

Machine Learning (part II)

Multi-Layer Neural Network

Angelo Ciaramella

Introduction

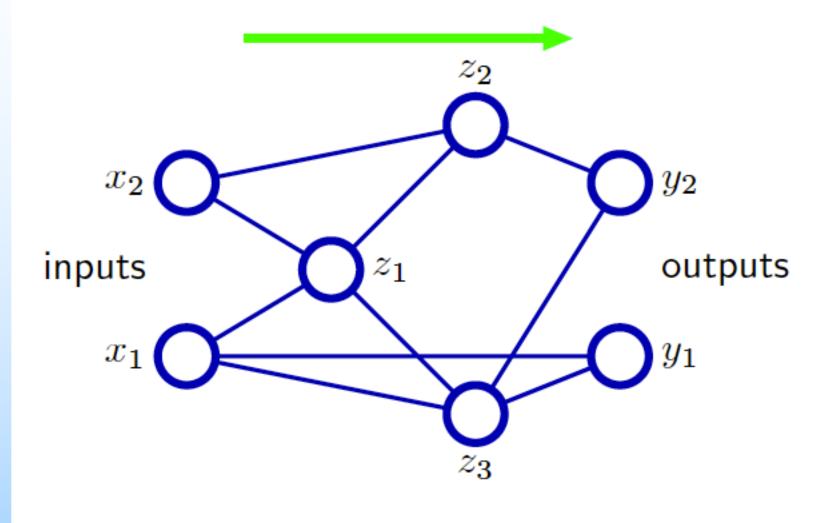
- Feed-forward Neural Network
 - Multi-Layer Perceptron

Learning

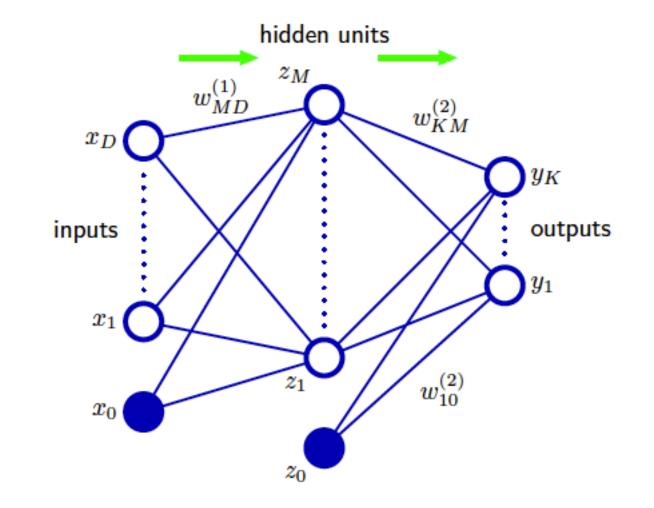
error backpropagation

ML – MLP

General feed-forward topology



Architecture



MLP architecture

Neurons' activation

Combination of input variables (first hidden level)

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

Activation of the hidden unit

 $z_j = h(a_j)$

Combiantion of hidden units

ML – MLP

$$a_k = \sum_{j=1}^M w_{kj}^{(2)} z_j + w_{k0}^{(2)}$$

5

Output unit

$$y_k = \sigma(a_k)$$
 $\sigma(a) = \frac{1}{1 + \exp(-a)}$

-1

Overall function network

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

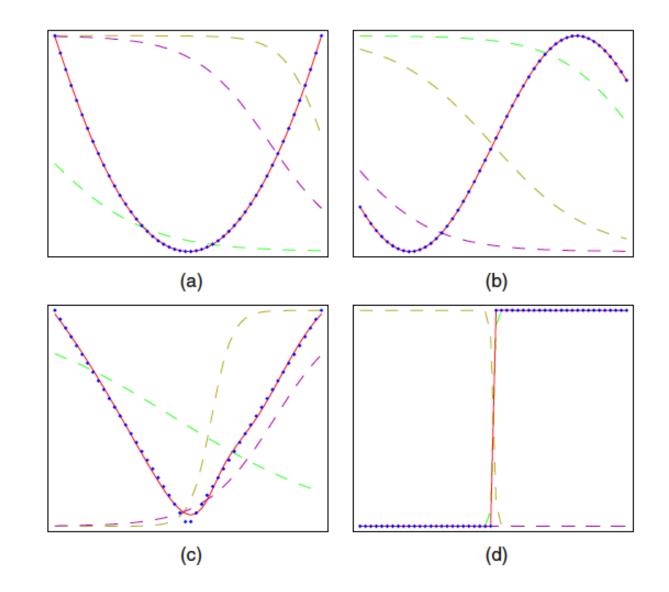
Neurons' activation

Absorbing bias

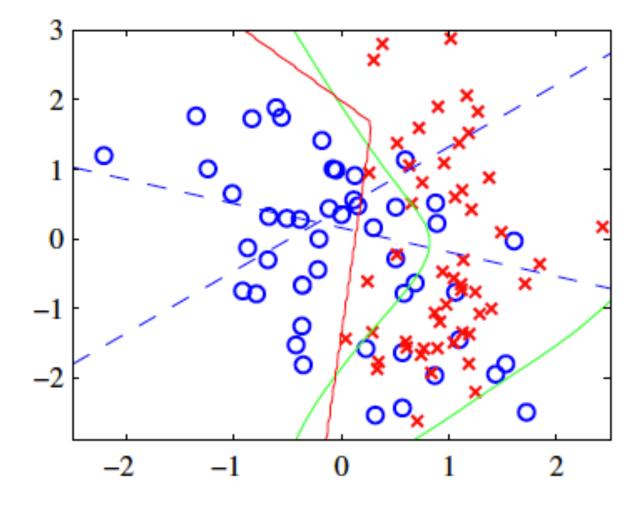
$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^M w_{kj}^{(2)} h \left(\sum_{i=0}^D w_{ji}^{(1)} x_i \right) \right)$$

MLP are general parametric non-linear functions

Function approximation



Classification problem

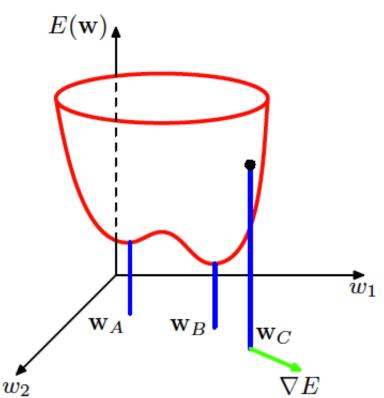


Error function

Minimize the error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n\|^2$$

Geometrical wiev



Parameters optimization

Gradient of the error function

$$\nabla E(\mathbf{w}) = 0$$

Gradient descent optimization

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

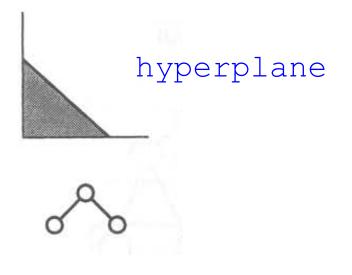
Sequencial

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) \qquad \mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

Number of layers

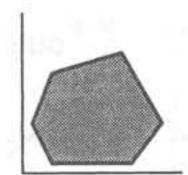
- Decision boundary by
 - Continuous input variables
 - Units with threshold activation functions

Single layer of weights

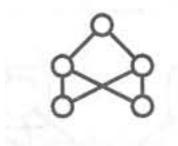


Number of layers

Two layers of weights



Convex region of the input space



AND of hyperplanes

Hidden units

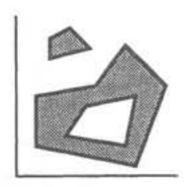
Divides the input space with a hyperplane

z = 0 and z = 1

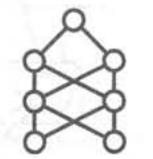
- Logical AND
 - M hidden neurons and bias = -M
 - output unit has 1 only if all the hidden units have oputput

Number of layers

Three layers of weights



Non-convex and disjoint regions



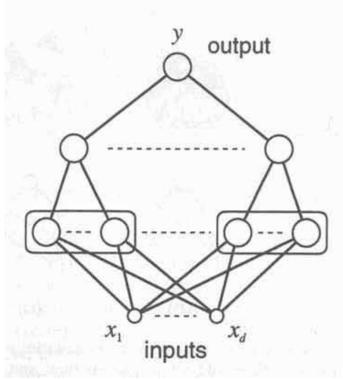
OR of hyperplanes AND of hyperplanes

Three-layer nets

Result

ML – MLP

Three-layer of weights can generate arbitrary decision regions, which may be non-convex and disjoint (Lippmann, 1987)



Topolgy of NN

Input space

divided into a fine grid of hypercubes labelled as classes C₁ or C₂

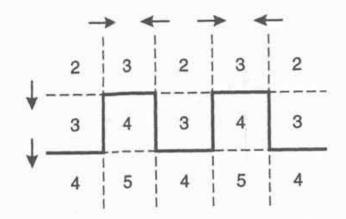
First hidden layer

- One group of fisrt-layer units is assign to each hypercube which corresponding to C₁
- Second hidden layer
 - units generate AND

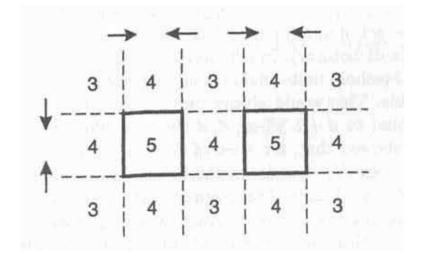
Output

The output unit has a bias = -1 for computing OR

Relaxing AND in two-layers NN

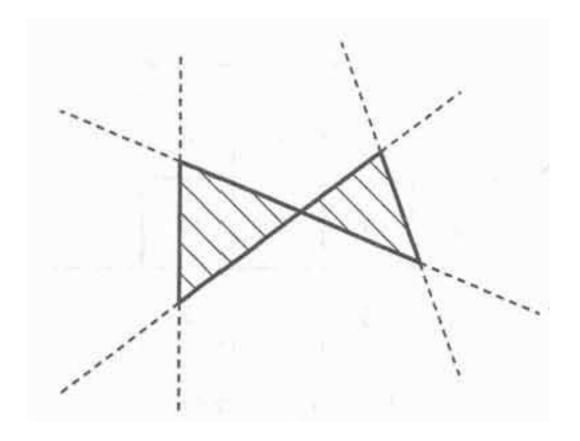


Non-convex region bias = -3.5



Non-convex region bias = -4.5

Two-layers of weights

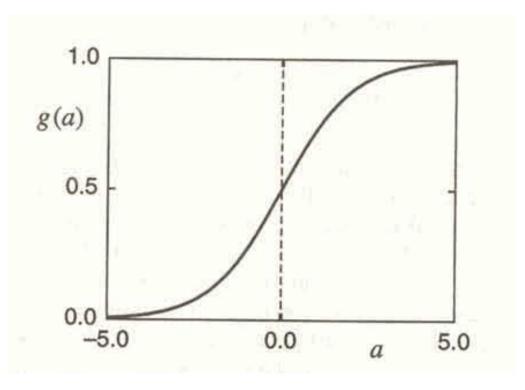


Decision boundary which cannot be produced by a network having two layers of threshold units

Sigmoidal units

Logistic sigmoid activation function

$$g(a) = \frac{1}{1 + e^{-a}}$$

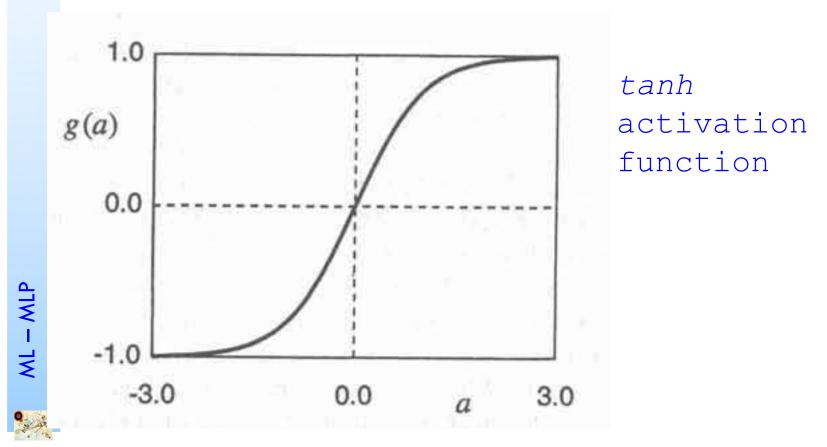


Logistic sigmoid activation function

tanh units

tanh activation function

$$g(a) \equiv \tanh(a) \equiv \frac{e^a - e^{-a}}{e^a + e^{-a}}$$



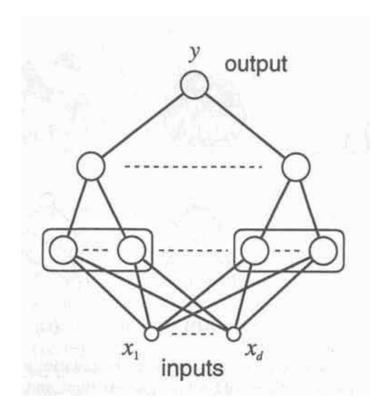
21

Three-layer nets

Result

ML – MLP

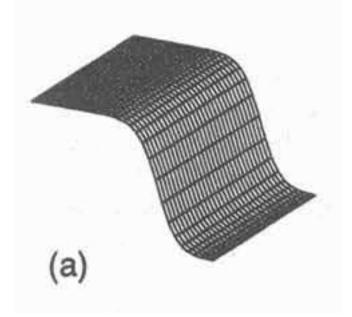
Three-layer of weights and sigmoidal activation functions can approximate, to arbitrary accuracy, any smooth mapping (Lepedes and Farber, 1988)



Topology of NN

22

- Input space
 - two dimensions
- First hidden layer

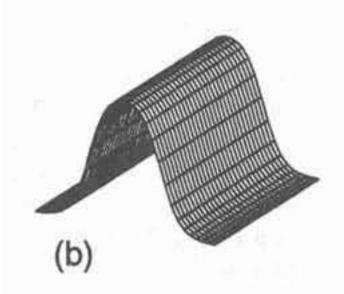


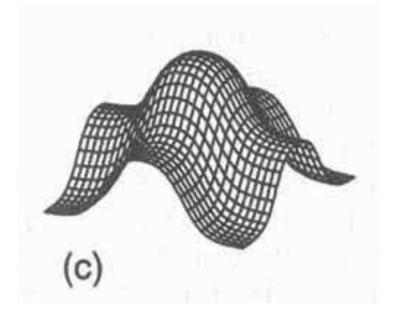
$$z = \boldsymbol{g}(\mathbf{w}^T \mathbf{x} + w_0)$$

Three-layer nets

First hidden layer

- Orientation of the sigmoid is determined by the diretion of \mathbf{w} and location by $-w_0$
- Linear cobinations of functions





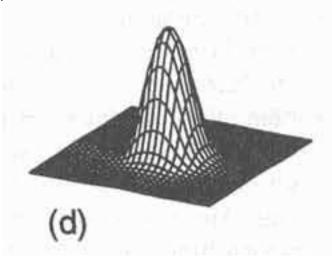
Two functions

d functions

Three-layer nets

- third hidden layer
 - sigmoid function isolate the central human

Bump function



Intiuitive idea

Any reasonable function can be approximated to arbitrary accuracy by a linear superposition of sufficientrly large number of localized «bump» functions

Result

Two-layer nets can approximate arbitrarily well any functional (one-one or many-one) continuous mapping from one finite-dimensional space to another, provided a number M of hidden units is sufficiently large (universal approximation)

ML – MLP

- Input
 - \mathbf{x}_1 and \mathbf{x}_2
- Output
 - $\bullet \mathbf{y}(\mathbf{x}_1, \mathbf{x}_2)$
- Approximation by Fourier decomposition

$$y(x_1, x_2) \approx \sum_{s} A_s(x_1) \cos(sx_2)$$

Fourier decomposition

$$y(x_1, x_2) \approx \sum_{s} \sum_{l} A_{sl} \cos(lx_1) \cos(sx_2)$$

Trigonometric identity

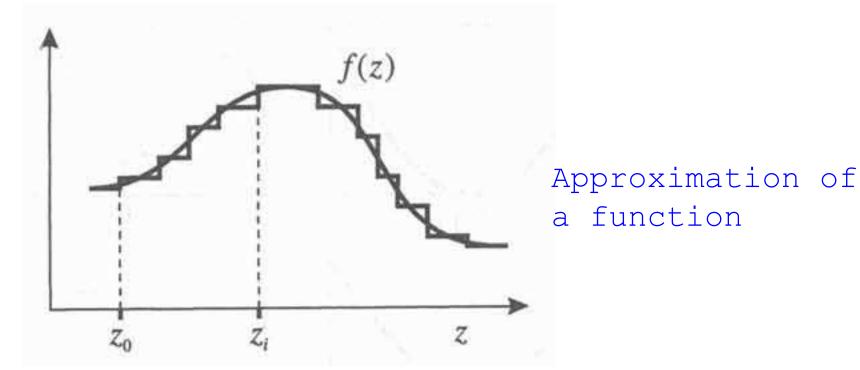
$$\cos \alpha \cdot \cos \beta = \frac{1}{2}\cos(\alpha + \beta) + \frac{1}{2}\cos(\alpha - \beta)$$

Linear combination

$$y(x_1, x_2) \approx \sum_{s} \sum_{l} \cos(z_{sl}) \cos(z'_{sl})$$

$$z_{sl} = lx_1 + sx_2$$
 $z'_{sl} = lx_1 - sx_2$

• $\cos(z)$ approximation $f(z) \approx f_0 + \sum_{i=0}^N \{f_{i+1} - f_i\} H(z - z_i)$ Heaviside step function



cos(z) approximation

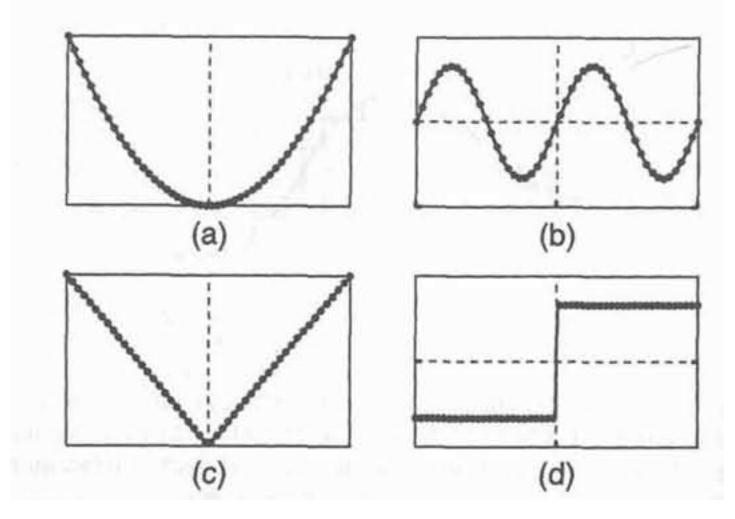
$$f(z) \approx f_0 + \sum_{i=0}^{N} \{f_{i+1} - f_i\} H(z - z_i)$$

Heaviside step function

Result

- function y(x₁, x₂) can be expressed as a linear combination of step functions whose arguments are linear combinations of x₁ and x₂
- function y(x₁, x₂) can be approximated by a two-layer NN with threshold hidden units (can be approximated by sigmoidal functions)

Approximation example



Examples of functions approximations

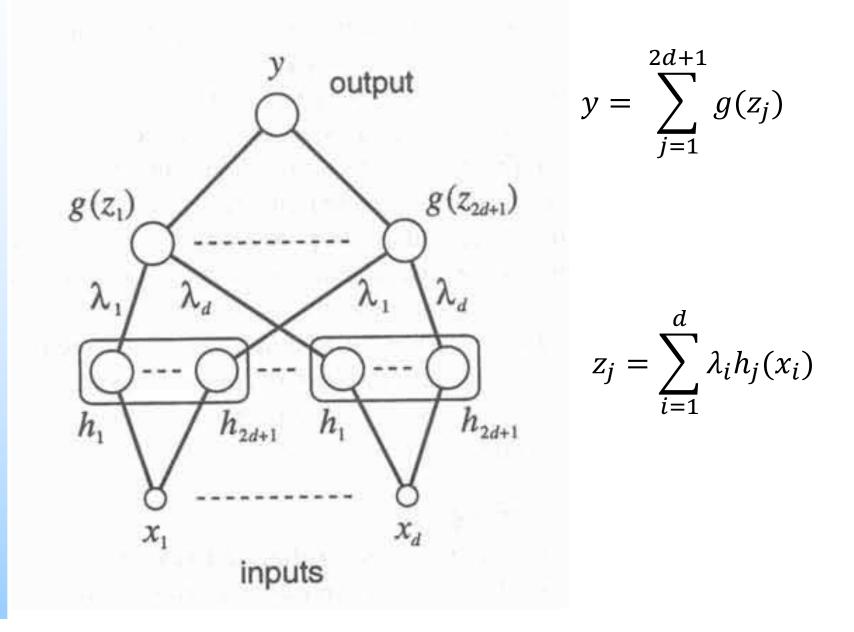
Origins

End of nineteenth century mathematician Hilbert compiled a list of 23 unsolved problems as a challenge for twentieth century researchers

Hilbert's thirteenth problem

- Concerns the issue of whether functions of several variables can be represented in terms of superpositions of functions of two variables
- Kolmogorov (1957)
 - Every continuous function of several variables (for a closed and bounded input domain) can be represented as the superposition of a small number of functions of one variable

Kolmogorov's theorem



ML – MLP

33