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Machine Learning (part II)

Hebbian Learning 
and 

Component Analysis
Angelo Ciaramella
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NNs based on the Hebb’s rule
Oja’s rule

computer scientist Erkki Oja
Unsupervised learning
Symmetric Oja Space

Sanger’s rule
scientist Terence D. Sanger
Unsupervised learning
Selective Principal Components

Generates an algorithm for
Principal Component Analysis (PCA)
non-linear PCA 
Independent Component Analaysis (ICA)

Hebbian learning and NNs
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Principal Component Analysis (PCA) is a statistical 
technique

Dimensionality reduction
Lossy data compression
Feature extraction
Data visualization

It is also known as the Karhunen-Loeve transform   

PCA can be defined as the principal subspace 
such that the variance of the projected data is 
maximized 

Principal Component Analysis
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The second-order methods are the most popular 
methods to find a linear transformation

This methods find the representation using only the 
information contained in the covariance matrix of 
the data vector x

PCA is widely used in signal processing, statistics, 
and neural computing

Second-Order methods
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Principal Components

In a linear projection down to one dimension, the optimum choice  of projection, 
in the sense of minimizing the sum-of-squares error, is obtained first subtracting 
off the mean of the data set, and then projecting onto the first eigenvector u1 of 
the covariance matrix.
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We introduce a complete orthonormal set of D-
dimensional basis vectors (i=1,…,D)

Because this basis is complete, each data point 
can be represented by a linear combination of the 
basis vectors 

Projection error minimization
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We can write also that 

Our goal is to approximate this data point using a  
representation involving a restricted number M < 
D of variables corresponding to a projection onto 
a lower-dimensional subspace

Projection error minimization
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As our distortion measure we shall use the squared 
distance between the original point and its 
approximation averaged over the data set so that 
our goal is to minimize  

The general solution is obtained by choosing the 
basis to be eigenvectors of the covariance matrix 
given by 

Projection error minimization
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The corresponding value of the distortion measure 
is then given by 

We minimize this error selecting the eigenvectors
defining the principal subspace are those 
corresponding to the M largest eigenvalues 

Projection error minimization
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Complex distributions

A linear dimensionality reduce technique, such as PCA, 
is unable to detect the lower dimensionality. In this case 
PCA gives two eigenvectors with equal eigenvalues. 
The data can described by a single eigenvalue 
parameter h

Addition of a small level of noise to data having an 
intrinsic. Dimensionality to 1 can increase its intrinsic 
dimensionality to 2. The data can be represented to 
a good approximation by a single variable h and 
can be regarded as having an intrinsic 
dimensionality of 1.
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Typically Hebbian type learning rules are used

There are two type of NN able to extract the 
Principal Components: 

Symmetric (Oja, 1989)  

Hierarchical (Sanger, 1989)

Unsupervised Neural Networks
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Information extraction

Information and Hebbian Learning

x1 ... xn

y

w1 ... wn

output

∆𝑤#= 𝜂𝑦𝑥#

𝑦 =(
#

𝑤#𝑥#

Hebbian learning - self-amplification

the net learns to respond the patterns that 
present the most frequent samples
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Weights can grow to infinity
Solution – normalization (no - local)

Competition mechanism for a stable solution
weights in the direction of maximum variance of the 
distribution
Maximization of the variance on the oputput
weights in the direction of the eigenvector corresponding to 
the maximum eigenvalue of the correlation matrix

Principal Component 

𝑤# =
𝑤#
𝐰

𝐶 = 𝐱𝐱𝐓 𝜇
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Idea

Oja’s rule

x1 ... xn

y

w1 ... wn

Information feedback
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Normalization is not local

Oia’s rule

More outputs

Oja’s rule

∆𝑤.= 𝜂 𝑥. − 𝑤.𝑦

Forgetting factor

∆𝑤#.= 𝜂𝑦# 𝑥. −(
012

3

𝑤0.𝑦0
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Syemmetric NN

Symmetric PCA NN

Single layer Neural Network

[ ] ( )[ ]22 xwy TEE =

Objective function
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Sanger’s learning rule

Sanger’s rule

∆𝑤#.= 𝜂𝑦# 𝑥. −(
012

#

𝑤0.𝑦0
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Hierarchical NN

Hierarchical  PCA NN

Single layer Neural Network
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Oja’s rule
Symmetric Space
Principal Components without a specific order

Sanger’s rule
Hierarchical space
Principal Components without a specific order

weights of the first output neuron corresponding to the first 
component, weights of the second neuron to the second
residual component, and so on 

Oja’s rule vs. Sanger’s rule
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Mixing matrix
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Non-linear objective function

x
L-dimensional vector

( ){ }xwTfE
w (weights) 

Maximization

where E is the expectation with respect to the (unknown) 
density of x and  f(.) is a continue function (e.g. ln cosh(.))
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Robust and non-linear PCA

Standard PCA
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Nonlinear PCARobust PCA
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Descendent gradient algorithm
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Cocktail party

Sources Mixtures Estimated-Sources

s A x W y
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Source estimation

x1(t), x2(t),x3(t) are the observed signals, 
s1(t), s2(t), s3(t) the source signals

Source signals Mixed signals Estimated signals

y1(t), y2(t),y3(t) are the separated signals


