
Analisi Matematica 1 - PRIMA PROVA INTRACORSO - 14/11/2018 - Traccia A

Candidato (cognome, nome, matricola):

Svolgere gli esercizi su questi fogli.

ESERCIZIO A.1 (4 PUNTI) Dire quale dei seguenti grafici rappresenta la funzione di legge

$$f(x) = \frac{(x-5)(x+2)}{2(x-3)}.$$

ESERCIZIO A.2 (10 PUNTI)

i) Calcolare il limite della successione

$$a_n = \frac{(n + e^{\frac{1}{n}})^4}{n^2 - \sqrt[4]{n} + 3n^4},$$

precisando se è convergente, divergente o irregolare.

ii) Calcolare la derivata della funzione

$$f(x) = \frac{e^{x^2}}{1 + \cos x}.$$

Scrivere poi l'equazione della retta tangente in corrispondenza del punto di ascissa x = 0.

8			The part of the same of the sa
RISPOSTE IN BREVE:			
i) $a_n \rightarrow$	\Box convergente	\Box divergente	\Box irregolare
ii) derivata equazione retta tangente			

ESERCIZIO A.3 (10 PUNTI) Determinare il dominio naturale e gli asintoti della funzione

$$f(x) = (x-1) \sin\left(\frac{x}{(1-x)^2}\right).$$

RISPOSTE IN BREVE:

• dominio:

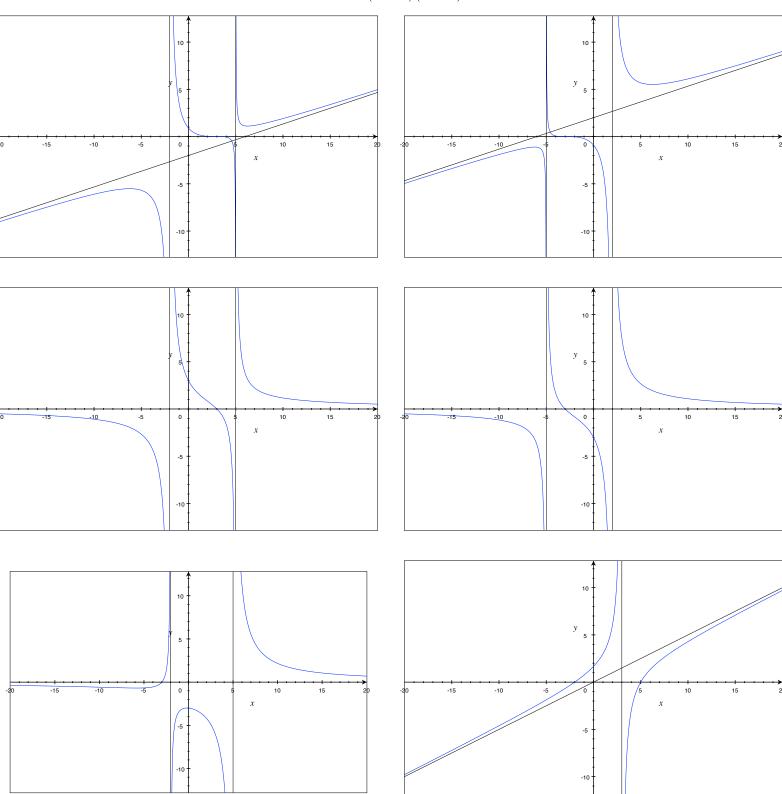
 \bullet asintoti verticali? \square sì \square no equazione

 \bullet asintoti orizzontali? \square sì \square no equazione

 \bullet asintoti obliqui? \square sì \square no equazione

ESERCIZIO A.4 (10 PUNTI) Di seguito indichiamo con i simboli f(x) e g(x) le funzioni:

$$f(x) = \arcsin \frac{x-2}{x+1}$$
, $g(x) = \begin{cases} \log(1+x^3) + (1+x^3)^2 - \cos x & \text{se } x > 0, \\ x^2 & \text{se } x \le 0. \end{cases}$


Motivando la risposta, stabilire se le seguenti affermazioni sono vere o false:

• il dominio naturale di $f(x)$ è $\mathbb{R} \setminus \{-1\}$	\Box V	\Box F
• la funzione $f(x)$ è limitata	\Box V	\Box F
\bullet $g(x)$ soddisfa le ipotesi del Teorema degli Zeri nell'intervallo $[-1,1]$	\Box V	\Box F
• $g(x)$ è asintotica a x^2 per $x \to 0$	\Box V	\Box F

Svolgere gli esercizi su questi fogli.

ESERCIZIO B.1 (4 PUNTI) Dire quale dei seguenti grafici rappresenta la funzione di legge

$$f(x) = \frac{10(x-3)}{(x+2)(x-5)}.$$

ESERCIZIO B.2 (10 PUNTI)

i) Calcolare il limite della successione

$$a_n = \frac{5^{\frac{1}{n}} - 2n^2}{n^3 + n^{\frac{1}{5}} + 2^n},$$

precisando se è convergente, divergente o irregolare.

ii) Calcolare la derivata della funzione

$$f(x) = \sqrt{1+x} \sin(x^2 - 1).$$

Scrivere poi l'equazione della retta tangente in corrispondenza del punto di ascissa x = 1.

Serivere per i equazione del		ii corrispondenze	t der parite drabelesa w
RISPOSTE IN BREVE:			
i) $a_n \rightarrow$	\Box convergente	\Box divergente	\Box irregolare
ii) derivata equazione retta tangente			
SVOLGIMENTO:			

ESERCIZIO B.3 (10 PUNTI) Determinare il dominio naturale e gli asintoti della funzione

$$f(x) = x^2 \exp\left(\frac{x}{(x+2)^2}\right).$$

RISPOSTE IN BREVE:

• dominio:

 \bullet asintoti verticali? \square sì \square no equazione

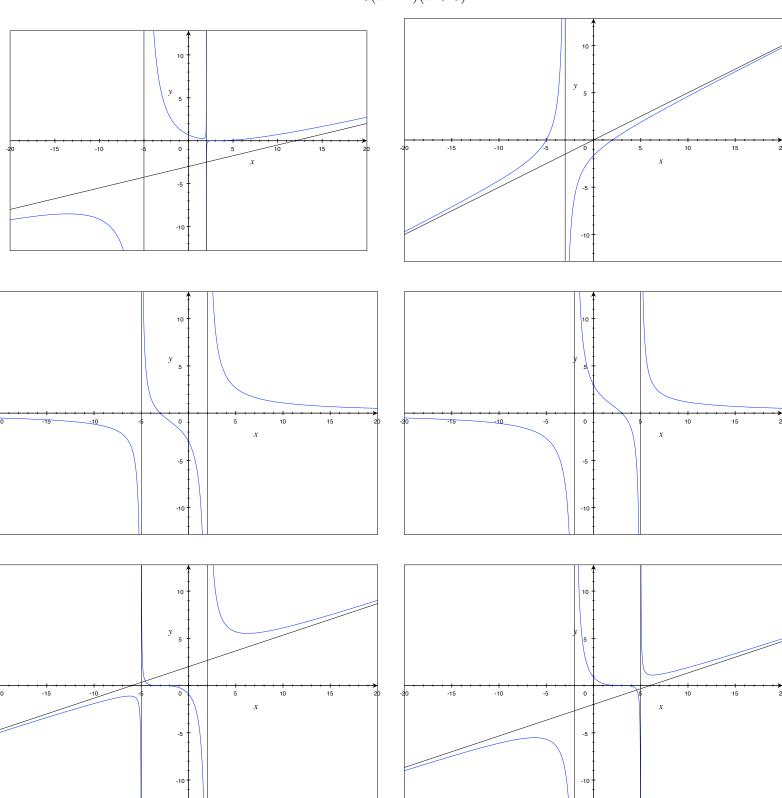
 \bullet asintoti orizzontali? \square sì \square no equazione

 \bullet asintoti obliqui? \square sì \square no equazione

ESERCIZIO B.4 (10 PUNTI) Di seguito indichiamo con i simboli f(x) e g(x) le funzioni:

$$f(x) = \arccos \frac{x+1}{x-2}$$
, $g(x) = \begin{cases} \log(1+x^3) + (1+x/3)^3 - \cos x^3 & \text{se } x > 0, \\ x^3 & \text{se } x \le 0. \end{cases}$

Motivando la risposta, stabilire se le seguenti affermazioni sono vere o false:


• il dominio naturale di $f(x)$ è $\mathbb{R} \setminus \{2\}$	\Box V	\Box F
• la funzione $f(x)$ è limitata	\Box V	\Box F
\bullet $g(x)$ soddisfa le ipotesi del Teorema di Weierstrass nell'intervallo $[1,1]$	\Box V	\Box F
• $g(x)$ è asintotica a x^3 per $x \to 0$	\Box V	\Box F

Analisi Matematica 1 - PRIMA PROVA INTRACORSO - 14/11/2018 - Traccia C

Svolgere gli esercizi su questi fogli.

ESERCIZIO C.1 (4 PUNTI) Dire quale dei seguenti grafici rappresenta la funzione di legge

$$f(x) = \frac{(x+3)^3}{3(x-2)(x+5)}.$$

ESERCIZIO C.2 (10 PUNTI)

i) Calcolare il limite della successione

$$a_n = \frac{n - n^2 + 2n^4}{(\sqrt{n} + \sin n)^4},$$

precisando se è convergente, divergente o irregolare.

ii) Calcolare la derivata della funzione

$$f(x) = \frac{\log(1+x^2)}{\sqrt{1+x}}.$$

Scrivere poi l'equazione della retta tangente in corrispondenza del punto di ascissa x=0.

RISPOSTE IN BREVE:			
i) $a_n \rightarrow$	\Box convergente	\square divergente	\square irregolare
ii) derivata			
equazione retta tangente			
SVOLGIMENTO:			

ESERCIZIO C.3 (10 PUNTI) Determinare il dominio naturale e gli asintoti della funzione

$$f(x) = (x+1) \sin\left(\frac{x}{(x+1)^3}\right).$$

RISPOSTE IN BREVE:

• dominio:

 \bullet asintoti verticali? \square sì \square no equazione

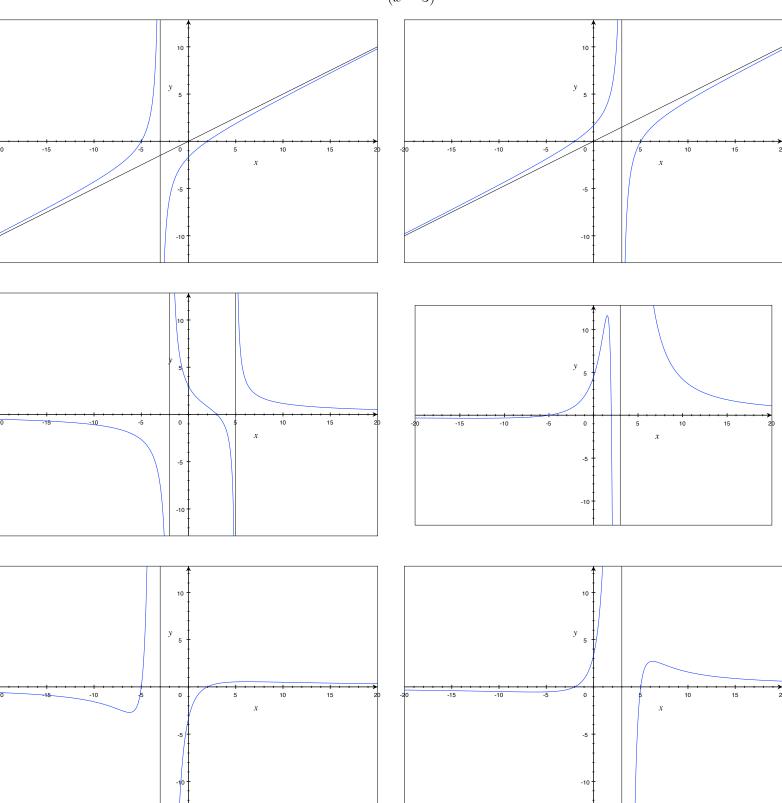
 \bullet asintoti orizzontali? \square sì \square no equazione

 \bullet asintoti obliqui? \square sì \square no equazione

ESERCIZIO C.4 (10 PUNTI) Di seguito indichiamo con i simboli f(x) e g(x) le funzioni:

$$f(x) = \arctan \frac{x-1}{x+2}, \qquad g(x) = \begin{cases} \sin x^3 + (1-x)^3 - e^{3x} & \text{se } x > 0, \\ 2x & \text{se } x \le 0. \end{cases}$$

Motivando la risposta, stabilire se le seguenti affermazioni sono vere o false:


• il dominio naturale di $f(x)$ è $\mathbb{R} \setminus \{-2\}$	\Box V	\Box F
• la funzione $f(x)$ è limitata	\Box V	\Box F
\bullet $g(x)$ soddisfa le ipotesi del Teorema degli Zeri nell'intervallo $[-1,1]$	\Box V	\Box F
• $g(x)$ è asintotica a $2x$ per $x \to 0$	\Box V	\Box F

Analisi Matematica 1 - PRIMA PROVA INTRACORSO - 14/11/2018 - Traccia D

Svolgere gli esercizi su questi fogli.

ESERCIZIO D.1 (4 PUNTI) Dire quale dei seguenti grafici rappresenta la funzione di legge

$$f(x) = \frac{9(x-5)(x+2)}{(x-3)^3}.$$

ESERCIZIO D.2 (10 PUNTI)

i) Calcolare il limite della successione

$$a_n = \frac{\cos\frac{1}{n} - 1 + \log n}{\frac{1}{n}},$$

precisando se è convergente, divergente o irregolare.

ii) Calcolare la derivata della funzione

$$f(x) = \left(1 + \sqrt[3]{1 - x}\right)\sin x.$$

Scrivere poi l'equazione della retta tangente in corrispondenza del punto di ascissa x = 0.

Scrivere por requazione de	na retta tangen	ite in corrispondenza	a dei punto di ascissa $x=0$.
RISPOSTE IN BREVE:			
i) $a_n \rightarrow$	□ convergen	nte 🗆 divergente	\Box irregolare
ii) derivata equazione retta tangente			
SVOLGIMENTO:			

ESERCIZIO D.3 (10 PUNTI) Determinare il dominio naturale e gli asintoti della funzione

$$f(x) = x \exp\left(\frac{x}{(x-1)^2}\right).$$

RISPOSTE IN BREVE:

• dominio:

 \bullet asintoti verticali? \square sì \square no equazione

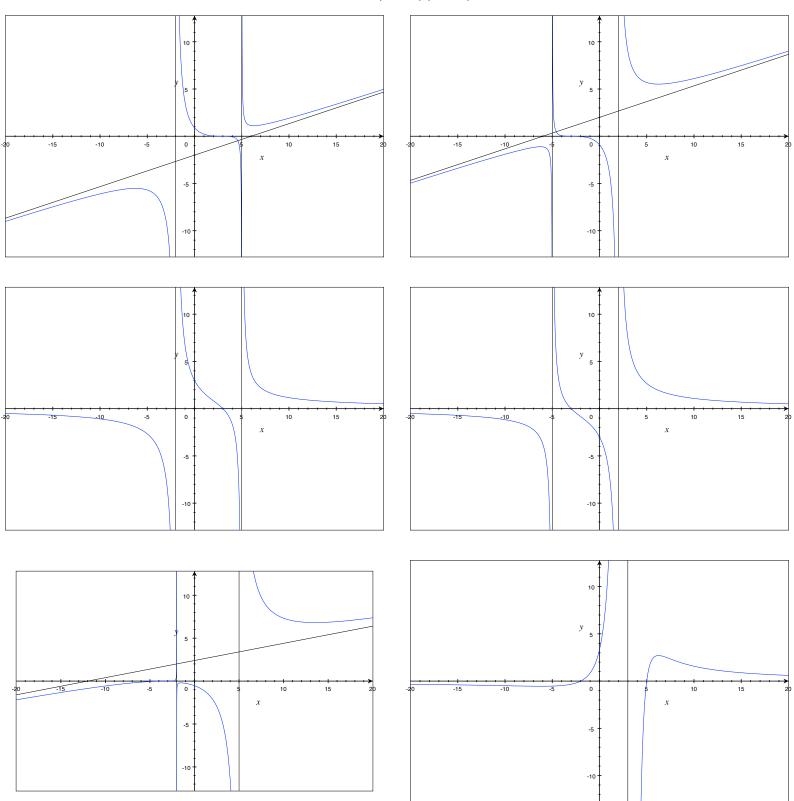
 \bullet asintoti orizzontali? \square sì \square no equazione

 \bullet asintoti obliqui? \square sì \square no equazione

ESERCIZIO D.4 (10 PUNTI) Di seguito indichiamo con i simboli f(x) e g(x) le funzioni:

$$f(x) = \arctan \frac{x+1}{x-2}$$
, $g(x) = \begin{cases} (1+x)^4 - \cos x - 2\log(1+x) & \text{se } x > 0, \\ 2x & \text{se } x \le 0. \end{cases}$

Motivando la risposta, stabilire se le seguenti affermazioni sono vere o false:


• il dominio naturale di $f(x)$ è $\mathbb{R} \setminus \{2\}$	\Box V	
• la funzione $f(x)$ è limitata	\Box V	
\bullet $g(x)$ soddisfa le ipotesi del Teorema di Weierstrass nell'intervallo $[-1,1]$	\Box V	\Box F
• $g(x)$ è asintotica a $2x$ per $x \to 0$	\Box V	

Analisi Matematica 1 - PRIMA PROVA INTRACORSO - 14/11/2018 - Traccia E

Svolgere gli esercizi su questi fogli.

ESERCIZIO E.1 (4 PUNTI) Dire quale dei seguenti grafici rappresenta la funzione di legge

$$f(x) = \frac{(x-3)^3}{3(x-5)(x+2)}.$$

ESERCIZIO E.2 (10 PUNTI)

i) Calcolare il limite della successione

$$a_n = \frac{n - 2n^3 + \log n}{(n + \sqrt[3]{n})^3},$$

precisando se è convergente, divergente o irregolare.

ii) Calcolare la derivata della funzione

$$f(x) = \sqrt{x+1} (e^{3x} - x^2).$$

Scrivere poi l'equazione della retta tangente in corrispondenza del punto di ascissa x=0.

P			P
RISPOSTE IN BREVE:			
i) $a_n \rightarrow$	\Box convergente	\Box divergente	\Box irregolare
ii) derivata equazione retta tangente			
SVOLGIMENTO:			

ESERCIZIO E.3 (10 PUNTI) Determinare il dominio naturale e gli asintoti della funzione

$$f(x) = x \exp\left(\frac{x}{(x+1)^4}\right).$$

RISPOSTE IN BREVE:

• dominio:

 \bullet asintoti verticali? \square sì \square no equazione

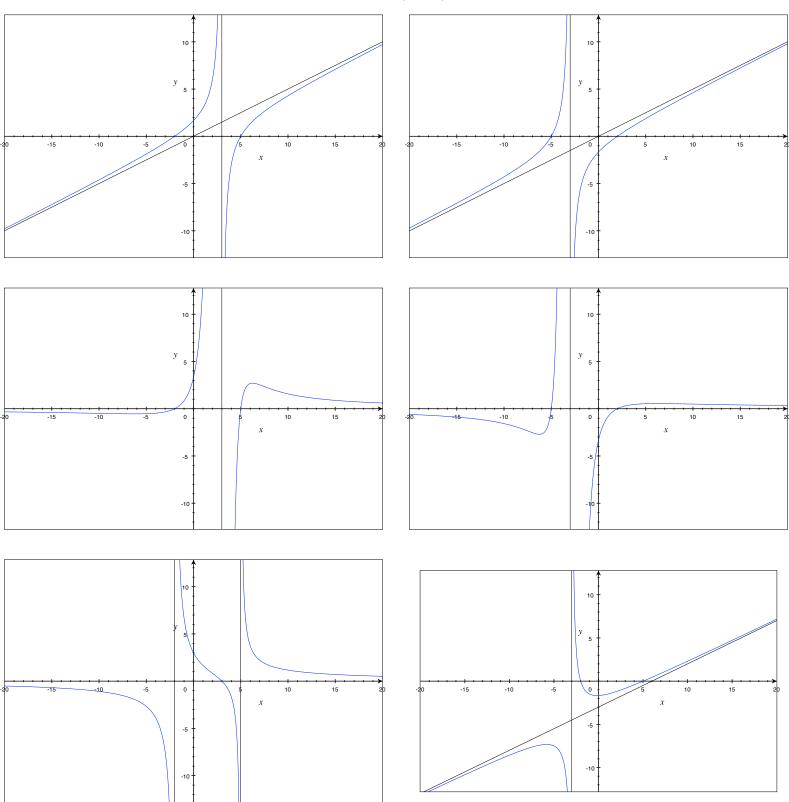
 \bullet asintoti orizzontali? \square sì \square no equazione

 \bullet asintoti obliqui? \square sì \square no equazione

ESERCIZIO E.4 (10 PUNTI) Di seguito indichiamo con i simboli f(x) e g(x) le funzioni:

$$f(x) = \arccos \frac{x-2}{x+1}$$
, $g(x) = \begin{cases} e^{x^2} - (1+x)^4 + \log(1+2x) & \text{se } x > 0, \\ x^2 & \text{se } x \le 0. \end{cases}$

Motivando la risposta, stabilire se le seguenti affermazioni sono vere o false:


• il dominio naturale di $f(x)$ è $\mathbb{R} \setminus \{-1\}$	\Box V	F
• la funzione $f(x)$ è limitata	\Box V	F
\bullet $g(x)$ soddisfa le ipotesi del Teorema di Weierstrass nell'intervallo $[-1,1]$	\Box V	F
• $g(x)$ è asintotica a x^2 per $x \to 0$	\Box V	F

Analisi Matematica 1 - PRIMA PROVA INTRACORSO - 14/11/2018 - Traccia F

Svolgere gli esercizi su questi fogli.

ESERCIZIO F.1 (4 PUNTI) Dire quale dei seguenti grafici rappresenta la funzione di legge

$$f(x) = \frac{(x+5)(x-2)}{2(x+3)}.$$

ESERCIZIO F.2 (10 PUNTI)

i) Calcolare il limite della successione

$$a_n = \frac{\sqrt{4n-1} + \sin\frac{1}{n^3} + n}{\log(1+n) + n^2 - \sqrt{n}},$$

precisando se è convergente, divergente o irregolare.

ii) Calcolare la derivata della funzione

$$f(x) = \cos x \sqrt[3]{1 + 2x}.$$

 $f(x)=\cos x\ \sqrt[3]{1+2x}.$ Scrivere poi l'equazione della retta tangente in corrispondenza del punto di ascissa x=0.

Scrivere poi l'equazione del	lla retta tangente i	n corrispondenza	a del punto di ascissa $x = 0$.
RISPOSTE IN BREVE:			
i) $a_n \rightarrow$	\Box convergente	\Box divergente	\Box irregolare
ii) derivata			
equazione retta tangente			
SVOLGIMENTO:			

ESERCIZIO F.3 (10 PUNTI) Determinare il dominio naturale e gli asintoti della funzione

$$f(x) = x \log\left(\frac{x}{1+x^2}\right).$$

RISPOSTE IN BREVE:

• dominio:

 \bullet asintoti verticali? \square sì \square no equazione

 \bullet asintoti orizzontali? \square sì \square no equazione

 \bullet asintoti obliqui? \square sì \square no equazione

ESERCIZIO F.4 (10 PUNTI) Di seguito indichiamo con i simboli f(x) e g(x) le funzioni:

$$f(x) = \arcsin \frac{x-1}{x+2}, \qquad g(x) = \begin{cases} \sin x^2 + (1+2x)^2 - e^{2x} & \text{se } x > 0, \\ x^2 & \text{se } x \le 0. \end{cases}$$

Motivando la risposta, stabilire se le seguenti affermazioni sono vere o false:

• il dominio naturale di $f(x)$ è $\mathbb{R} \setminus \{-2\}$	\Box V	\Box F
• la funzione $f(x)$ è limitata	\Box V	\Box F
\bullet $g(x)$ soddisfa le ipotesi del Teorema di Weierstrass nell'intervallo $[-1,1]$	\Box V	\Box F
• $g(x)$ è asintotica a x^2 per $x \to 0$	\Box V	\Box F