

Machine Learning (part II)

Biological and Artificial Neural Networks

Angelo Ciaramella

Introduction

- Artifical Neural Networks (ANNs) are at the very core of Deep Learning
 - powerful
 - scalable
- Complex ML tasks
 - classifying billions of images (e.g., Google Images)
 - powering speech recognition services (e.g., Apple's Siri),
 - recommending the best videos to watch to hundreds of millions of users every day (e.g., YouTube)
 - learning to beat the world champion at the game of Go by playing millions of games against itself (DeepMind's Alpha-Zero)

Pattern Recognition and Machine Learning, J. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006²

Biological neuron

Biological neurons

- behave in a rather simple way
- are organized in a vast network of billions of neurons
- each neuron typically connected to thousands of other neurons

Neural networks

Highly complex computations can be performed by a vast network of fairly simple neurons

Biological neuron

Biological Neuron

Biological Neural Network

Multiple layers in a biological neural network (human cortex)

Artificial neuron

Artificial neuron

$$z = \sum_{i=1}^{n} w_i x_i = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

output

sum

$$y = f(\mathbf{w}, \mathbf{x}) = \theta(z)$$

activation functions

$$\theta = \begin{cases} 1 & if \ z \ge 0 \\ 0 & if \ z < 0 \end{cases}$$

 $\theta = \begin{cases} -1 \text{ if } z < 0\\ 0 \text{ if } z = 0\\ +1 \text{ if } z > 0 \end{cases}$

Heaviside

Activation functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1+e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$	Multi-layer NN	

Linear models for regression

Linear regression

$$y = f(\mathbf{w}, \mathbf{x}) = w_0 + w_1 x_1 + \dots + w_n x_n$$

Basis functions extension

$$y = w_0 + \sum_{j=1}^{n-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{\Phi}(\mathbf{x})$$
$$\Phi = (\phi_0, \dots, \phi_{M-1})^{\mathrm{T}}$$

Linear models for regression

non-linear regression basis

Linear models for classification

Classification

$$\mathbf{x} \rightarrow C_k \qquad k = 1, \dots, K$$

The classes are taken to be disjoint

- the input space is divided into decision regions whose boundaries are called decision boundaries
- for linear models
 - (D-1)-dimensional hyperplanes within the D-dimensional input space

Target values

• K > 2 classes

$$\mathbf{t} = (0, 1, 0, 0, 0)^T$$

1-of *K* coding (*K* = 5)

Linear discriminant function

13

Decision surface orientation

w is orthogonal to every vector within the decision surface determining the orientation of the decision surface

Decision surface distance

 w_0 determines the location of the decision surface

 $-w_0$ $\|\mathbf{w}\|$

Multiplying both sides by \mathbf{w}^{T} and adding w_0

$$r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$$

r perpendicular distance of the point **x** from the decision surface

Linear discriminant function

Multiple classes

- Approaches
 - one-versus-the rest
 - one-versus-one

K > 2 classes

$$y_k(\mathbf{x}, \mathbf{w}_k) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

$$y_k(\mathbf{x}, \mathbf{w}_k) > y_j(\mathbf{x}, \mathbf{w}_j)$$

for all $j \neq k \rightarrow C_k$

outputs

inputs

- bias is a threshold

Multiple linear discriminant

K > 2 classes

$$y_k(\mathbf{x}, \mathbf{w}_k) = \sum_{i=1}^n w_{ki} x_i + w_{k0} = \sum_{i=0}^n w_{ki} x_i$$

Output unit has the largest activation
Set of decision regions which are always simply connected and convex

Multiple linear discriminant

The decision regions $y_k(\mathbf{x}^A) > y_j(\mathbf{x}^A)$ $\hat{\mathbf{x}} = \lambda \mathbf{x}^A + (1 - \lambda) \mathbf{x}^B$ $y_k(\mathbf{x}^B) > y_j(\mathbf{x}^B)$ from the linearity $\forall j \neq k$ $y_k(\widehat{\mathbf{x}}) = \lambda y_k(\mathbf{x}^A) + (1 - \lambda) y_k(\mathbf{x}^B)$ $y_k(\hat{\mathbf{x}}) > y_j(\hat{\mathbf{x}})$ $\forall j \neq k$ \mathcal{R}_i \mathcal{R}_i \mathcal{R}_k \mathbf{x}_{B} XA â

All the points on the line also line in $\mathcal{R}_{\rm k}$ so the region must be simply connected and convex \$23\$

Dataset - iris

Iris visualization

2D Plot of IRIS data

Decision boudary

Decision boundary after learning

