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Artificial Intelligence

¥ Inventors have long dreamed of creating machines
that think

¥ Pygmalion, Daedalus, and Hephaestus may all be
interpreted as legendary inventors

¥ Galateaq, Talos, and Pandora may all be regarded as
artificial life

r Artificial Intelligence (Al)

e intelligence demonstrated by machines, in contrast to
the natural intelligence displayed by humans

r many practical applications and active research topics
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Machine Learning

» Knowledge base

B projects have sought to hard-code knowledge about
the world in formal languages

k logical inference rules

» Machine Learning (ML)

E systems need the ability to acquire their own
knowledge

B extracting patterns from raw data

r allowed computers to tackle problems involving
knowledge of the real world

¢ make decisions that appear subjective
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Data representation

» Representation

B performance of machine learning algorithms depends
heavily on the representation of the data

k information included in the representation is known as a

feature
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Representation learning

» Representation

¥ for many tasks, it is difficult to know what features
should be extracted

e.g., program to detect cars in photographs

p solution

use machine learning to discover not only the mapping from
representation to output but also the representation itself
(representation learning)

the quintessential example of a representation learning
algorithm is the autoencoder
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Deep learning

¥ Deep Learning (DL)

E solves representation learning by introducing
representations that are expressed in terms of other

simpler representations

r the quintessential example of a deep learning model is
the feedforward deep network or MultiLayer
Perceptron (MLP)

mathematical function mapping some set of input values to
output values
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DL and MLP

Qutput
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)
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AI diagram
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Al systems
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Historical trends

¥ Historical trends in DL
# DL dates back to the 1940s

¥ Three waves of development
B 1940s - 1960s cybernetics
B 1980s - 1990s connectionism
e trom 2006 deep learning

v Earliest learning algorithms
k computational models of biological learning

e Artificial Neural Networks

¥ today learning frameworks are not necessarily neurally
inspired

ML — Foundations of ML
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Historical trends
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First model

¥ McCulloch-Pitts Neuron

B Warren Sturgis McCulloch and Walter Harry Pitts
B 1943 — Article titled: A logical calculus of the ideas

immanent in nervous activity
¥ early model of brain function

k¥ the linear model could recognize two different
categories of inputs

r the weights needed to be set correctly by the human
operator
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McCulloch and Pitts research
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Malleria of Machematical Mokeyy Vol. 52, No. 1/2, pp. 73=115, 1590, O052-8240505).00 4+ 0.00
Printed in Geeat Britain, Pergamon Press plc
Soctety for Mathematical Blology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

® WARREN S. McCuULLOCH AND WALTER PITTS
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none™ character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions arc equivalent, in the sensc that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus arc
discussed.

1. Introduction. Theoretical neurophysiology rests on certain cardinal
assumptions. The nervous system is a net of neurons, each having a soma and
an axon. Their adjunctions, or synapses, are always between the axon of one
neuron and the soma of another. At any instant a neuron has some threshold,
which excitation must exceed to initiate an impulse. This, except for the fact
and the time of its occurence, is determined by the neuron, not by the
excitation. From the point of excitation the impulse is propagated to all parts of
the neuron. The velocity along the axon varies directly with its diameter, from
<1 ms™ ! in thin axons, which are usually short, to > 150 ms ™! in thick axons,
which are usually long. The time for axonal conduction is consequently of little
importance in determining the time of arrival of impulses at points unequally
remote from the same source. Excitation across synapses occurs predominant-
ly from axonal terminations to somata. It is still a moot point whether this
depends upon irreciprocity of individual synapses or merely upon prevalent
anatomical configurations. To suppose the latter requires no hypothesis ad hoc
and explains known exceptions, but any assumption as to cause is compatible
with the calculus to come. No case is known in which excitation through a
single synapse has elicited a nervous impulse in any neuron, whereas any
neuron may be excited by impulses arriving at a sufficient number of
neighboring synapses within the period of latent addition, which lasts
<0.25 ms. Observed temporal summation of impulses at greater intervals

* Reprinted from the Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133 (1943).
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Figure 1. The neuron ¢, is always marked with the numeral i upon the body of the
cell, and the corresponding action is denoted by “N™ with i s subscript, as in the text:

(a) Ny(r). = N(t—1);

(b) Ny(t). = . Ny(t—=1) v Ny(r~1):

(c) Nyfr).=. N(t=1). Nyfr—1)

(d) Nylt).= Ny(e—1).~N,(t—1);

(&) Ny(ty:=:Ny(t—=1).v.N,(t—=3).~N,(1-2);
Ny(t).= . N,(t=2). N,(t—1);

(f) Ng(t):=:~Ny(t—1). Nyt —1)v Nyt —1).v . N, (1—1).
Ny(t=1). Ny(t=1)
Nolt):=: ~ N (t=2). Nyt —2) v Ny(t—2).v.N,(r=2).
N;‘f_z)-N_\('_z)i

(£) Ny(t).= Ny(t=2) . ~N(t-3);

(h) Ny(t). = N (e=1).N,(t=2);

(1) Ny(:im:Ny(e—1).v. Ny(e—1). (Ex)t=1.N,(x). Ny(x).
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McCulloch and Pitts linear model

output

3
4
y = Wi X
i=1

weights w; | Wo W3

X X5 X5 [0, 1]
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McCulloch and Pitts model

X AND Y XORY NOT X
Output response (threshold)
T =20 -1
T<0-0
}1 +|1 -2\ +1 +1 -1 |
X Y o+ x Y +1 X
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Learning

» Hebbian theory
¥ Donald O. Hebb was a Canadian psychologist

e First learning hypotheses
B 1949 — Book titled: The organization of behavior

B links to complex brain models have been proposed

Hebbian learning - Hebb’s rule

ML — Foundations of ML
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The perceptron

¥ Connessionism and learning

# Frank Rosenblatt introduced the perceptron

B 1957 — Article titled: The Perceptron - a perceiving and
recognizing automaton

B system consists of binary activations
E a variable threshold value is used

perceptron learn the weights defining the categories
given examples of inputs from each category

ML — Foundations of ML
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The perceptron

g — {1 if flw,x)>0

0 otherwise output
Y y — f(W,x) — 0(21'3:1Wi xl)

w = [wy, wy, ws]

welghts wy Jwo \ws
X; X, Xj X = [xq, x5, x5]
[0, 1] inputs

ML — Foundations of ML
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Delta rule

» Learning approach

B Bernard Widrow and Ted Hoff
B 1960 — Article titled: Adaptive Switching Circuits

# Delta rule

gradient descent learning rule for updating the weights of
the inputs to artificial neurons in a single-layer neural

network
e Adaptive filters

Adaline - Adaptive Linear Neuron

ML — Foundations of ML
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Learning and generalization

» MultiLayer Perceptron (MLP) and learning

B Paul Werbos
¥ 1974 - generalization of delta rule could be used for MLP

doctoral dissertation

» Backpropagation and recognition

B David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams

1986 — Article titled: Learning representations by back-
propagating errors

B James McClelland

B Connectionism - large number of simple computational units
can achieve intelligent behavior when networked together

ML — Foundations of ML
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Deep learning

» Deep Neural Netorks

B Geoffrey Hinton

B 2006 - efficiently trained a deep belief network using
a strategy called greedy layer-wise pretraining

k train deeper neural networks focusing attention on the
theoretical importance of depth

ML — Foundations of ML
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MNIST dataset
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MNIST dataset of scans of handwritten numbers
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Growing connections

(o

Connections per neuron

“' Fruit fly l

1950 1985 2000 2015

Number of connections per neuron over time
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Growing neurons
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Deep Learning and challenge

R g

ML — Foundations of ML

ILSVRC classification error rate
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Deep learning

u»
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¥ Companies using DL

B Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe,
Netflix, NVIDIA and NEC

r Software libraries

Scikit-learn (Pedregosa et al., 2011)

Theano (Bergstra et al.,, 2010; Bastien et al., 201 2)
PyLearn2 (Goodfellow et al., 2013)

Torch (Collobert et al., 2011),

DistBelief (Dean et al., 201 2)

Caffe (Jia, 2013)

MXNet (Chen et al., 2015)

Keras (Chollet et al., 2015)

TensorFlow (Abadi et al., 2015)
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Machine learning

ML — Foundations of ML

o
.'4\'.‘ \

\E“
& foen

Machine Learning (ML) is the science (and art) of
programming computers so they can learn from
data

The examples that the system uses to learn are
called the training set (experience)

A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.

—Tom Mitchell, 1997
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Machine learning

Launch!
Studythe |t \write rules Evaluate
problem

®

Analyze
y <
errors

Traditional approach
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Machine learning

... o
¢ Launch!

Evaluate

Study the Train ML
solution

problem algorithm

Analyz
alyze <
errors

Machine Learning approach

ML — Foundations of ML

4
$
v 7S

30



Machine learning

A Update <@§—— Launch!
’ data

~.. P

D
ata_ /s Can be automated

Evaluate
solution

Train ML
algorithm

Automatically adapting to change
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Machine learning

Study the > Train ML :
problem algorithm
a Solution
I l
I
I
.
! ‘ ?o ’50
: Inspect the
! *Lots* of data solution
|
I
I
I
I
: L Understand the \
Iterate if needed problem better @\(\

ML can help humans learn (data mining)
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Types of ML systems

» Learning systems

B Supervised

The training set you feed to the algorithm includes
desidered soultions called label (e.g., target)

® Unsupervised

The training set you feed to the algorithm is unlabeled

ML — Foundations of ML
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Types of ML systems

r target

p class

e.g., spam or ham

classification

B numeric value
e.g., price of a car

predictiors and the task is regression

¢ features
p attribute with a value

¥ Age (attribute) — 20 (value)

ML — Foundations of ML
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Supervised learning

Training set

m Label

i m New instance

A labelled training set for supervised learning (e.g., spam classification)
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Supervised learning
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x Feature 1

New instance

Regression
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Supervised algorithms

» Supervised learning algorithms
e K-Nearest Neighbors
e Linear regression
B Logistic regression
e Support Vector Machines

B Decision Trees and Random Forests

® Neural Networks

ML — Foundations of ML
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Unsupervised learning

ML — Foundations of ML

Training set

Unlabeled training set for unsupervised learning
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Unsupervised algorithms

¢ Clustering
B K-Means
B Fuzzy C-Means
¢ DBSCAN

® Hierarchical Cluster Analysis

¥ Anomaly detection and novelty detection
B One-class SYM

p Isolation Forest

¢ Visualization and dimensionality reduction
# Self Organizing Maps
B Isomap
B Principal Component Analysis (PCA)
B Kernel PCA
¥ Locally-Linear Embedding (LLE)

ML — Foundations of ML
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Unsupervised learning

Feature 2

= - -
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Feature 1

Clustering
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Unsupervised learning

+ cat
automobile
truck
frog
ship
airplane

o horse
bird
dog

- deer
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Unsupervised learning

Feature 2 .
New instances

0
.~..‘: ®
e © O
o’
® o_ ..
® o [Traininginstances
=
Feature 1

Anomaly detection
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Reinforcement learning

» Agent
E can observe the environment
B select and perform actions

k get rewards in return

penalties in the form of negative rewards

» Examples
B DeepMind’s AlphaGo program

ML — Foundations of ML
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Reinforcement learning

ML — Foundations of ML
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0 Observe

Select action
using policy

o Action!

Get reward
or penalty

Update policy
(learning step)

Iterate until an
optimal policy is
found

Reinforcement learning strategy




On-line learning
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*Lots* of data

Study the
problem

——
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Train online
ML algorithm

Analyze <

Launch!

Evaluate
solution

errors

On-line learning to handle huge datasets
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Istance-based learning

Feature 2
A A A\ [ ]
A D A O []
A AN ]
D Training instances D
JAN JAN [] o
New instance D D D
o O 0
Feature 1

Instance-based learning
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Model-based learning

Feature 2 Model M N

e e T s smm

>

Feature 1

Model-based learning
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Data

» Feature engineering

# Feature selection

# Feature extraction

» Data generalizzation

e Overfitting
r Underfitting

ML — Foundations of ML
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Overfitting

Life satisfaction

0 20000 40000 60000 80000
GDP per capita

100000

Overfitting of the data (regularization should be used)
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Overfitting

ML — Foundations of ML
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—— Regularized linear model on partial data
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Using regularization for avoiding overfitting of the data
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Data mismatch

¢ Data

k It is easy to get a large amount of data for training bit
it is not perfectly representative of the data that will

be used in production

¢ No Free Lunch Theorem

e David Wolpert

B 1996 — Article titled: The lack of a priori distinctions
between learning algorithms

B If you make absolutely no assumption about the data,
then there is no reason to prefer one model oevr any

ML — Foundations of ML
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