

Machine Learning (part II)

Hebbian Learning

Angelo Ciaramella

Introduction

- McCulloch-Pitts Neuron
 - fixed weights

- Learning
 - weights adaption
 - learning approach

Learning

- First learning hypotheses
 - Donald O. Hebb
 - 1949 Book titled: The organization of behavior
 - neurophysiological evidence
- Principle

If two connected neurons are simultaneously active, the synaptic efficacy of the connection is reinforced

μ learning rate

 $\Delta w_{ij} = \eta y_i x_j$ Learning rule x y 1001 100 0100 010 0010 001

Learning example

Hebb's algorithm

Initialize the synaptic weights

 $w_{ij}=0$

Calculate synaptic changes

$$\Delta w_{ij} = \eta y_i x_j$$

Update the synaptic weights

$$w_{ij}(t) = w_{ij}(t-1) + \Delta w_{ij}$$

Limitations

- The Hebb rule allows to learn only orthogonal patterns
- Mixed responses are called interferences

- Some improvements
 - Postsynaptic rule
 - Presynaptic rule

Postsynaptic rule

- Postsynaptic rule
 - Stent-Singer
 - neurophysiologicals that highlighted the mechanism in biological circuits
 - rule
 - increased when the postsynaptic and presynaptic units are active
 - decreased when the postsynaptic unit is active but the presynaptic unit is inactive
 - reduction of the interference phenomenon
 - too many inhibitory synapses
 - it is not found in biological systems but in all the artificial neural networks

ML — Hebbian Learning

Presynaptic rule

- Presynaptic rule
 - increased when the postsynaptic and presynaptic units are active
 - decreased when the presynaptic unit is active but the postynaptic unit is inactive
 - It works well when many different and partially overlapping patterns need to be associated with the same pattern

Postsynaptic rule

$$\Delta w_{ij} = \eta (y_i x_j + (x_j - 1)y_i)$$

postsynaptic rule

$$\Delta w_{ij} = \eta \left(y_i x_j + (y_i - 1) x_j \right)$$

presynaptic rule

Hebbian learning and NNs

- NNs based on the Hebb's rule
 - Hopfield network
 - recurrent artificial NN described by Little in 1974
 - popularized by John Hopfield in 1982
 - content-addressable («associative») memory systems with binary threshold nodes
 - They are guaranteed to converge to a local minimum
 - converge to a false pattern (wrong local minimum) rather than the stored pattern (expected local minimum
 - provide a model for understanding human memory

Hebbian learning and NNs

- NNs based on the Hebb's rule
 - Oja's rule
 - Finnish computer scientist Erkki Oja
 - Is a model of how neurons in the brain or in artificial neural networks change connection strength
 - solves stability problems of Hebbian learning
 - generates an algorithm for
 - Principal Component Analysis (PCA)
 - non-linear PCA
 - Independent Component Analaysis (ICA)

ML – Hebbian Learning