
Analisi Matematica 1 (SNAMO) - Analisi Matematica (CMN) SECONDA PROVA INTRACORSO - 20/12/2019 - Traccia A

Candidato (cognome, nome, matricola):		
Riportare le risposte sintetiche negli spazi appositi, scrivere anc	he lo <u>svolgimento</u> per esteso.	
Se si allegano fogli aggiuntivi, scrivere sulla prima facciata di ogni foglio, in alto al centro:		
"TRACCIA A", COGNOME E	NOME	
ESERCIZIO A.1 (8 PUNTI) A.1.a) Calcolare l'integrale definito $\int\limits_0^1 \frac{3}{x^2-x-2} dx$		
A.1.b) Determinare una primitiva di $2(x-1) \arctan(x-1)$		
SVOLGIMENTO:		

ESERCIZIO A.2 (4 PUNTI) Osservando il grafico individuare

- dominio:
- immagine

e, se presenti,

- punti stazionari:
- punti estremanti relativi:
- punti di non derivabilità:
- asintoti verticali:
- asintoti orizzontali:

ESERCIZIO A.3 (11 PUNTI) Data la funzione di legge $f(x) = \log(6x - x^2)$, determinare

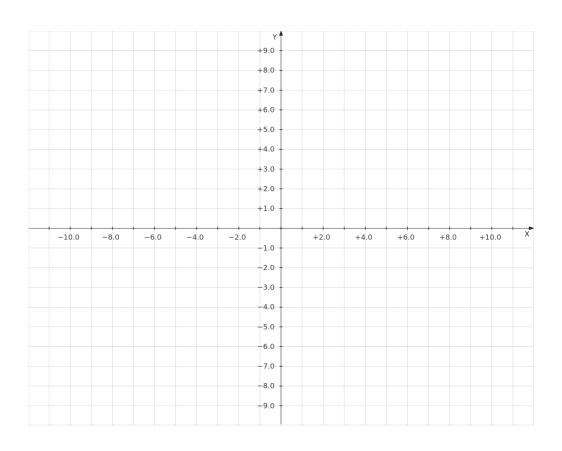
$$A.3.1) \mid \operatorname{dom} f =$$

A.3.2) limiti alle estremità del dominio e asintoti:

 $\lim_{x \to \infty} \text{asintoto:}$ $\lim_{x \to \infty} \text{asintoto:}$

A.3.3) derivata, monotonia ed estremi relativi:

f'(x) = $f ext{ crescente negli intervalli:}$ $f ext{ decrescente negli intervalli:}$ punti stazionari in <math>x = $punto ext{ di max. relativo in } x =$ $punto ext{ di min. relativo in } x =$

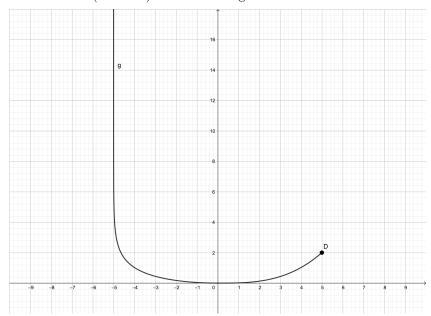

A.3.4) estremi assoluti e immagine:

$$\sup f = \inf f = \operatorname{Im} f =$$

A.3.5) derivata seconda e convessità:

$$f''(x) =$$
 f convessa negli intervalli:
 f concava negli intervalli:
punti di flesso in $x =$

A.3.6) grafico: (nella pagina seguente)



ESERCIZIO A.4 (13 PUNTI) Si consideri la funzione di legge $f(x) = \frac{\sqrt{x-3}}{x-2}$.		
Individu derivazi	are il dominio naturale e la derivata (solo per i valori di x per cui si possono applicare le regole di one).	
dom	f = f'(x) =	
Indicare	e poi quali delle seguenti affermazioni sono vere:	
A.4.i)	la retta $y=0$	
A.4.ii)	la retta $y=1$	
A.4.iii)	$x=2$ è asintoto verticale \qed vero \qed falso	
A.4.iv)	$x=3$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto	
A.4.v)	$x=4$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto	
A.4.vi)	Si può applicare il Teorema di Rolle nell'intervallo $[3,5]$ $\hfill\Box$ vero $\hfill\Box$ falso	
N.B. Pe	r ogni punto, è possibile che sia vera più di una affermazione.	

Analisi Matematica 1 (SNAMO) - Analisi Matematica (CMN) SECONDA PROVA INTRACORSO - 20/12/2019 - Traccia B

Candidato (cognome, nome, matricola):			
Riportare le risposte sintetiche negli spazi appositi, scrivere anche lo svolgimento per esteso.			
Se si allegano fogli aggiuntivi, scrivere sulla prima facciata di ogni foglio, in alto al centro:			
"TRACCIA B", COGNOME E	NOME		
ESERCIZIO B.1 (8 PUNTI)			
B.1.a) Calcolare l'integrale definito $\int_{0}^{1} \frac{1}{4x^{2} - 4x + 2} dx$ B.1.b) Determinare una primitiva di $\frac{\log(x-1)}{(x-1)^{2}}$			
B.1.b) Determinare una primitiva di $\frac{\log(x-1)}{(x-1)^2}$			
SVOLGIMENTO:			

ESERCIZIO B.2 (4 PUNTI) Osservando il grafico individuare

- dominio:
- immagine

e, se presenti,

- punti stazionari:
- punti estremanti relativi:
- punti di non derivabilità:
- $\bullet\,$ asintoti verticali:
- asintoti orizzontali:

ESERCIZIO B.3 (11 PUNTI) Data la funzione di legge $f(x) = \exp(8x - x^2)$, determinare

$$(B.3.1) \mid \operatorname{dom} f =$$

B.3.2) limiti alle estremità del dominio e asintoti:

 $\lim_{x \to \infty} \qquad \qquad \text{asintoto:}$ $\lim_{x \to \infty} \qquad \qquad \text{asintoto:}$

B.3.3) derivata, monotonia ed estremi relativi:

$$f'(x) =$$

 \boldsymbol{f} crescente negli intervalli:

f decrescente negli intervalli:

punti stazionari in x =

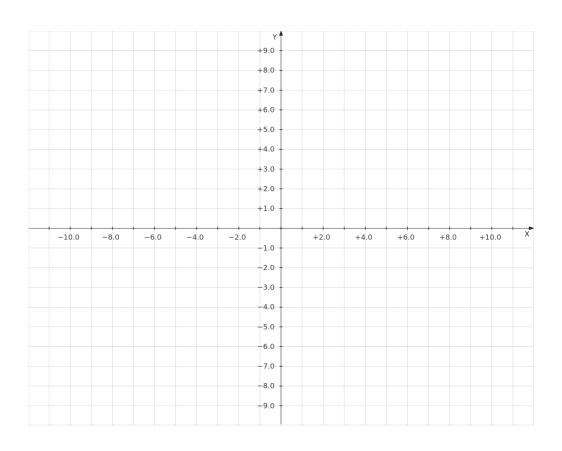
punto di max. relativo in x =

punto di min. relativo in x =

B.3.4) estremi assoluti e immagine:

$$\sup f = \qquad \qquad \inf f = \qquad \qquad \operatorname{Im} f =$$

B.3.5) derivata seconda e convessità:

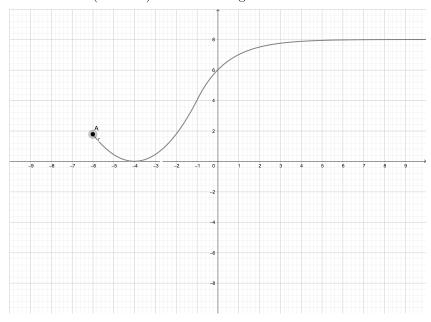

$$f''(x) =$$

 \boldsymbol{f} convessa negli intervalli:

f concava negli intervalli:

punti di flesso in x =

B.3.6) grafico: (nella pagina seguente)


	O B.4 (13 PUNTI) Si consideri la funzione di legge $f(x) = \frac{\sqrt{x-1}}{x-3}$. are il dominio naturale e la derivata (solo per i valori di x per cui si possono applicare le regole ne).	di
dom	f'(x) =	
Indicare	poi quali delle seguenti affermazioni sono vere:	
в.4.і)	a retta $y=0$ \square è un asintoto orizzontale \square non interseca il grafico \square interseca il grafico in punto	in
в.4.іі)	a retta $y=1$ \square è un asintoto orizzontale \square non interseca il grafico \square interseca il grafico un punto	in
в.4.ііі)	$x=-1$ è un punto stazionario \Box vero \Box falso	
в.4.iv)	$x=1$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto	to
в.4.v)	$x=3$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto	to
в.4.vi)	Si può applicare il Teorema degli Zeri nell'intervallo $[2,4]$ \square vero \square falso	

 ${\tt N.B.}$ Per ogni punto, è possibile che sia vera più di una affermazione.

Analisi Matematica 1 (SNAMO) - Analisi Matematica (CMN) SECONDA PROVA INTRACORSO - 20/12/2019 - Traccia C

Candidato (cognome, nome, matricola):			
Riportare le risposte sintetiche negli spazi appositi, scrivere anche lo svolgimento per esteso.			
Se si allegano fogli aggiuntivi, scrivere sulla prima facciata di ogni foglio, in alto al centro:			
"TRACCIA C", COGNOME E N	IOME		
ESERCIZIO C.1 (8 PUNTI) C.1.a) Calcolare l'integrale definito $\int_{-2}^{0} \frac{4}{x^2 + 4x + 8} dx$			
c.1.b) Determinare una primitiva di $\sin^3(\pi x) \cos^2(\pi x)$			
SVOLCIMENTO:			

ESERCIZIO C.2 (4 PUNTI) Osservando il grafico individuare

- dominio:
- immagine

e, se presenti,

- punti stazionari:
- punti estremanti relativi:
- punti di non derivabilità:
- asintoti verticali:
- asintoti orizzontali:

ESERCIZIO C.3 (11 PUNTI) Data la funzione di legge $f(x) = \exp(x^2 - 8x)$, determinare

$$(0.3.1) \mod f =$$

c.3.2) limiti alle estremità del dominio e asintoti:

 $\lim_{x \to} \text{asintoto:}$

 $\lim_{x \to} \text{asintoto:}$

c.3.3) derivata, monotonia ed estremi relativi:

f'(x) =

f crescente negli intervalli:

f decrescente negli intervalli:

punti stazionari in x =

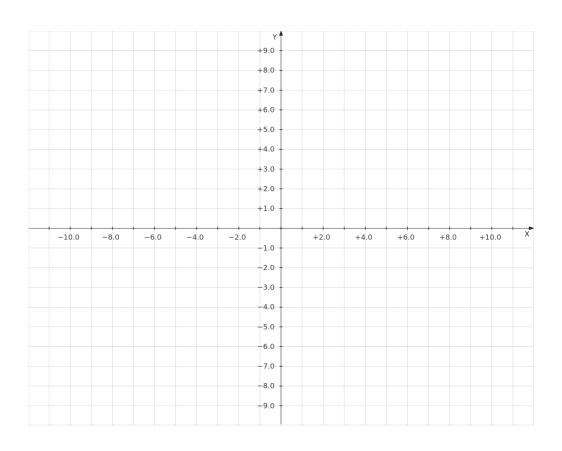
punto di max. relativo in x =

punto di min. relativo in x =

c.3.4) estremi assoluti e immagine:

$$\sup f = \qquad \qquad \inf f = \qquad \qquad \operatorname{Im} f =$$

c.3.5) derivata seconda e convessità:


$$f''(x) =$$

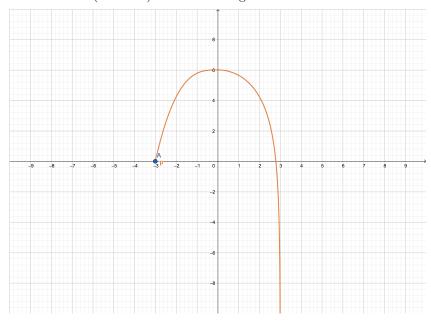
f convessa negli intervalli:

f concava negli intervalli:

punti di flesso in x =

c.3.6) grafico: (nella pagina seguente)

ECEDCIZIO	C A	(13 DIINTI)	Si consideri la	funziono	di lorgo	f(x) =	x+3
ESERCIZIO	0.4	(13 PUNII)	Si consideri la	i iunzione	ur iegge	J(x) —	$\sqrt{x+1}$


Individuare il dominio naturale e la derivata (solo per i valori di x per cui si possono applicare le regole di derivazione).

dom f = f'(x) =
Indicare poi quali delle seguenti affermazioni sono vere:
C.4.i) la retta $y=0$ \square è un asintoto orizzontale \square non interseca il grafico \square interseca il grafico in un punto
C.4.ii) la retta $y=4$ \Box è un asintoto orizzontale \Box non interseca il grafico \Box interseca il grafico in due punti
c.4.iii) $y = x$ è asintoto obliquo \Box vero \Box falso
C.4.iv) $x=-1$ è \Box asintoto verticale \Box punto a tangente verticale \Box punto stazionario \Box punto estremante assoluto \Box punto estremante relativo, ma non assoluto
C.4.v) $x=1$ è \Box asintoto verticale \Box punto a tangente verticale \Box punto stazionario \Box punto estremante assoluto \Box punto estremante relativo, ma non assoluto
c.4.vi) Si può applicare il Teorema degli Zeri nell'intervallo $[0,3]$ \square vero \square falso
N.B. Per ogni punto, è possibile che sia vera più di una affermazione.
SVOLGIMENTO:

Analisi Matematica 1 (SNAMO) - Analisi Matematica (CMN) SECONDA PROVA INTRACORSO - 20/12/2019 - Traccia D

Candidato (cognome, nome, matricola):		
Riportare le risposte sintetiche negli spazi appositi, scrivere anche lo svolgimento per esteso.		
Se si allegano fogli aggiuntivi, scrivere sulla prima facciata di ogni foglio, in alto al centro:		
"TRACCIA D", COGNOME E	NOME	
ESERCIZIO D.1 (8 PUNTI)		
D.1.a) Calcolare l'integrale definito $\int_{-1}^{0} \frac{3}{x^2 + x - 2} dx$		
D.1.b) Determinare una primitiva di $\frac{2\log(x+1)}{(x+1)^3}$		

ESERCIZIO D.2 (4 PUNTI) Osservando il grafico individuare

- dominio:
- immagine

e, se presenti,

- punti stazionari:
- punti estremanti relativi:
- punti di non derivabilità:
- asintoti verticali:
- asintoti orizzontali:

ESERCIZIO D.3 (11 PUNTI) Data la funzione di legge $f(x) = \exp(4x - x^2)$, determinare

$$D.3.1) \mid dom f =$$

D.3.2) limiti alle estremità del dominio e asintoti:

 $\lim_{x \to \infty} \text{asintoto:}$

 $\lim_{x \to \infty} \text{asintoto:}$

D.3.3) derivata, monotonia ed estremi relativi:

f'(x) =

f crescente negli intervalli:

f decrescente negli intervalli:

punti stazionari in x =

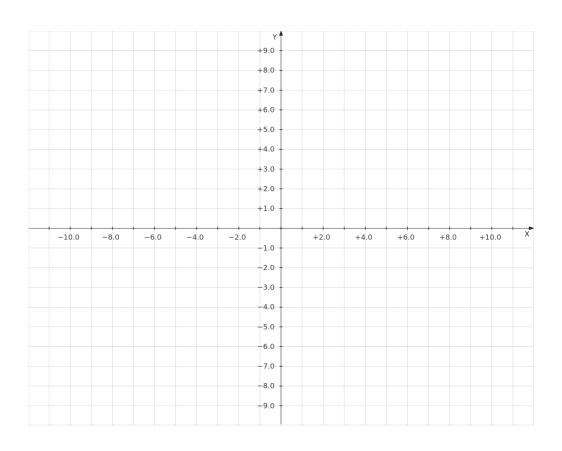
punto di max. relativo in x =

punto di min. relativo in x =

D.3.4) estremi assoluti e immagine:

 $\sup f = \qquad \qquad \inf f = \qquad \qquad \operatorname{Im} f =$

D.3.5) derivata seconda e convessità:

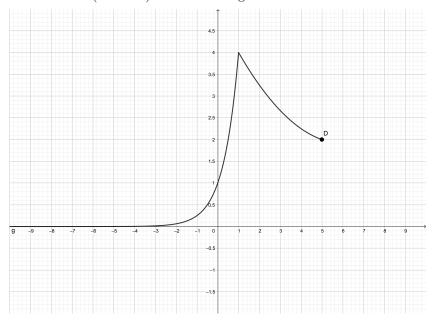

f''(x) =

f convessa negli intervalli:

f concava negli intervalli:

punti di flesso in x =

D.3.6) grafico: (nella pagina seguente)



ESERCIZI	TO D.4 (13 PUNTI) Si consideri la funzione di legge $f(x) = \frac{\sqrt{x+3}}{x-1}$.
Individua derivazio	are il dominio naturale e la derivata (solo per i valori di x per cui si possono applicare le regole di
dom j	f = f'(x) =
Indicare	poi quali delle seguenti affermazioni sono vere:
,	la retta $y=0$ \square è un asintoto orizzontale \square non interseca il grafico \square interseca il grafico in due punti
,	la retta $y=1$ \square è un asintoto orizzontale \square non interseca il grafico \square interseca il grafico in un punto
D.4.iii)	$x = -7$ è un punto stazionario \Box vero \Box falso
	$x=-3$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto
,	$x=1$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto
D.4.vi)	Si può applicare il Teorema degli Zeri nell'intervallo $[0,2]$ \square vero \square falso
N.B. Per	ogni punto, è possibile che sia vera più di una affermazione.

Analisi Matematica 1 (SNAMO) - Analisi Matematica (CMN) SECONDA PROVA INTRACORSO - 20/12/2019 - Traccia E

Candidato (cognome, nome, matricola):	
Riportare le risposte sintetiche negli spazi appositi, scrivere ancl	ne lo <u>svolgimento</u> per esteso.
Se si allegano fogli aggiuntivi, scrivere sulla prima facciata di og	gni foglio, in alto al centro:
"TRACCIA E", COGNOME E	NOME
ESERCIZIO E.1 (8 PUNTI)	
E.1.a) Calcolare l'integrale definito $\int_{-\frac{1}{3}}^{0} \frac{6}{9x^2 + 6x + 2} dx$	
E.1.b) Determinare una primitiva di $\frac{\sin^3(\pi x)}{\cos^2(\pi x)}$	
SVOLGIMENTO:	

ESERCIZIO E.2 (4 PUNTI) Osservando il grafico individuare

- dominio:
- immagine

e, se presenti,

- punti stazionari:
- punti estremanti relativi:
- punti di non derivabilità:
- asintoti verticali:
- asintoti orizzontali:

ESERCIZIO E.3 (11 PUNTI) Data la funzione di legge $f(x) = \exp(x^2 - 6x)$, determinare

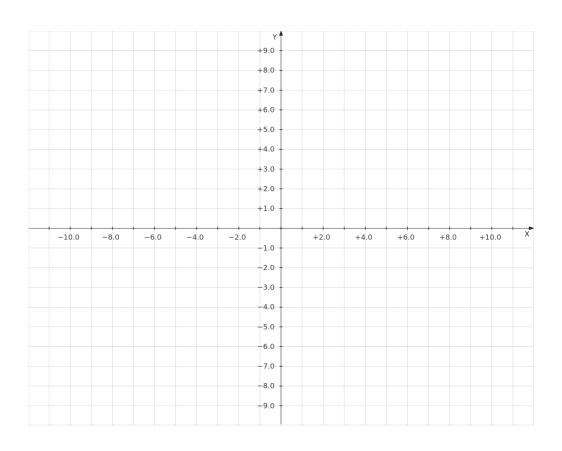
$$E.3.1$$
) dom $f =$

E.3.2) limiti alle estremità del dominio e asintoti:

 $\lim_{x \to \infty} \qquad \text{asintoto:}$ $\lim_{x \to \infty} \qquad \text{asintoto:}$

E.3.3) derivata, monotonia ed estremi relativi:

$$f'(x)=$$
 f crescente negli intervalli:
 f decrescente negli intervalli:
punti stazionari in $x=$
punto di max. relativo in $x=$
punto di min. relativo in $x=$


E.3.4) estremi assoluti e immagine:

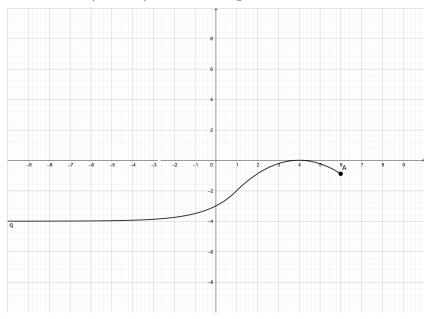
$$\sup f = \lim f =$$

E.3.5) derivata seconda e convessità:

$$f''(x) =$$
 f convessa negli intervalli:
 f concava negli intervalli:
punti di flesso in $x =$

E.3.6) grafico: (nella pagina seguente)

ESERCIZIO E.4 (13 PUNTI) Si consideri la funzione di legge $f(x) = \frac{x+1}{\sqrt{x}}$
--


Individuare il dominio naturale e la derivata (solo per i valori di x per cui si possono applicare le regole di derivazione).

dom	f = f'(x) =
Indicare	e poi quali delle seguenti affermazioni sono vere:
E.4.i)	la retta $y=0$
E.4.ii)	la retta $y=4$ \Box è un asintoto orizzontale \Box non interseca il grafico \Box interseca il grafico in due punti
e.4.iii)	$y=x$ è asintoto obliquo $\ \square$ vero $\ \square$ falso
E.4.iv)	$x=-2$ è \Box asintoto verticale \Box punto a tangente verticale \Box punto stazionario \Box punto estremante assoluto \Box punto estremante relativo, ma non assoluto
E.4.v)	$x=0$ è \Box asintoto verticale \Box punto a tangente verticale \Box punto stazionario \Box punto estremante assoluto \Box punto estremante relativo, ma non assoluto
E.4.vi)	Si può applicare il Teorema di Rolle nell'intervallo $[-1,1]$ \square vero $\;\square$ falso
n.в. Ре	r ogni punto, è possibile che sia vera più di una affermazione.
SVOLGII	MENTO:

Analisi Matematica 1 (SNAMO) - Analisi Matematica (CMN) SECONDA PROVA INTRACORSO - 20/12/2019 - Traccia F

Candidato (cognome, nome, matricola):		
Riportare le risposte sintetiche negli spazi appositi, scrivere anche lo svolgimento per esteso.		
Se si allegano fogli aggiuntivi, scrivere sulla prima facciata di ogni foglio, in alto al centro:		
"TRACCIA F", COGNOME E NOME		
ESERCIZIO F.1 (8 PUNTI) F.1.a) Calcolare l'integrale definito $\int_{-1}^{0} \frac{4}{x^2 + 2x - 3} dx$		
F.1.b) Determinare una primitiva di $-2(x+2)\arctan(x+2)$		
SVOLGIMENTO:		

ESERCIZIO F.2 (4 PUNTI) Osservando il grafico individuare

- dominio:
- immagine

e, se presenti,

- punti stazionari:
- punti estremanti relativi:
- punti di non derivabilità:
- asintoti verticali:
- asintoti orizzontali:

ESERCIZIO F.3 (11 PUNTI) Data la funzione di legge $f(x) = \log(8x - x^2)$, determinare

F.3.1)
$$\operatorname{dom} f =$$

F.3.2) limiti alle estremità del dominio e asintoti:

 $\lim_{x \to \infty}$ asintoto:

 $\lim_{x \to \infty} \text{asintoto:}$

F.3.3) derivata, monotonia ed estremi relativi:

f'(x) =

 \boldsymbol{f} crescente negli intervalli:

f decrescente negli intervalli:

punti stazionari in x =

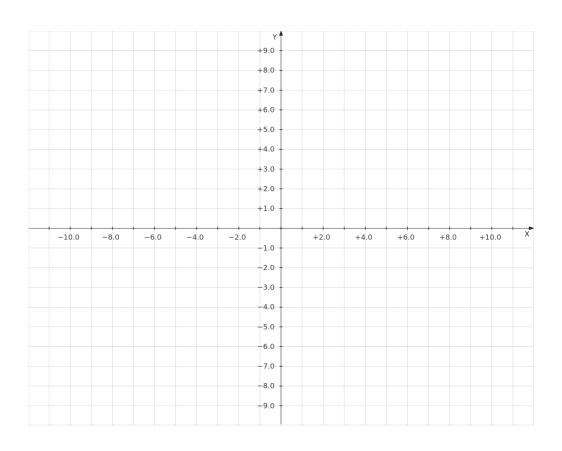
punto di max. relativo in x =

punto di min. relativo in x =

F.3.4) estremi assoluti e immagine:

$$\sup f = \inf f = \operatorname{Im} f =$$

F.3.5) derivata seconda e convessità:


$$f''(x) =$$

f convessa negli intervalli:

f concava negli intervalli:

punti di flesso in x =

F.3.6) grafico: (nella pagina seguente)

ESERCIZIO F.4 (13 PUNTI) Si consideri la funzione di legge $f(x) = \frac{\sqrt{x-2}}{x+1}$.		
Individuare il dominio naturale e la derivata (solo per i valori di x per cui si possono applicare le regole di derivazione).		
dom	f = f'(x) =	
Indicare poi quali delle seguenti affermazioni sono vere:		
F.4.i)	la retta $y=0$	
F.4.ii)	la retta $y=1$	
F.4.iii)	$x=-1$ è asintoto verticale $\ \square$ vero $\ \square$ falso	
F.4.iv)	$x=2$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto	
F.4.v)	$x=5$ è \square asintoto verticale \square punto a tangente verticale \square punto stazionario \square punto estremante assoluto \square punto estremante relativo, ma non assoluto	
F.4.vi)	Si può applicare il Teorema di Rolle nell'intervallo $[2,8]$ $\hfill\Box$ vero $\hfill\Box$ falso	
N.B. Per ogni punto, è possibile che sia vera più di una affermazione.		