Scrivere l fogli a pa	
Indicare s	sulla prima facciata di ogni foglio allegato, in alto al centro: COGNOME, NOME, AM1
	O A.1 (6 PUNTI)
A.1.1)	Classificare il sistema lineare seguente e, se compatibile, calcolare le soluzioni.
	$\begin{cases} x + 3y - 2z = 4 \\ 3y + z = 1 \\ x - 3z = 3 \\ x + 9y = 1 \end{cases}$
	$\begin{cases} 3y + z = 1 \end{cases}$
	x - 3z = 3
A.1.ii)	Dire poi se il sistema omogeneo associato ammette soluzioni non banali.
	E SINTETICHE:
	Il sistema è \square compatibile \square incompatibile \square determinato \square indeterminato Le soluzioni sono:
A.1.ii)	il sistema omogeneo associato ha soluzioni non banali? \qed sí \qed no
ESERCIZI	IO A.2 (8 PUNTI)
	Rappresentare graficamente (sui fogli allegati) la retta r per i punti $P=(1,2)$ e $Q=(3,1)$
	e scriverne l'equazione cartesiana.
	Determinare poi le coordinate del punto C di intersezione fra r e la retta r' di equazione parametrica $(t, 1-2t)$.
	Scrivere infine l'equazione della circonferenza γ che ha centro in C e passa per P .
A.2.ii)	Dati i vettori $\vec{u} = (2, 3, -1), \ \vec{v} = (5, 0, 2)$ e $\vec{w} = (0, -2, 1),$ calcolare $\vec{u} + \langle \vec{u}, \vec{v} \rangle \vec{w}$ e la norma di \vec{u} .
RISPOST	E SINTETICHE:
A.2.i)	r :
	C:
	γ :
A.2.ii)	$ec{u} + < ec{u}, ec{v} > ec{w} =$
· ·	$\ ec{u}\ =$
ESERCIZI	IO A.3 (5 PUNTI) Determinare il dominio della funzione
	$f(x) = \exp\left(\frac{x-1}{\sqrt{4-x}}\right),$
	$f(x) = \exp\left(\frac{1}{\sqrt{4-x}}\right)$,
	i limiti alle estremità del dominio e trovare gli eventuali asintoti. E SINTETICHE:
dominio:	
asintoto	verticale? \square sì \square no. Se sì, la sua equazione è:
asintoto	orizzontale? \square sì \square no. Se sì, la sua equazione è:

4

ESERCIZIO A.4 (6 PUNTI) Determinare il dominio della funzione

$$f(x) = x^2 + 2x + 7 + \log(x+3),$$

trovare i punti stazionari e classificarli. Stabilire poi, motivando la risposta, se si tratta di massimi e/o minimi assoluti. In ogni caso, individuare gli estremi superiore ed inferiore.

DIGDOGME	CIMPERIONE
RISPUSTE	SINTETICHE:

dominio:

punto stazionario in x= \square max. rel. \square min. rel. \square altro è assoluto? \square sì \square no punto stazionario in x= \square max. rel. \square min. rel. \square altro è assoluto? \square sì \square no

 $\sup f = \inf f =$

ESERCIZIO A.5 (5 PUNTI) Dati la funzione $f(x) = (x-1)e^{2-x} - 1$ ed il punto $x_o = 2$, rispondere ai quesiti:

A.5.i) qual è la retta tangente al grafico di f(x) nel punto di ascissa x_o ?

A.5.ii) quale uguaglianza afferma l'espansione di Taylor di ordine 2 intorno al punto x_o ?

A.5.iii) quanto vale $\lim_{x \to x_o} f(x)/(x-x_o)^2$?

RISPOSTE SINTETICHE:

A.5.i) retta tangente:

A.5.ii) espansione di Taylor:

A.5.iii) valore del limite (se esiste)

ESERCIZIO A.6 (5 PUNTI) Verificare che

$$\int_0^2 \frac{2x-8}{x^2-8x+15} dx = -\log 5.$$

Cognome, nome e matricola: Scrivere le risposte sintetiche negli spazi appositi e motivarle scrivendo lo SVOLGIMENTO completo fogli a parte. Indicare sulla prima facciata di ogni foglio allegato, in alto al centro: COGNOME, NOME, AM1	in
esercizio b.1 (6 punti)	
B.1.i) Classificare il sistema lineare seguente e, se compatibile, calcolare le soluzioni.	
$\begin{cases} x + 2y + 3z = 4 \\ x + 3y = 3 \\ -y + 3z = 1 \\ x + 9z = 3 \end{cases}$	
$\begin{cases} x + 3y = 3 \end{cases}$	
-y+3z=1	
·	
B.1.ii) Dire poi se il sistema omogeneo associato ammette soluzioni non banali.	
RISPOSTE SINTETICHE: B.1.i) Il sistema è \Box compatibile \Box incompatibile \Box determinato \Box indeterminato	
Le soluzioni sono:	
B.1.ii) il sistema omogeneo associato ha soluzioni non banali? \qed sí \qed no	
ESERCIZIO B.2 (8 PUNTI)	
B.2.i) Rappresentare graficamente (sui fogli allegati) la retta r per i punti $P=(2,1)$ e $Q=(1,1)$	3)
e scriverne l'equazione cartesiana. Determinare poi le coordinate del punto C di intersezione fra r e la retta r' di equazio	ne
parametrica $(t, 2-t)$.	
Scrivere infine l'equazione della circonferenza γ che ha centro in C e passa per P . B.2.ii) Dati i vettori $\vec{u} = (2, -3, 1), \ \vec{v} = (5, 0, 2)$ e $\vec{w} = (0, -2, 1),$ calcolare $\vec{u} + \langle \vec{u}, \vec{v} \rangle \vec{w}$ e la norma di \vec{u} .	
RISPOSTE SINTETICHE:	
B.2.i) r :	
$\stackrel{'}{C}$:	
γ :	
B.2.ii) $\vec{u} + \langle \vec{u}, \vec{v} \rangle \vec{w} =$	
$\ ec{u}\ =$	
ESERCIZIO B.3 (5 PUNTI) Determinare il dominio della funzione	
$f(x) = \exp\left(\frac{\sqrt{x-4}}{7-x}\right),$	
calcolare i limiti alle estremità del dominio e trovare gli eventuali asintoti. RISPOSTE SINTETICHE:	
dominio:	
asintoto verticale? □ sì □ no. Se sì, la sua equazione è:	
asintoto orizzontale? \square sì \square no. Se sì, la sua equazione è:	

ESERCIZIO B.4 (6 PUNTI) Determinare il dominio della funzione

$$f(x) = \log(4 - x) + x^2 - 4x + 7,$$

trovare i punti stazionari e classificarli. Stabilire poi, motivando la risposta, se si tratta di massimi e/o minimi assoluti. In ogni caso, individuare gli estremi superiore ed inferiore.

RISPOSTE SINTETI

dominio:

punto stazionario in x= \square max. rel. \square min. rel. \square altro è assoluto? \square sì \square no punto stazionario in x= \square max. rel. \square min. rel. \square altro è assoluto? \square sì \square no

 $\sup f = \inf f =$

ESERCIZIO B.5 (5 PUNTI) Dati la funzione $f(x) = (x-2)e^{3-x} - 1$ ed il punto $x_o = 3$, rispondere ai quesiti:

B.5.i) qual è la retta tangente al grafico di f(x) nel punto di ascissa x_o ?

B.5.ii) quale uguaglianza afferma l'espansione di Taylor di ordine 2 intorno al punto x_o ?

B.5.iii) quanto vale $\lim_{x \to x_o} f(x)/(x-x_o)^2$?

RISPOSTE SINTETICHE:

B.5.i) retta tangente:

B.5.ii) espansione di Taylor:

B.5.iii) valore del limite (se esiste)

ESERCIZIO B.6 (5 PUNTI) Verificare che

$$\int_0^2 \frac{2x+4}{x^2+4x+3} dx = \log 5.$$