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Machine Learning (part II)

Multi-Layer
Neural Network
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Feed-forward Neural Network
Multi-Layer Perceptron

Learning  
error backpropagation

Introduction
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General feed-forward topology

MLP architecture
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Architecture

MLP architecture
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Combination of input variables (first hidden level)

Activation of the hidden unit

Combiantion of hidden units

Neurons’ activation
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Output unit

Overall function network

Neurons’ activation
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Absorbing bias

MLP are general parametric non-linear functions

Neurons’ activation
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Function approximation
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Classification problem
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Minimize the error function

Geometrical wiev

Error function
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Gradient of the error function

Gradient descent optimization

Sequencial

Parameters optimization
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Decision boundary by
Continuous input variables
Units with threshold activation functions

Single layer of weights

Number of layers

hyperplane
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Two layers of weights

Number of layers

AND of hyperplanes

Convex region of the input 
space
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Hidden units
Divides the input space with a hyperplane

z = 0 and z = 1

Logical AND
M hidden neurons and bias = -M
output unit has 1 only if all the hidden units have oputput
1

Two-layer net
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Three layers of weights

Number of layers

Non-convex and disjoint regions

AND of hyperplanes

OR of hyperplanes
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Result
Three-layer of weights can generate arbitrary decision
regions, which may be non-convex and disjoint
(Lippmann, 1987)

Three-layer nets

Topolgy of NN
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Input space
divided into a fine grid of hypercubes labelled as classes C1
or C2

First hidden layer
One group of fisrt-layer units is assign to each hypercube
which corresponding to C1

Second hidden layer
units generate AND

Output
The output unit has a bias = -1 for computing OR

Three-layer nets
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Relaxing AND in two-layers NN 

Non-convex region 
bias = - 3.5

Non-convex region 
bias = - 4.5
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Two-layers of weights 

Decision boundary which cannot be produced 
by a network having two layers of threshold
units   
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Logistic sigmoid activation function

Sigmoidal units 

𝑔 𝑎 =
1

1 + 𝑒'(

Logistic sigmoid 
activation 
function
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tanh activation function

tanh units 

𝑔 𝑎 ≡ tanh 𝑎 ≡
𝑒( − 𝑒'(

𝑒( + 𝑒'(

tanh
activation 
function
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Result
Three-layer of weights and sigmoidal activation
functions can approximate, to arbitrary accuracy, any
smooth mapping (Lepedes and Farber, 1988)

Three-layer nets

Topology of NN
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Input space
two dimensions

First hidden layer

Three-layer nets

𝑧 = 𝒈(𝐰3𝐱 + 𝑤6)
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First hidden layer
Orientation of the sigmoid is determined by the 
diretion of w and location by –w0

Linear cobinations of functions

Three-layer nets

Two functions d functions
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third hidden layer
sigmoid function isolate the central bump

Intiuitive idea
Any reasonsble function can be approximated to 
arbitrary accuracy by a linear superposition of 
sufficientrly large number of localized «bump» functions

Three-layer nets

Bump function 
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Result
Two-layer nets can approximate arbitrarily well any
functional (one-one or many-one) continuous mapping
from one finite-dimensional space to another, provided
a number M of hidden units is sufficiently large 
(universal approximation)

Two-layer nets
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Input
x1 and x2

Output
y(x1 , x2)

Approximation by Fourier decomposition

Two-layer nets

𝑦 𝑥:, 𝑥< ≈>
?

𝐴? 𝑥: cos(𝑠𝑥<)
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Fourier decomposition

Trigonometric identity

Linear combination

Two-layer nets

𝑦 𝑥:, 𝑥< ≈>
?

>
E

𝐴?Ecos(𝑙𝑥:)cos(𝑠𝑥<)

cos 𝛼 H cos 𝛽 =
1
2
cos 𝛼 + 𝛽 +

1
2
cos 𝛼 − 𝛽

𝑦 𝑥:, 𝑥< ≈>
?

>
E

cos(𝑧?E)cos(𝑧?EK )

𝑧?E = 𝑙𝑥: + 𝑠𝑥< 𝑧?EK = 𝑙𝑥: − 𝑠𝑥<
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cos(z) approximation

Two-layer nets

𝑓 𝑧 ≈ 𝑓6 +>
MN6

O

𝑓MP: − 𝑓M 𝐻(𝑧 − 𝑧M)
Heaviside step 
function

Approximation of
a function
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cos(z) approximation

Result
function y(x1 , x2) can be expressed as a linear 
combination of step functions whose arguments are 
linear combinations of x1 and x2

function y(x1 , x2) can be approximated by a two-layer
NN with threshold hidden units (can be approximated
by sigmoidal functions)

Two-layer nets

𝑓 𝑧 ≈ 𝑓6 +>
MN6

O

𝑓MP: − 𝑓M 𝐻(𝑧 − 𝑧M)

Heaviside step 
function
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Approximation example

Examples of functions approximations
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Origins
End of nineteenth century mathematician Hilbert
compiled a list of 23 unsolved problems as a challenge
for twentieth century researchers

Hilbert’s thirteenth problem
Concerns the issue of whether functions of several variables
can be represented in terms of superpositions of functions of 
two variables

Kolmogorov (1957)
Every continuous function of several variables (for a closed
and bounded input domain) can be represented as the 
superposition of a small number of functions of one variable

Kolmogorov’s theorem
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Kolmogorov’s theorem

𝑧R =>
MN:

S

𝜆MℎR(𝑥M)

𝑦 = >
RN:

<SP:

𝑔(𝑧R)


