 and a hidden unit is
included with probability 0.5

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

42

Dropout

randomly sample a vector μ with one entry 
for each input or hidden unit in the network



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

43

Error mimimization

Weights
the models share parameters, with each model 
inheriting a different subset of parameters from the 
parent neural network
exponential number of models with a tractable amount
of memory

tiny fraction of the possible sub-networks are each trained
for a single step
the parameter sharing causes the remaining sub-networks to 
arrive at good settings of the parameters

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

44

Bagging
Model i produces a probability distribution

Prediction of the ensemble

Dropout

Dropout

arithmetic mean over all masks

mask vector



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

45

Exopnential number of terms
geometric mean rather than the arithmetic mean of the 
ensemble members’ predicted distributions
unnormalized probability distribution

Prediction

Dropout

d is the number of units that may be 
dropped

Uniform distribution over μ

re-normalize the ensemble



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

46

Weight scaling inference rule
Weights going out of unit i multiplied by the 
probability of including unit i

capture the right expected value of the output from that unit

Consider a softmax regression classifier with n input 
variables represented by the vector v

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

47

sub-models by element-wise multiplication of the 
input with a binary vector d

ensemble predictor is defined by re-normalizing
the geometric mean

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

48

Simplify

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

49

Ignore multiplication by factors that are constant
with respect to y

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

50

One advantage of dropout is that it is very
computationally cheap

It works well for models that uses a distributed
representation

Feedforward neural networks, probabilistic models such as
restricted Boltzmann machines and recurrent neural networks
When extremely few labeled training examples are 
available, dropout is less effective
Applied to linear regression, dropout is equivalent to L2

weight decay
Multiplying the weights by μ ∼ N (1, I) can outperform
dropout based on binary masks

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

51

Idea from biology
Hidden units must be prepared to be swapped and 
interchanged between models
sexual reproduction

involves swapping genes between two different organisms
creates evolutionary pressure for genes to become not just 
good
become readily swapped between different organisms

Finally
Dropout regularizes each hidden unit to be not merely
a good feature but a feature that is good in many
contexts

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

52

Important
highly intelligent

adaptive destruction of the information content of the input 
rather than destruction of the raw values of the input

e.g. 
if the model learns a hidden unit hi that detects a face by 
finding the nose, then dropping hi corresponds to erasing the 
information that there is a nose in the image
The model must learn another hi, either that redundantly
encodes the presence of a nose, or that detects the face by 
another feature, such as the mouth

noise is multiplicative
Multiplicative noise does not allow such a pathological
solution to the noise robustness problem

Dropout



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

53

Adversial training 
probe the level of understanding a network has of the underlying
task, we can search for examples that the model misclassifies

Adversial example
Adversarial examples have many implications, for example, in 
computer security

Adversarial pertubation
training on adversarially perturbed examples from the training 
set of the primary causes of these adversarial examples is
excessive linearity

Adversarial examples also provide a means of accomplishing
semi-supervised learning

Adversial training



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

54

Adversial training 



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

55

Tangent distance
It is a non-parametric nearest-neighbor algorithm

metric used is not the generic Euclidean distance but one that
is derived from knowledge of the manifolds near which
probability concentrates

Tangent prop
These factors of variation correspond to movement
along the manifold near which examples of the same
class concentrate

Tangent distance



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

56

Tangent prop

the classification function to change rapidly as it moves
in the direction normal to the manifold, and not to change
as it moves along the class manifold.



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

57

Features
related to dataset augmentation
related to double backprop

regularizes the Jacobian to be small

adversarial training
finds inputs near the original inputs and trains the model to 
produce the same output on these as on the original inputs

The manifold tangent classifier
eliminates the need to know the tangent vectors a priori
Autoencoders estimate the manifold tangent vectors

Tangent prop



M
L 

–
Re

gu
la

riz
at

io
ns

fo
r 

N
N

s

58

Tangent prop


