

Machine Learning (part II)

Introduction to the course

Prof. Angelo Ciaramella

The course

12 training credits (CFU)

- Part I (6 CFU)
 - Teacher Prof. Francesco Camastra

Part II (6 CFU)

Teacher – Prof. Angelo Ciaramella

Theoretical part

- Frontal lectures
- Practices
 - theoretical
 - Iaboratory

The course

Examination

- Theoretical/practical project
 - Topic chosen by the student or theachers
 - Term paper
- Oral interview
 - Presentation
 - Project explenation

Lecture timetable

Lecture Timetable

- Monday
 - 2:00 p.m. 4:00 p.m. Lab 1

Friday

2:00 p.m. - 4:00 p.m. – Lab 1

Office hours

Tuesday

■ 2:00 p.m. – 4:00 p.m.

"On demand"

<mark>–</mark> via e-mail

Objectives of the course

- The course aims to provide the theoretical and practical foundations of Machine Learning, Computational Intelligence and Deep Learning
 - Pre-processing and features extraction
 - Unsupervised learning
 - Supervised learning
 - Deep learning
 - Validation methods

Teaching materials

Recommended books

- J. C. Bishop, «Neural Networks for Pattern Recognition», Oxford University Press, 1995
- J. C. Bishop, «Pattern Recognition and Machine Learning», Springer, 2006
- I. Goodfellow, Y. Bengio, A. Courville, «Deep Learning», MIT Press, 2016
- A. Geron, «Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow», O'Reilly, 2019

Lecture notes

e-learning material

Introduction

- Artificial Intelligence and Computational Intelligence
- Deep Learning vs. Machine Learning

- Taxonomy of Deep Learning
- Foundations of Neural Networks
 - Biological Neuron vs. Artificial Neuron
 - Hebb's rule

Self-organizing Neural Networks

- Oja's and Sanger's rules
- Neural Network for Principal and Independent Component Analysis
- Neural networks based on competition mechanisms
 - Kohonen's Maps
 - Self Organizing Maps
 - Adaptive Resonance Theory

Supervised Neural Networks

- Single-Layer Networks
- Multi-Layer Perceptron (MLP),
 - properties of Universal Approximation
 - Kolmogorov theorem, Back-propagation algorithm
 - MLP vs Radial Basis Functions
 - Error functions
 - MLP and Vapnik Chervonenkis dimension

Supervised Neural Networks and optimization algorithms

Descending gradient, conjugate gradient, scaled conjugate gradient, Newton method, Levenberg-Marquardt algorithm, constrained optimization

Pre-processing and extraction of features

- Whitening
- Fisher's linear discriminant
- criteria for selecting features

Learning and generalization

- bias-variance dilemma
- regularization
- NNs committee
- mixture of experts
- cross-validation

Deep Neural Networks

- Convolutive Neural Networks
- Recurrent Neural Networks
- Recursive Neural Networks
- Echo State Networks
- Long Short-Term Memory
- Linguistic and Vision Transformers

Methodologies for Deep Learning

- Autoencoders
- Sparse Coding
- Dictionary Learning
- Representation Learning
- Generative Models
- Generative Adversial Neural Network

Validation methods

- Confusion matrix and indices
- ROC curve
- Statistical significance

