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Inventors have long dreamed of creating machines
that think

Pygmalion, Daedalus, and Hephaestus may all be 
interpreted as legendary inventors
Galatea, Talos, and Pandora may all be regarded as
artificial life

Artificial Intelligence (AI)
intelligence demonstrated by machines, in contrast to 
the natural intelligence displayed by humans
many practical applications and active research topics

Artificial Intelligence
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Knowledge base
projects have sought to hard-code knowledge about 
the world in formal languages
logical inference rules

Machine Learning (ML)
systems need the ability to acquire their own
knowledge
extracting patterns from raw data
allowed computers to tackle problems involving
knowledge of the real world 
make decisions that appear subjective

Machine Learning
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Representation
performance of machine learning algorithms depends
heavily on the representation of the data
information included in the representation is known as a 
feature

Data representation
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Representation 
for many tasks, it is difficult to know what features
should be extracted

e.g., program to detect cars in photographs

solution
use machine learning to discover not only the mapping from 
representation to output but also the representation itself
(representation learning)
the quintessential example of a representation learning
algorithm is the autoencoder

Representation learning
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Deep Learning (DL)
solves representation learning by introducing
representations that are expressed in terms of other
simpler representations
the quintessential example of a deep learning model is
the feedforward deep network or MultiLayer
Perceptron (MLP)

mathematical function mapping some set of input values to 
output values

Deep learning
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DL and MLP

Information representation of a DL model
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AI diagram

Venn diagram
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AI systems

Flowcharts of AI systems
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Historical trends in DL
DL dates back to the 1940s

Three waves of development
1940s - 1960s cybernetics
1980s - 1990s connectionism
trom 2006 deep learning

Earliest learning algorithms
computational models of biological learning
Artificial Neural Networks
today learning frameworks are not necessarily neurally
inspired

Historical trends
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Historical trends

Historical waves of artificial neural nets research
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McCulloch-Pitts Neuron
Warren Sturgis McCulloch and Walter Harry Pitts
1943 – Article titled: A logical calculus of the ideas
immanent in nervous activity
early model of brain function
the linear model could recognize two different
categories of inputs
the weights needed to be set correctly by the human 
operator

First model
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McCulloch and Pitts research 



M
L 

–
Fo

un
da

tio
ns

of
 M

L

14

McCulloch and Pitts linear model

[0,1]

weights

𝑦 = #
$ %&

'

𝑤𝑖 𝑥$

x1 x2 x3

y

w1 w2 w3

inputs

output
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McCulloch and Pitts model

𝑇 ≥ 0 → 1
𝑇 < 0 → 0

Output response (threshold)
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Hebbian theory
Donald O. Hebb was a Canadian psychologist
First learning hypotheses
1949 – Book titled: The organization of behavior
links to complex brain models have been proposed

Hebbian learning - Hebb’s rule

Learning
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Connessionism and learning
Frank Rosenblatt introduced the perceptron
1957 – Article titled: The Perceptron - a perceiving and 
recognizing automaton
system consists of binary activations
a variable threshold value is used
perceptron learn the weights defining the categories
given examples of inputs from each category

The perceptron
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The perceptron

[0,1]

weights

𝑦 = 𝑓 𝒘, 𝒙 = 𝜃(∑$ %&' 𝑤𝑖 𝑥$ )

x1 x2 x3

y

w1 w2 w3

inputs

output

𝒘 = [𝑤1, 𝑤2, 𝑤3]

𝒙 = 𝑥1, 𝑥2, 𝑥3

𝜃 = <1 𝑖𝑓 𝑓 𝒘, 𝒙 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Learning approach
Bernard Widrow and Ted Hoff
1960 – Article titled: Adaptive Switching Circuits
Delta rule

gradient descent learning rule for updating the weights of 
the inputs to artificial neurons in a single-layer neural
network

Adaptive filters
Adaline - Adaptive Linear Neuron

Delta rule
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MultiLayer Perceptron (MLP) and learning
Paul Werbos
1974 - generalization of delta rule could be used for MLP

doctoral dissertation

Backpropagation and recognition
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams 

1986 – Article titled: Learning representations by back-
propagating errors

James McClelland
Connectionism - large number of simple computational units
can achieve intelligent behavior when networked together

distributed representation

Learning and generalization
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Deep Neural Netorks
Geoffrey Hinton
2006 - efficiently trained a deep belief network using
a strategy called greedy layer-wise pretraining
train deeper neural networks focusing attention on the 
theoretical importance of depth

Deep learning
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MNIST dataset

MNIST dataset of scans of handwritten numbers
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Growing datasets

Increasing dataset over time



M
L 

–
Fo

un
da

tio
ns

of
 M

L

24

Growing connections

Number of connections per neuron over time
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Growing neurons

Number of neurons over time
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Deep Learning and challenge

ImageNet Large Scale Visual Recognition Challenge



M
L 

–
Fo

un
da

tio
ns

of
 M

L

27

Companies using DL
Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe, 
Netflix, NVIDIA and NEC

Software libraries
Scikit-learn (Pedregosa et al., 2011)
Theano (Bergstra et al., 2010; Bastien et al., 2012)
PyLearn2 (Goodfellow et al., 2013)
Torch (Collobert et al., 2011), 
DistBelief (Dean et al., 2012)
Caffe (Jia, 2013) 
MXNet (Chen et al., 2015)
Keras (Chollet et al., 2015)
TensorFlow (Abadi et al., 2015)

Deep learning
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Machine Learning (ML) is the science (and art) of 
programming computers so they can learn from 
data

The examples that the system uses to learn are 
called the training set (experience)

Machine learning

A computer program is said to learn from experience E with respect to 
some  task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.

—Tom Mitchell, 1997
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Machine learning

Traditional approach
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Machine learning

Machine Learning approach
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Machine learning

Automatically adapting to change
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Machine learning

ML can help humans learn (data mining)
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Learning systems
Supervised

The training set you feed to the algorithm includes
desidered soultions called label (e.g., target)

Unsupervised
The training set you feed to the algorithm is unlabeled

Types of ML systems
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target
class

e.g., spam or ham
classification

numeric value
e.g., price of a car
predictiors and the task is regression

features
attribute with a value
Age (attribute) – 20 (value)

Types of ML systems
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Supervised learning

A labelled training set for supervised learning (e.g., spam classification)
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Supervised learning

Regression
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Supervised learning algorithms
K-Nearest Neighbors
Linear regression
Logistic regression
Support Vector Machines
Decision Trees and Random Forests
Neural Networks 

Supervised algorithms
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Unsupervised learning

Unlabeled training set for unsupervised learning
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Clustering
K-Means
Fuzzy C-Means
DBSCAN
Hierarchical Cluster Analysis

Anomaly detection and novelty detection
One-class SVM
Isolation Forest

Visualization and dimensionality reduction
Self Organizing Maps
Isomap
Principal Component Analysis (PCA)
Kernel PCA
Locally-Linear Embedding (LLE)

Unsupervised algorithms
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Unsupervised learning

Clustering
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Unsupervised learning

Clustering and visualization
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Unsupervised learning

Anomaly detection
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Agent
can observe the environment
select and perform actions
get rewards in return

penalties in the form of negative rewards

Examples
DeepMind’s AlphaGo program

Reinforcement learning
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Reinforcement learning

Reinforcement learning strategy
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On-line learning

On-line learning to handle huge datasets 
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Istance-based learning 

Instance-based learning 
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Model-based learning 

Model-based learning 
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Feature engineering
Feature selection
Feature extraction

Data generalizzation
Overfitting
Underfitting

Data
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Overfitting

Overfitting of the data (regularization should be used)
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Overfitting

Using regularization for avoiding overfitting of the data
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Data
It is easy to get a large amount of data for training bit 
it is not perfectly representative of the data that will
be used in production 

No Free Lunch Theorem
David Wolpert
1996 – Article titled: The lack of a priori distinctions
between learning algorithms
If you make absolutely no assumption about the data, 
then there is no reason to prefer one model oevr any
other

Data mismatch


