Machine Learning (part II)

Multi-Layer
 Neural Network

Angelo Ciaramella

Introduction

- Feed-forward Neural Network
- Multi-Layer Perceptron
- Learning
- error backpropagation

General feed-forward topology

MLP architecture

Architecture

MLP architecture

Neurons' activation

- Combination of input variables (first hidden level)

$$
a_{j}=\sum_{i=1}^{D} w_{j i}^{(1)} x_{i}+w_{j 0}^{(1)}
$$

- Activation of the hidden unit

$$
z_{j}=h\left(a_{j}\right)
$$

- Combiantion of hidden units

$$
a_{k}=\sum_{j=1}^{M} w_{k j}^{(2)} z_{j}+w_{k 0}^{(2)}
$$

Neurons' activation

- Output unit

$$
y_{k}=\sigma\left(a_{k}\right) \quad \sigma(a)=\frac{1}{1+\exp (-a)}
$$

- Overall function network

$$
y_{k}(\mathbf{x}, \mathbf{w})=\sigma\left(\sum_{j=1}^{M} w_{k j}^{(2)} h\left(\sum_{i=1}^{D} w_{j i}^{(1)} x_{i}+w_{j 0}^{(1)}\right)+w_{k 0}^{(2)}\right)
$$

Neurons' activation

- Absorbing bias

$$
y_{k}(\mathbf{x}, \mathbf{w})=\sigma\left(\sum_{j=0}^{M} w_{k j}^{(2)} h\left(\sum_{i=0}^{D} w_{j i}^{(1)} x_{i}\right)\right)
$$

- MLP are general parametric non-linear functions

Function approximation

Classification problem

Error function

- Minimize the error function

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{y}\left(\mathbf{x}_{n}, \mathbf{w}\right)-\mathbf{t}_{n}\right\|^{2}
$$

- Geometrical wiev

Parameters optimization

- Gradient of the error function

$$
\nabla E(\mathbf{w})=0
$$

- Gradient descent optimization

$$
\mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\eta \nabla E\left(\mathbf{w}^{(\tau)}\right)
$$

- Sequencial

$$
E(\mathrm{w})=\sum_{n=1}^{N} E_{n}(\mathrm{w}) \quad \mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\eta \nabla E_{n}\left(\mathbf{w}^{(\tau)}\right)
$$

Number of layers

- Decision boundary by
- Continuous input variables
- Units with threshold activation functions
- Single layer of weights

Number of layers

- Two layers of weights

Convex region of the input space

AND of hyperplanes

Two-layer net

- Hidden units
- Divides the input space with a hyperplane

$$
z=0 \text { and } z=1
$$

- Logical AND
- M hidden neurons and bias $=-M$

■ output unit has 1 only if all the hidden units have oputput 1

Number of layers

- Three layers of weights

Non-convex and disjoint regions

OR of hyperplanes
AND of hyperplanes

Three-layer nets

- Result
- Three-layer of weights can generate arbitrary decision regions, which may be non-convex and disjoint (Lippmann, 1987)

Topolgy of NN

Three-layer nets

- Input space
- divided into a fine grid of hypercubes labelled as classes C_{1} or C_{2}
- First hidden layer
- One group of fistt-layer units is assign to each hypercube which corresponding to C_{1}
- Second hidden layer
- units generate AND
- Output
- The output unit has a bias $=-1$ for computing $O R$

Relaxing AND in two-layers NN

Non-convex region
bias = - 3.5

Non-convex region bias = - 4.5

Two-layers of weights

Decision boundary which cannot be produced by a network having two layers of threshold units

Sigmoidal units

- Logistic sigmoid activation function

$$
g(a)=\frac{1}{1+e^{-a}}
$$

Logistic sigmoid activation
function

tanh units

- tanh activation function

$$
g(a) \equiv \tanh (a) \equiv \frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}
$$

Three-layer nets

- Result
- Three-layer of weights and sigmoidal activation functions can approximate, to arbitrary accuracy, any smooth mapping (Lepedes and Farber, 1988)

Topology of NN

Three-layer nets

- Input space
- two dimensions
- First hidden layer

$$
z=\boldsymbol{g}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)
$$

Three-layer nets

- First hidden layer
- Orientation of the sigmoid is determined by the diretion of \mathbf{w} and location by $-w_{0}$
- Linear cobinations of functions

Two functions
d functions

Three-layer nets

- third hidden layer

E sigmoid function isolate the central humn
Bump function

- Intiuitive idea
- Any reasonsble function can be approximated to arbitrary accuracy by a linear superposition of sufficientrly large number of localized «bump» functions

Two-layer nets

- Result
- Two-layer nets can approximate arbitrarily well any functional (one-one or many-one) continuous mapping from one finite-dimensional space to another, provided a number M of hidden units is sufficiently large (universal approximation)

Two-layer nets

- Input
- x_{1} and x_{2}
- Output
- $y\left(x_{1}, x_{2}\right)$
- Approximation by Fourier decomposition

$$
y\left(x_{1}, x_{2}\right) \approx \sum_{s} A_{s}\left(x_{1}\right) \cos \left(s x_{2}\right)
$$

Two-layer nets

- Fourier decomposition

$$
y\left(x_{1}, x_{2}\right) \approx \sum_{s} \sum_{l} A_{s l} \cos \left(l x_{1}\right) \cos \left(s x_{2}\right)
$$

- Trigonometric identity

$$
\cos \alpha \cdot \cos \beta=\frac{1}{2} \cos (\alpha+\beta)+\frac{1}{2} \cos (\alpha-\beta)
$$

- Linear combination

$$
\begin{aligned}
& y\left(x_{1}, x_{2}\right) \approx \sum_{s} \sum_{l} \cos \left(z_{s l}\right) \cos \left(z_{s l}^{\prime}\right) \\
& z_{s l}=l x_{1}+s x_{2} \quad z_{s l}^{\prime}=l x_{1}-s x_{2}
\end{aligned}
$$

Two-layer nets

- $\cos (z)$ approximation

$$
f(z) \approx f_{0}+\sum_{i=0}^{N}\left\{f_{i+1}-f_{i}\right\} H\left(z-z_{i}\right)
$$

Approximation of a function

Two-layer nets

- $\cos (z)$ approximation

$$
f(z) \approx f_{0}+\sum_{i=0}^{N}\left\{f_{i+1}-f_{i}\right\} H\left(z-z_{i}\right) \quad \text { Heaviside step } \quad \begin{aligned}
& \text { function }
\end{aligned}
$$

- Result
- function $y\left(x_{1}, x_{2}\right)$ can be expressed as a linear combination of step functions whose arguments are linear combinations of x_{1} and x_{2}
- function $y\left(x_{1}, x_{2}\right)$ can be approximated by a two-layer NN with threshold hidden units (can be approximated by sigmoidal functions)

Approximation example

(a)

(c)

(b)

(d)

Examples of functions approximations

Kolmogorov's theorem

- Origins
- End of nineteenth century mathematician Hilbert compiled a list of 23 unsolved problems as a challenge for twentieth century researchers
- Hilbert's thirteenth problem
- Concerns the issue of whether functions of several variables can be represented in terms of superpositions of functions of two variables
- Kolmogorov (1957)
- Every continuous function of several variables (for a closed and bounded input domain) can be represented as the superposition of a small number of functions of one variable

Kolmogorov's theorem

