
The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instruction Set Architecture

Corso di
Architettura dei Sistemi a Microprocessore

Luigi Coppolino

Dipartimento di Ingegneria
Università degli Studi di Napoli “Parthenope”

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Contact info

Prof. Luigi Coppolino
luigi.coppolino@uniparthenope.it

Università degli Studi di Napoli "Parthenope"

Dipartimento per le Tecnologie

Centro Direzionale di Napoli, Isola C4
V Piano lato SUD - Stanza n. 512

Tel: +39-081-5476702
Fax: +39-081-5476777

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Roadmap

• Organizzazione della memoria
• Esempi di organizzazione della memoria
• I principali modi di indirizzamento
• Esempi d’impiego
• Riepilogo modi base
• Altri modi di indirizzamento
• Istruzioni ARM E COLDFIRE
• Uso dello Stack e chiamata di funzioni

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Sources

• Textbook (chapter 2)
• Manuale Freescale

(http://www.freescale.com/files/archives/doc/ref_manual/M6800
0PRM.pdf)(http://www.freescale.com/files/dsp/doc/ref_manual/C
FPRM.pdf)

• Manuale ARM
(http://infocenter.arm.com/help/topic/com.arm.doc.dui0204j/DUI
0204J_rvct_assembler_guide.pdf)

• Quick Guides:
– ARM:

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/Q
RC0001_UAL.pdf

– Coldfire (m68000):
http://home.anadolu.edu.tr/~sgorgulu/micro2/2008/68KISx1.
pdf

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

0
1
2
..
..

N-2
N-1

7 6 5 4 3 2 1 0
bit bit

MSB LSB

m = 8

The main memory (central memory)

 The main memory of a computer is organized as an
array of sequences of m bits, each of them is said word
(m = WORD LENGTh (LUNGHEZZA DI PAROLA) => typical values for m are 16, 32,
or 64)

 Any read or write operation from/to the main memory
accesses to a whole word

 Each word has an address, that is an integer number
between 0 and N-1 (ADDRESS SPACE – SPAZIO DI INDIRIZZAMENTO),
being N = 2c

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

word 0
word 4
..
..

word 2k-4

0 1 2 3

4 5 6 7

2k-4 2k-3 2k-2 2k-1

. . . .

word 0
word 4
..
..

 word 2k-4

3 2 1 0

7 6 5 4

2k-1 2k-2 2k-3 2k-4

. . . .

BIG-ENDIAN ordering LITTLE-ENDIAN ordering

MS byte LS byte MS byte LS byte

Memory structure

 A word is typically composed of 16 bit, 32 bit, or 64 bit
 It is impractical to give an address to each bit

 Memory is typically byte-addressable, the smallest unit of memory
that can be referenced is a byte

 Since a word is composed of four byte, addresses of bytes within
a word can be ordered in two alternative ways: big endian e little
endian

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Address and Register size

• Address size:
– Number of bits composing an address
– If the Address size is m the address space of the

memory it 2m
• Register size:

– Number of bits composing a register
• Typically Register Size is a multiple (or egual) of Memory

Size

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

• Not all the MA register bits must be connected to the bus,
thus:
– Logical address space can be lower than physical

address space => “aliasing”

MA MB Control
Unit

Memory write

read

Address
bus Data bus

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

• Draw the schema of a memory architecture with the
following characteristics:
– Logical address space: 1MB
– Physical address space: 1MB
– Word length: 1 byte
– Accessibility: byte addressable

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Solution

• The MC68008 is organised in this way

00000- FFFFF

Address Register

20 bit

0

1

FFFFF

. . . .

00000

00001

FFFFF

Memory

8 bit

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

• Draw the schema of a memory architecture with the
following characteristics:
– Logical address space: 4GB
– Physical address space: 16MB
– Word length: 2 byte
– Accessibility: byte addressable

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Solution

• The MC68000 and MC68010 are organized in this way

00000000- FFFFFFFF

Address Register

32 bit

0-1

2-3

FFFFFE-FFFFFF

. . . .

000000

000002

FFFFFE

Memory

16 bit

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

BSVC memory

• The MC68000 memory view offered by a simulator

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

• Draw the schema of a memory architecture with the
following characteristics:
– Logical address space: 4GB
– Physical address space: 4GB
– Word length: 4 byte
– Accessibility: byte addressable

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Soluzione

• MC68020 and following architectures are organised this
way

00000000- FFFFFFFF

Address Register

32 bit

0-1-2-3

4-5-6-7

FFFFFFF-C/D/E/F

. . . .

00000000

00000004

FFFFFFFC

Memory

32 bit

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

• The MC68000 memory architecture has the following
characteristics:
– Logical address space: 4GB
– Physical addess space: 16MB

• The MC68020 memory architecture has the following
characteristics:
– Logical address space: 4GB
– Physical addess space: 4GB

• Show the aliasing regions among the two processors

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Solution

• For each address of the MC68000 there are 256 distinct
addresses in the MC68020 processor.

• The aliasing regions are identified by the following
pattern:

XXXXXX

00XXXXXX

…

01XXXXXX

FFXXXXXX

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

• By extendig a 16 bit address with its sign bit, to show the
memory area addressed in a 32-bit architecture

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Soluzione

• Addresses
between 0000
and 7FFE are
mapped on
the first 32KB
of the 4GB
memory

0000

0000000000000000 0000000000000000

7FFE

0111111111111110 0000000000000000

8000

1000000000000000 1111111111111111

FFFE

1111111111111110 1111111111111111

 Addresses
between 8000
and FFFE are
mapped on
the last 32KB
of the 4GB
memory

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Transfer Notation

• Register transfer notation is used to describe hardware-
level data transfers and operations

• Predefined names for procr. and I/O registers
• Arbitrary names for locations in memory
• Use […] to denote contents of a location
• Use ← to denote transfer to a destination
• Example: R2 ← [LOC]

 (transfer from LOC in memory to register R2)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Transfer Notation

• RTN can be extended to also show arithmetic operations
involving locations

• Example: R4 ← [R2] + [R3]
 (add the contents of registers R2 and R3,
 place the sum in register R4)

• Right-hand expression always denotes a value, left-hand
side always names a location

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly-Language Notation

• RTN shows data transfers and arithmetic
• Another notation needed to represent

machine instructions & programs using them
• Assembly language is used for this purpose
• For the two preceding examples using RTN,

the assembly-language instructions are:
 Load R2, LOC
 Add R4, R2, R3

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly-Language Notation

• An instruction specifies the desired operation and the
operands that are involved

• We will use English words for the operations (e.g., Load,
Store, and Add) when they are not related to a specific
architecture

• Commercial processors use mnemonics,
usually abbreviations (e.g., LD, ST, and ADD)

• Mnemonics differ from processor to processor
– Will use mnemonics to report specific processors related

code

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Memory Operations

• Memory contains data & program instructions
• Control circuits initiate transfer of data and instructions

between memory and processor
• Read operation: memory retrieves contents at address

location given by processor
• Write operation: memory overwrites contents at given

location with given data

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing Modes

• Programs use data structures to organize
the information used in computations

• High-level languages enable programmers
to describe operations for data structures

• Compiler translates into assembly language
• Addressing modes provide compiler with different ways to

specify operand locations
• Consider modes used in RISC-style processors

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing Modes

• We have already seen examples of the register and
absolute addressing modes

• RISC-style instructions have a fixed size, hence absolute
mode information limited to 16 bits

• Usually sign-extended to full 32-bit address Absolute mode
is therefore limited to a subset of the full 32-bit address
space

• Assume programs are limited to this subset

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Variables

• Variable declaration in high-level language:
 Integer NUM1, NUM2, SUM;

• Allocates storage to locations in the memory
• When referenced by high-level statements, compiler

translates to assembly language:
 Load R2, NUM1

• Absolute mode (in subset of address space) enables access
to variables in the memory

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Constants

• Assume constant 200 is added to a variable
• Immediate mode enables use of constants in assembly-

language instructions
• One approach for specification:

 Add R4, R6, 200immediate

• Not practical to use subscripts in this manner
• Alternative approach uses special character:

 Add R4, R6, #200

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indirection and Pointers

• Register, absolute, and immediate modes directly provide
the operand or address

• Other modes provide information from which the effective
address of operand is derived

• For program that adds numbers in a list, use register as
pointer to next number

• Indirect mode provides address in register:
 Load R2, (R5)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indirection and Pointers

• Body of loop can now use register as pointer
• To initialize the pointer, use the instruction:

 Move R4, #NUM1
• In RISC-style processors, R0 is usually always 0
• Implement using Add and immediate mode:

 Add R4, R0, #NUM1
• Move is a convenient pseudoinstruction
• We now have complete list-addition program

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indexing

• Consider index mode in: Load R2, X(R5)
• Effective address is given by [R5] + X
• For example, assume operand address is 1020, 4 words (20

bytes) from start of array at 1000
• Can put start address in R5 and use X=20
• Alternatively, put offset in R5 and use X=1000
• Base with index mode: Load Rk, X(Ri, Rj)
• Effective address is given by [Ri] + [Rj] + X

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Additional Addressing Modes

• CISC style has other modes not usual for RISC
• Autoincrement mode: effective address given by register

contents; after accessing operand, register contents
incremented to point to next

• Useful for adjusting pointers in loop body:
 Add SUM, (Ri)+
 MoveByte (Rj)+, Rk

• Increment by 4 for words, and by 1 for bytes

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

ARM MEMORY AND REGISTER
STRUCTURE, AND ADDRESSING
MODES

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

• 32-bit RISC-processor core (32-bit intructions)

• 37 internal registers of 32-bit (16)

• Pipeline (ARM7: 3 stadi)

• Cache (depends on implementation)

• Von Neuman-type bus structure (ARM7), Harvard
(ARM9)

• Data types 8 / 16 / 32 -bit

• 7 modalità (usr, fiq, irq, svc, abt, sys, und)

• Struttura semplice  buon rapporto fra velocità /
consumo

ARM – Advanced RISC Machine

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

• Instructions: simpler but more efficient

• High clock frequence

• More complex compiling and debugging

• Higher number of registers

RISC: Reduced Instruction Set Computing

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

• byte

• halfword (2bytes alligned)

• word (4byte alligned)

Data types

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

• Byte addressable

• Half and full words (16 or 32 bits) can be
organized as both big-endian and little-
endian

Memory structure

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

ARM sevend processing modes, depending on the code being
executed:

User (usr)

modalità standard di esecuzione del processo
FIQ (fiq)

modalità privilegiata per gestione di flussi dato ad alta velocitá
IRQ (irq)

modalitá privilegiata per la gestione degli interrupt
Supervisor (svc)

modalità privilegiata per l'esecuzione del Sistema Operativo
Abort (abt)

implementa la memoria virtuale e la protezione della memoria
System (sys)

modalità privilegiata per l'esecuzione dei task del S.O.
und

serve per il supporto all’emulazione software dei coprocessori

Processord Modes

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

37 registers

• 31 general purpose

• 6 status registers

At every time 15 general purpose registers and two
status registers are in use

Registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Registers

• The first 7 registers (R0-R7) are unbanked (physical
location shared among all the processor modes)

• Registers from R8 to R14 are banked (depending on the
specific processor mode they point to a specific physical
location)
– R8-R12 banked only for the FIQ mode (quick context

switch for executing high ISR)
– R13, R14 ed R15 normally used as Stack Pointer, Link

Register, and Program Counter
• A status register (CPSR) holds the condition code flags (N,

Z, C, V), two interrupt-disable bits, and five processor mode
bits

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Status Register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

• All modes are derived from a basic form of indexed
addressing

• The effective address of a memory operand is the sum of
the contents of a base register Rn and a signed offset

• The offset is either a 12-bit immediate value in the
instruction or the contents of a second register Rm

• Examples of addressing modes can be shown by using the
Load instruction LDR, whose format is given in following
slide

• The store instruction STR has same format
• Both LDR and STR access a word location

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

LOAD Instruction Encoding

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instruction Structure

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

• Pre-indexed mode:

 LDR Rd, [Rn, #offset]
performs
 Rd ← [[Rn] + offset]

 LDR Rd, [Rn, Rm]
performs
 Rd ← [[Rn] + [Rm]]

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

• Relative mode:

 LDR Rd, ITEM

performs

 Rd ← [[PC] + offset]

 where offset is calculated by the assembler

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

• Pre-indexed with writeback (a generalization
 of the autodecrement mode):

 LDR Rd, [Rn, #offset]!
performs
 Rd ← [[Rn] + offset]
followed by
 Rn ← [Rn] + offset

(Rm can be used instead of #offset)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

• Post-indexed mode (a generalization of the
 autoincrement mode):

 LDR Rd, [Rn], #offset
performs
 Rd ← [[Rn]]
followed by
 Rn ← [Rn] + offset

(Rm can be used instead of #offset)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

• If the offset is given as the contents of Rm,
 it can be shifted before being used

Example:

 LDR R0, [R1, −R2, LSL #4]!
performs
 R0 ←[[R1] − 16 × [R2]]
followed by
 R1 ← [R1] − 16 × [R2]

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

COLDFIRE MEMORY AND
REGISTER STRUCTURE

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Memory Organization

• Byte-addressable, 32-bit address space

• Big-endian addressing scheme

• Longword (32-bit), word (16-bit),
and byte (8-bit) sizes for integer data

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Structure

• Eight data registers, D0 to D7

• Eight address registers, A0 to A7,
and register A7 is the stack pointer (SP)

• Status register (SR) with condition codes

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Data Registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Address Registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

SP and PC

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Status Register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• One, two, or three consecutive words
• OP-code word is first – it specifies operation
• Also provides some addressing information; one or two

extension words provide more
• Most arithmetic and data-transfer instructions have

source/destination operands:
 OP src, dst

• .L, W., or .B suffix for OP code specifies size

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Modi di Indirizzamento

• Register Direct
– Data-register Direct
– Address-register Direct

• Immediate (or Literal)
• Absolute

– Short
– Long

• Address-register
Indirect

• Auto-Increment
• Auto-Decrement

• Indexed short
• Based
• Based Indexed

– Short
– Long

• Relative
• Relative Indexed

– Short
– Long

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

• the EA field is 6 bit long and is organized in two sub-fields (3 bit each)

op MOVE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size EA1(dest) EA2(source)

reg mode
11 10 9 8 7 6

mode reg
 5 4 3 2 1 0

• all the addressing modes can be used for both sourse and destination (with the exception of the
immediate for the destination)

• The MOVE instruction is full ortogonal (ortogonal ISA => all the instruction are ortogonal)

mode reg syntax EA name #e.w.
0 0-7 Dn Dn Data-register direct 0
1 0-7 An An Address-register direct 0
2 0-7 (An) MEM[An] Address-register indirect 0
7 0 addr MEM[addr] Absolute short 1
7 4 #data data Immediate 1o 2

alcuni modi possibili:

Encoding for the MOVE instruction

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing Mode encoding

• EA is encoded over 6 bits in the first word of the instruction
(opcode word)

• The MOVE instruction has two of such a filed (one for each
operand)

• Some addressing modes need more information given in
additional words (extension words)

11

Destination operand
MOVE

9 8 6 10 7

reg mode

5

EA field for all the other
cases

3 2 0 4 1

mode reg

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Direct Addressing

MOVE.B D0,D1

D1

D025

The MOVE.B D0,D1 instruction has data registers for both
source and destination

Source: data register D0

The instruction refers a
data register
(same for address reg.)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

MOVE.B D0,D1

D1

D025

25

The final result is that D0 content is
copied to D1

Register Direct Addressing

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Direct Addressing

 No access to external memory: fast
 One word only instructions (only 6 bits per operand)
Mode = 0, reg = 0-7 per Dn
Mode = 1, reg = 0-7 per An

 Used to store frequently used variable (scratchpad storage)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

MOVE.B #4,D0

D0

The MOVE.B #4,D0 has a literal as source operand and
makes use of register direct for destination

Immediate Addressing

 The real operand is made available as part of the instruction
 Only used for sourse operand
 The symbol # used ahead of the value
 The immediate operand is also said «literal»

MOVE.B #4,D0

D04

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

ImmediateAddressing - Encoding

 May use extension words for the operand
Mode = 7, reg = 4

opcode

operand

opcode

operand

operand

opcode operand

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Absolute Addressing (or Direct Addressing)

• The instruction refers a memory address that contains the actual operand
• Two memory accesses:

– Instruction fetch
– Operand assembly

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Absolute Addressing - Codifica

Absolute Short:

mode = 7, reg = 0

Absolute Long:

mode = 7, reg = 1

opcode

address

Memory

operand

address

opcode

address

Memory
operand

address 0 or sign-extend

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example for basic modes

Lets consider the high level statement

Z = Y + 24

It can be performed by the following assembly program

 ORG $400 code section
 MOVE.B Y,D0
 ADD #24,D0
 MOVE.B D0,Z

 ORG $600 data section
Y DC.B 27 store a constant
Z DS.B 1 reserve a byte for Z

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembled code

1 00000400 ORG $400
2 00000400 103900000600 MOVE.B Y,D0
3 00000406 06000018 ADD.B #24,D0
4 0000040A 13C000000601 MOVE.B D0,Z
5 00000410 4E722700 STOP #$2700
6 *
7 00000600 ORG $600
8 00000600 1B Y: DC.B 27
9 00000601 00000001 Z: DS.B 1
10 00000400 END $400

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Address Register Indirect Addressing

• The EA is the content of the specified address register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Address Register Indirect Addressing -
Encoding

• mode = 2; reg = 0-7

OPCODE R

Indirect address R

Registers

1

7

Memory

operand

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Auto-increment

• As address indirect but the after the instruction the content of the
address is updated by increasing its value according to the data
size

• Example:
• MOVE.W (A7)+, D0 Pop to D0 from A7 stack

• Encoding
• mode = 3, reg = 0-7

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Auto-decrement

• As address indirect but before the instruction the content of the
address is updated by decreasing its value according to the data
size

• Example:
• MOVE.W D0,-(A7) Push of D0 to A7 stack

• Encoding

• mode = 4, reg = 0-7

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

* File: autoinc.a68 – Sum up consecutive numbers

 ORG $8000
 MOVE.B #5,D0
 LEA Table,A0 A0 points the list
 CLR.B D1 clear the accumulator
Loop ADD.B (A0)+,D1 add up next element
 SUB.B #1,D0
 BNE Loop
 ORG $8100
Table DC.B 1,2,3,4,5 Sample vector

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indexed

• In generale, l’Indexed Addressing combina due componenti mediante
somma, per formare l’EA
– Il primo componente è detto base address ed è specificato come parte

dell’istruzione (come nell’absolute addressing)
– Il secondo componente è detto index register e contiene il valore da

sommare al base address per ottener l’EA

• È adatto per accedere ai valori di array e di tabelle
• Il processore MC68000 non supporta esplicitamente l’Indexed

Addressing. Tuttavia, è possibile usare l’Indexed Short Addressing nei
(32+32)Kbyte agli estremi dei 4GB dello spazio di memoria

• Esempio:
MOVEA.W I,AO
MOVE.B CLIST-1(AO),D1 Leggi clist[i]

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indexed Short Addressing - Codifica

• mode = 5, reg = 0-7

Memory

operand

base address sign-extend

opcode

base address

R

Signed offset R

Address Registers

1

7

+

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Based Addressing

• Based Addressing è esattamente l’inverso dell’Indexed
Addressing, in quanto combina due componenti mediante
somma, per formare l’EA, ma:
– Il primo componente è detto displacement ed è

specificato come parte dell’istruzione (come
nell’absolute addressing)

– Il secondo componente è detto base address ed è
contenuto in un registro

• È adatto per accedere ai valori di array e di tabelle di cui
siconosca la posizione relativa ad assembly time, ma non
quella iniziale

• Il processore MC68000 supporta il Based Addressing come
l’Indexed

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Based Addressing - Codifica

• mode = 5, reg = 0-7

Memory

operand

displacement sign-extend

opcode

displacement

R

Base Address R

Address Registers

1

7

+

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Based Indexed

• Based Indexed Addressing: EA given by the sum of two components:
– base address
– displacement

• Useful for array and tables
• Coldfire (MC68000) supports both Short Based Indexed and Long

Based Indexed
• Encoding:

– mode = 6, reg = 0-7

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Relative Addressing

• (Relative to the PC)
• The EA is given by adding the displacement to the PC value
• Often small displacements, 8 or 16 bits, to point to an instruction next

to the current one (instead of absolute 32 bits addresses)
• Encoding

– mode = 7, reg = 2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Relative Indexed Addressing

• Similar to the Based Indexed but the base register is substituted by PC
• Encoding

– mode = 7, reg = 3

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Processor Structure

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions and Sequencing

• Instructions for a computer must support:
– data transfers to and from the memory
– arithmetic and logic operations on data
– program sequencing and control
– input/output transfers

• First consider data transfer & arithmetic/logic
• Control and input/output examined later
• Introduce notation to facilitate discussion

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC and CISC Instruction Sets

• Nature of instructions distinguishes computer
• Two fundamentally different approaches
• Reduced Instruction Set Computers (RISC) have one-word

instructions and
require arithmetic operands to be in registers

• Complex Instruction Set Computers (CISC)
have multi-word instructions and
allow operands directly from memory

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC Instruction Sets

• Focus on RISC first because it is simpler
• RISC instructions each occupy a single word
• A load/store architecture is used, meaning:

– only Load and Store instructions are used to access
memory operands

– operands for arithmetic/logic instructions must be in
registers, or one of them may be given explicitly in
instruction word

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC Instruction Sets

• Instructions/data are stored in the memory
• Processor register contents are initially invalid
• Because RISC requires register operands, data transfers are

required before arithmetic
• The Load instruction is used for this purpose:

 Load procr_register, mem_location
• Addressing mode specifies memory location; different

modes are discussed later

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC Instruction Sets

• Consider high-level language statement:
 C = A + B

• A, B, and C correspond to memory locations
• RTN specification with these symbolic names:

 C ← [A] + [B]
• Steps: fetch contents of locations A and B,

compute sum, and transfer result to location C

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC Instruction Sets

• Sequence of simple RISC instructions for task:
 Load R2, A
 Load R3, B
 Add R4, R2, R3
 Store R4, C

• Load instruction transfers data to register
• Store instruction transfers data to the memory
• Destination differs with same operand order

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

A Program in the Memory

• Consider the preceding 4-instruction program
• How is it stored in the memory?

(32-bit word length, byte-addressable)
• Place first RISC instruction word at address i
• Remaining instructions are at i + 4, i + 8, i + 12
• For now, assume that Load/Store instructions specify

desired operand address directly;
this issue is discussed in detail later

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instruction Execution/Sequencing

• How is the program executed?
• Processor has program counter (PC) register
• Address i for first instruction placed in PC
• Control circuits fetch and execute instructions, one after

another → straight-line sequencing
• During execution of each instruction, PC register is

incremented by 4
• PC contents are i + 16 after Store is executed

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Details of Instruction Execution

• Two-phase procedure: fetch and execute
• Fetch involves Read operation using PC value
• Data placed in procr. instruction register (IR)
• To complete execution, control circuits

examine encoded machine instruction in IR
• Specified operation is performed in steps,

e.g., transfer operands, perform arithmetic
• Also, PC is incremented, ready for next fetch

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Branching

• We can illustrate the concept of branching with a program
that adds a list of numbers

• Same operations performed repeatedly,
so the program contains a loop

• Loop body is straight-line instruction sequence
• It must determine address of next number,

load value from the memory, and add to sum
• Branch instruction causes repetition of body

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Branching

• Assume that size of list, n, stored at location N
• Use register R2 as a counter, initialized from N
• Body of loop includes the instruction

 Subtract R2, R2, #1
to decrement counter in each loop pass

• Branch_if_[R2]>0 goes to branch target LOOP
as long as contents of R2 are greater than zero

• Therefore, this is a conditional branch

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Branching

• Branches that test a condition are used in loops and various
other programming tasks

• One way to implement conditional branches
is to compare contents of two registers, e.g.,
 Branch_if_[R4]>[R5] LOOP

• In generic assembly language with mnemonics the same
instruction might actually appear as
 BGT R4, R5, LOOP

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Generating Memory Addresses

• Loop must obtain next number in each pass
• Load instruction cannot contain full address since address

size (32 bits) = instruction size
• Also, Load instruction itself would have to be modified in

each pass to change address
• Instead, use register Ri for address location
• An example of addressing modes (next topic)
• Initialize to NUM1, increment by 4 inside loop

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly Language

• Mnemonics (LD/ADD instead of Load/Add) used when
programming specific computers

• The mnemonics represent the OP codes
• Assembly language is the set of mnemonics and rules for

using them to write programs
• The rules constitute the language syntax
• Example: suffix ‘I’ to specify immediate mode

 ADDI R2, R3, 5 (instead of #5)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembler Directives

• Other information also needed to translate source program
to object program

• How should symbolic names be interpreted?
• Where should instructions/data be placed?
• Assembler directives provide this information
• ORIGIN defines instruction/data start position
• RESERVE and DATAWORD define data storage
• EQU associates a name with a constant value

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Program Assembly & Execution

• From source program, assembler generates machine-
language object program

• Assembler uses ORIGIN and other directives
to determine address locations for code/data

• For branches, assembler computes ±offset
from present address (in PC) to branch target

• Loader places object program in memory
• Debugger can be used to trace execution

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Number Notation

• Decimal numbers used as immediate values:
 ADDI R2, R3, 93

• Assembler translates to binary representation
• Programmer may also specify binary numbers:

 ADDI R2, R3, %01011101
• Hexadecimal specification is also possible:

 ADDI R2, R3, 0x5D
• Note that 93 = 10111012 = 5D16

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Logic Instructions

• AND, OR, and NOT operations on single bits
are basic building blocks of digital circuits

• Similar operations in software on multiple bits
• Using RISC-style instructions, all operands are

in registers or specified as immediate values:
 Or R4, R2, R3
 And R5, R6, #0xFF

• 16-bit immediate is zero-extended to 32 bits

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Shift and Rotate Instructions

• Shifting binary value left/right = mult/div by 2
• Arithmetic shift preserves sign in MS bit
• Rotate copies bits from one end to other end
• Shift amount in register or given as immediate
• Carry flag (discussed later) may be involved
• Examples:

 LShiftLR3, R3, #2 (mult by 4)
 RotateL R3, R3, #2 (MS bits to LS bits)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example Program: Digit Packing

• Illustrate shift, logic, byte-access instructions
• Memory has two binary-coded decimal digits
• Pointer set to 1st byte for index-mode access to load 1st

digit, which is shifted to upper bits
• Upper bits of 2nd digit are cleared by ANDing
• ORing combines 2nd digit with shifted 1st digit for result of

two packed digits in a single byte
• 32-bit registers, but only 8 lowest bits relevant

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Multiplication and Division

• Signed integer multiplication of n-bit numbers produces a
product with as many as 2n bits

• Processor truncates product to fit in a register:
 Multiply Rk, Ri, Rj (Rk ← [Ri] × [Rj])

• For general case, 2 registers may hold result
• Integer division produces quotient as result:

 Divide Rk, Ri, Rj (Rk ← [Ri] / [Rj])
• Remainder is discarded or placed in a register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

32-bit Immediate Values

• To construct 32-bit immediates or addresses, use two
instructions in sequence:
 OrHigh R2, R0, #0x2000
 Or R2, R0, #0x4FF0

• Result is 0x20004FF0 in register R2
• Useful pseudoinstruction:

 MoveImmediateAddress R2, LOC
• Assembler can substitute OrHigh & Or

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

CISC Instruction Sets

• Not constrained to load/store architecture
• Instructions may be larger than one word
• Typically use two-operand instruction format, with at least

one operand in a register
• Implementation of C = A + B using CISC:

 Move Ri, A
 Add Ri, B
 Move C, Ri

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

CISC Instruction Sets

• Move instruction equivalent to Load/Store
• But also can transfer immediate values

and possibly between two memory locations
• Arithmetic instructions may employ

addressing modes for operands in memory:
 Subtract LOC, Ri
 Add Rj, 16(Rk)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Additional Addressing Modes

• Autodecrement mode: before accessing operand, register
contents are decremented, then new contents provide
effective address

• Notation in assembly language:
 Add Rj, −(Ri)

• Use autoinc. & autodec. for stack operations:
 Move −(SP), NEWITEM (push)
 Move ITEM, (SP)+ (pop)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Condition Codes

• Processor can maintain information on results to affect
subsequent conditional branches

• Results from arithmetic/comparison & Move
• Condition code flags in a status register:

 N (negative) 1 if result negative, else 0
 Z (zero) 1 if result zero, else 0
 V (overflow) 1 if overflow occurs, else 0
 C (carry) 1 if carry-out occurs, else 0

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Branches using Condition Codes

• CISC branches check condition code flags
• For example, decrementing a register causes N and Z flags

to be cleared if result is not zero
• A branch to check logic condition N + Z = 0:

 Branch>0 LOOP
• Other branches test conditions for <, =, ≠, ≤, ≥
• Also Branch_if_overflow and Branch_if_carry
• Consider CISC-style list-summing program

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Sum of the Elements in an Array

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC and CISC Styles

• RISC characteristics include:
 simple addressing modes
 all instructions fitting in a single word
 fewer total instructions
 arithmetic/logic operations on registers
 load/store architecture for data transfers
 more instructions executed per program

• Simpler instructions make it easier to
design faster hardware (e.g., use of pipelining)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC and CISC Styles

• CISC characteristics include:
 more complex addressing modes
 instructions spanning more than one word
 more instructions for complex tasks
 arithmetic/logic operations on memory
 memory-to-memory data transfers
 fewer instructions executed per program

• Complexity makes it somewhat more difficult to design fast
hardware, but still possible

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

ARM INSTRUCTIONS

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Load and Store:
 LDR and STR for words
 LDRH and STRH for half words (zero-extended on a
 Load)
 LDRB and STRB for bytes (zero-extended on a Load)
 LDRSH and LDRSB are used for sign-extended Loads
 (Half words and bytes are positioned at the
 low-order end of a register)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Multiple-word Load and Store:
Any subset of the processor registers can be loaded or
 stored with the Block Transfer instructions LDM and
 STM
Example: LDMIA R10!, [R0, R1, R6, R7]

If [R10] = 1000, words at 1000, 1004, 1008, and 1012 are
 loaded into the registers, and R10 contains 1016 after
 all transfers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Arithmetic:
Assembly language format is
 OP Rd, Rn, Rm or #offset

 ADD R0, R2, R4
performs
 R0 ← [R2] + [R4]

 SUB R0, R3, #17
performs
 R0 ← [R3] − 17

(immediates are unsigned values in the range 0 to 255)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Arithmetic: The second source operand can be shifted or
 rotated before being used
 ADD R0, R1, R5, LSL #4
performs
 R0 ← [R1] + 16 × [R5]
Shifts and rotations available:
 LSL Logical shift left
 LSR Logical shift right
 ASR Arithmetic shift right
 ROR Rotate right

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Shifting/rotation of the second source operand in
 arithmetic instructions:

The last bit shifted (or rotated) out is written into the C flag
A second rotation operation, labelled RRX (Rotate right
 extended), includes the C flag in the bits being rotated;
 only rotates by 1 bit
(If the second source operand is an immediate value, a
 limited form of rotation is provided)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Arithmetic:

 MUL R0, R1, R2
performs
 R0 ← [R1] × [R2]

The low-order 32 bits of the 64-bit product are written into
 R0
For 2’s-complement numbers, the value in R0 is correct if
 the product fits into 32 bits

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Arithmetic:

 MLA R0, R4, R5, R6
performs
 R0 ← ([R4] × [R5]) + [R6]

This Multiply-Accumulate instruction is useful in signal-
 processing applications

Other versions of MUL and MLA generate 64-bit products

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Move:

 MOV Rd, Rm
performs
 Rd ← [Rm]

 MOV Rd, #value
performs
 Rd ← value

(The second operand can be shifted/rotated)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Move:

 MVN Rd, Rm or #value

loads the bit-complement of [Rm] or value
 into Rd

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Implementing Shift and Rotate instructions:

 MOV Ri, Rj, LSL #4

achieves the same result as the generic
 instruction:

 LShiftL Ri, Rj, #4

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Logic:

 AND Rd, Rn, Rm

performs the bit-wise logical AND of the operands in
 registers Rn and Rm and writes the result into register
 Rd

 ORR (bit-wise logical OR)
 EOR (bit-wise logical XOR)

are also provided

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Logic:
The Bit Clear instruction, BIC, is closely related to the AND
 instruction
The bits of Rm are complemented before they are ANDed
 with the bits of Rn
If R0 contains the hexadecimal pattern 02FA62CA, and R1
 contains 0000FFFF,
 BIC R0, R0, R1
results in 02FA0000 being written into R0

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Test:

 TST Rn, Rm or #value
performs bit-wise logical AND of the two operands, then
sets condition code flags

 TST R3, #1
sets Z = 1 if low-order bit of R3 is 0
sets Z = 0 if low-order bit of R3 is 1

(useful for checking status bits in I/O devices)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Test:

 TEQ Rn, Rm or #value
performs bit-wise logical XOR of the two operands, then
sets condition code flags

 TEQ R2, #5
sets Z = 1 if R2 contains 5
sets Z = 0 otherwise

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Compare:

 CMP Rn, Rm
performs
 [Rn] − [Rm]
and updates condition code flags based on the result

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Setting condition code flags

 CMP, TST, and TEQ, always update the condition code
flags

 Arithmetic, Logic, and Move instructions do so only if S
is appended to the OP code

 ADDS updates flags, but ADD does not

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Adding 64-bit operands

 ADC R0, R1, R2 (Add with carry)
performs R0 ← [R1] + [R2] + [C]

If pairs R3,R2 and R5,R4 hold 64-bit operands,
 ADDS R6, R2, R4
 ADC R7, R3, R5
writes their sum into register pair R7,R6

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Branch:

 B{condition} LOCATION

branches to LOCATION if the settings of the
condition code flags satisfy {condition}

 BEQ LOCATION
branches if Z = 1

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Program

• An assembly-language program for adding numbers
stored in the memory is shown
 in the next slide

The instruction
 LDR R2, =NUM1
is a pseudoinstruction that loads the 32-bit
 address value NUM1 into R2
It is implemented using actual instructions

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Sum the Elements in an Array

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly language

• An assembly language program for adding
 numbers is given in the next slide

• Comments:

1. The AREA directive specifies the start of
 instruction (CODE) and data (DATA) areas

2. The ENTRY directive specifies the start
 point for program execution

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly language

• Comments (continued)

3. The combination of the instruction
 LDR R2, POINTER
and the data declaration
 POINTER DCD NUM1

implements the pseudoinstruction
 LDR R2, =NUM1

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pseudoinstructions

• Operations specified by pseudoinstructions
are implemented with actual machine
instructions by the assembler

• Example: An immediate is an 8-bit unsigned value
The pseudoinstruction
 MOV R0, #−5
is implemented with the actual instruction
 MVN R0, #4
(the bit-complement of 4 = 00000100
 −5 = 11111011)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pseudoinstructions

• Loading 32-bit values:

The pseudoinstruction
 LDR Rd, =value
loads a 32-bit value into Rd

 LDR R3, =127
is implemented with
 MOV R3, #127

(used for “short” values)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pseudoinstructions

• Loading 32-bit values:

 LDR R3, =&A123B456
is implemented with
 LDR R3, MEMLOC (instruction)
 MEMLOC DCD &A123B456 (data)

(used for “long” values, including addresses)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pseudoinstructions

• Loading 32-bit address label values:
If the address is “close” to the current value
 of the program counter (R15), the ADR
 pseudoinstruction can be used

 ADR Rd, LOCATION
is implemented with
 ADD Rd, R15, #offset, or
 SUB Rd, R15, #offset
(offset is calculated by the assembler)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Esempio di programma ARM

Si consideri il seguente codice (Algoritmo di Euclide per il
Massimo Comun Divisore):

function gcd (integer a, integer b): result is integer
while (a<>b) do
 if (a > b) then
 a = a - b
 else
 b = b - a
 endif
endwhile
result = a

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly ARM

gcd
 CMP r0,r1
 BEQ end
 BLT less
 SUB r0,r0,r1
 BAL gcd
less
 SUB r1,r1,r0
 BAL gcd
end

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Conditional Execution

• Almost every ARM instruction can be executed conditionally on the
state of the ALU status flags

• The instructions that can be conditional have an optional condition code

• The conditioned instruction is only executed if the condition code flags
meet the specified condition

• Example:
 ADD r0, r1, r2 ; r0 = r1 + r2, don't update flags
 ADDS r0, r1, r2 ; r0 = r1 + r2, and update flags
 ADDSCS r0, r1, r2 ; If C flag set then r0 = r1 + r2, and
 ; update flags

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly ARM with conditioned instructions

Same algorithm as before

gcd
 CMP r0,r1
 SUBGT r0,r0,r1
 SUBLT r1,r1,r0
 BNE gcd

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Conditional Vs Non Conditional

r0: a r1: b Instruction Cycles
(ARM7)

1 2 CMP r0, r1 1

1 2 BEQ end 1 (not
executed)

1 2 BLT less 3

1 2 SUB r1, r1, r0 1

1 2 B gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

 Total = 13

r0: a r1: b Instruction Cycles
(ARM7)

1 2 CMP r0, r1 1

1 2 SUBGT r0,r0,r1 1 (not
executed)

1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CMP r0,r1 1

1 1 SUBGT r0,r0,r1 1 (not
executed)

1 1 SUBLT r1,r1,r0 1 (not
executed)

1 1 BNE gcd 1 (not
executed)

 Total = 10

case where r0 equals 1 and r1 equals 2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Condition Code Suffixes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned
>=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned
<=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is
normally omitted.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

COLDFIRE INSTRUCTIONS

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• One, two, or three consecutive words
• OP-code word is first – it specifies operation
• Also provides some addressing information; one or two

extension words provide more
• Most arithmetic and data-transfer instructions have

source/destination operands:
 OP src, dst

• .L, W., or .B suffix for OP code specifies size

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

MOVE Instruction

• Used to perform transfers between memory, I/O interfaces,
and registers

• Value being transferred affects N and Z flags
in status register

• Byte, word, and longword sizes are permitted
• All addressing modes valid for source operand
• Some modes not permitted for destination
• Some source/dest. mode pairings not valid

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Arithmetic Instructions

• Most permit only longword size,
and most require at least one register operand

• Addition, subtraction, comparison, negation:
 ADD.L, SUB.L, CMP.L, NEG.L

• ADDI.L, ADDQ.L for immediate operands
• ADDA.L, SUBA.L, CMPA.L for address registers
• Arithmetic operations affect condition codes
• ADDX.L, SUBX.L, NEGX.L for numbers > 32 bits

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Multiplication and Division

• Signed/unsigned multiply of 16-bit numbers,
or 32-bit numbers (where result is truncated)

• N and Z flags affected; V and C flags cleared
• Signed/unsigned division where divisor is either 16 or 32

bits (dividend is always 32 bits)
• For 16-bit divisor, remainder placed in register, but for 32-

bit divisor, remainder is discarded
• Special instruction gives remainder separately

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Branch and Jump Instructions

• Conditional branches test combinations of condition code
flags; e.g., BEQ checks if Z=1

• BRA is unconditional branch
• Target address for branch computed by

adding signed offset to program counter value
• Offset is part of branch instruction encoding
• May be 8, 16, or 32 bits in size
• Unconditional JMP instruction can specify target address

with an addressing modes

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Logic and Shift Instructions

• AND.L, OR.L, EOR.L, NOT.L instructions
require at least one data register operand

• ANDI.L, ORI.L, EORI.L – immediate src operand
• N and Z flags affected; V and C flags cleared

• LSL.L, LSR.L, ASL.L, ASR.L instructions require immediate

or data register for shift amount
• Operand to be shift is in a data register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Stacks

• A stack is a list of data elements where
elements are added/removed at top end only

• Also known as pushdown stack or
last-in-first-out (LIFO) stack

• We push a new element on the stack top
or pop the top element from the stack

• Programmer can create a stack in the memory
• There is often a special processor stack as well

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Processor Stack

• Processor has stack pointer (SP) register
that points to top of the processor stack

• Push operation involves two instructions:
 Subtract SP, SP, #4
 Store Rj, (SP)

• Pop operation also involves two instructions:
 Load Rj, (SP)
 Add SP, SP, #4

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Subroutines

• In a given program, a particular task may be
executed many times using different data

• Examples: mathematical function, list sorting
• Implement task in one block of instructions
• This is called a subroutine
• Rather than reproduce entire subroutine block in each part

of program, use a subroutine call
• Special type of branch with Call instruction

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Subroutines

• Branching to same block of instructions
saves space in memory, but must branch back

• The subroutine must return to calling program
after executing last instruction in subroutine

• This branch is done with a Return instruction
• Subroutine can be called from different places
• How can return be done to correct place?
• This is the issue of subroutine linkage

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Subroutine Linkage

• During execution of Call instruction,
PC upated to point to instruction after Call

• Save this address for Return instruction to use
• Simplest method: place address in link register
• Call instruction performs two operations:

store updated PC contents in link register,
then branch to target (subroutine) address

• Return just branches to address in link register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Subroutine Nesting and the Stack

• We can permit one subroutine to call another,
which results in subroutine nesting

• Link register contents after first subroutine call are
overwritten after second subroutine call

• First subroutine should save link register
on the processor stack before second call

• After return from second subroutine,
first subroutine restores link register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Parameter Passing

• A program may call a subroutine many times with different
data to obtain different results

• Information exchange to/from a subroutine
is called parameter passing

• Parameters may be passed in registers
• Simple, but limited to available registers
• Alternative: use stack for parameter passing,

and also for local variables & saving registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Stack Frame

• Locations at the top of the processor stack are used as a
private work space by subroutines

• A stack frame is allocated on subroutine entry and
deallocated on subroutine exit

• A frame pointer (FP) register enables access to private
work space for current subroutine

• With subroutine nesting, the stack frame also saves return
address and FP of each caller

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

ARM SUBROUTINES AND
STACK

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

• Subroutine linkage:

 BL SUBADDRESS

Actions taken:

 1. The value of the updated PC is stored in
 R14 (LR), the Link register
 2. A branch is taken to SUBADDR

• Return from subroutine

 BX lr

– By convention, registers r0 to r3 are used to pass parameters to
subroutines, and r0 is used to pass a result back to the callers.

• Calls between separately assembled or compiled modules => procedure call
standard (Procedure Call Standard for the ARM Architecture specification)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

 AREA subrout, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine
stop
 More instructions

doadd ADD r0, r0, r1 ; Subroutine code (and prepare return value)
 BX lr ; Return from subroutine
 END ; Mark end of file

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Stack

• Stack Instructions. No specific instructions (push/pop)
– Push and pop operations are performed by memory

access instructions, with auto-increment addressing
modes.

• Stack pointer. No special register, any general purpose
register can be used (typically r13 also referred as SP)

• Stack Types.
– Stack ascending and descendig
– SP to last full or first empty
 -FA Full-Ascending -EA Empty-Ascending
 -FD Full-Descending -ED Empty-Descending

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Implementing stacks with LDM and STM

Stack-oriented suffix For store or push
instructions

For load or pop
instructions

FD (Full Descending stack) DB (Decrement Before) IA (Increment After)

FA (Full Ascending stack) IB (Increment Before) DA (Decrement After)

ED (Empty Descending stack) DA (Decrement After) IB (Increment Before)

EA (Empty Ascending stack) IA (Increment After) DB (Decrement Before)

Stack-oriented suffixes and equivalent addressing mode suffixes

Stack type Store Load

Full descending STMFD (STMDB, Decrement
Before)

LDMFD (LDM, increment
after)

Full ascending STMFA (STMIB, Increment
Before)

LDMFA (LDMDA, Decrement
After)

Empty descending STMED (STMDA, Decrement
After)

LDMED (LDMIB, Increment
Before)

Empty ascending STMEA (STM, increment
after)

LDMEA (LDMDB, Decrement
Before)

Suffixes for load and store multiple instructions

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Stack usage: examples

 STMFD sp!, {r0-r5} ; Push onto a Full Descending
 ; Stack
 LDMFD sp!, {r0-r5} ; Pop from a Full Descending
Stack

• The Procedure Call Standard for the ARM

Architecture (AAPCS), and ARM and Thumb C and C++
compilers always use a full descending stack.

• The PUSH and POP instructions assume a full descending
stack. They are the preferred synonyms
for STMDB and LDM with writeback.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Stacking registers for nested subroutines

• At the start of a subroutine, any working registers required can be
stored on the stack, and at exit they can be popped off again.

• In addition, if the link register is pushed onto the stack at entry,
additional subroutine calls can be made safely without causing the
return address to be lost.
– If you do this, you can also return from a subroutine by popping pc

off the stack at exit, instead of popping lr and then moving that
value into pc. For example:

 sub PUSH {r5-r7,lr} ; Push work registers and lr
 ; code
 BL somewhere_else
 ; code
 POP {r5-r7,pc} ; Pop work registers and pc

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

COLDFIRE SUBROUTINES
AND STACK

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Subroutine Linkage

• Address register A7 is the stack pointer (SP)
• Subroutine call/return instructions use A7

to save/restore return address automatically
• JSR, BSR instructions for subroutine calls
• RTS instruction for returning from subroutines
• Pass parameters in registers or using stack
• If parameters pushed to or popped from stack, register A7

must always be a multiple of 4

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pila
Move N,R1

-28

-17

739

43

0

2k -1

FONDO

SP

Push:
Decrement SP

Move NEWITEM, (SP)

Pop:
Move (SP), ITEM

Increment SP

Push:
Move NEWITEM, -(SP)

Pop:
Move (SP)+, ITEM

@@@ - SP punta
all’ultima locazione
occupata

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Passaggio Parametri su Stack

Parametri di
input 1

Parametri di
output 1

Indirizzo di
Ritorno 1

A6=FP

A7=SP

Parametri di
input 1

Parametri di
output 1

Indirizzo di
Ritorno 1

FP

SP Variabili
locali 1

Vecchio
FP1

Parametri di
input 2

Parametri di
input 1

Parametri di
output 1

Indirizzo di
Ritorno 1

FP

SP

Variabili
locali 1

Vecchio
FP1

Parametri di
output 2

Parametri di
input 2

Parametri di
input 1

Parametri di
output 1

Indirizzo di
Ritorno 1

Variabili
locali 1

Vecchio
FP1

Parametri di
output 2

Indirizzo di
Ritorno 2

Immediatamente
dopo la chiamata
a SUB1

Durante
l’esecuzione
di SUB1

Immediatamente
prima della chiamata
a SUB2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Link and allocate

• Syntassi:
– LINK An,#<displacement>

• Funzionamento:
1. Esegue push su stack del contenuto del registro

indirizzo specificato
2. Il registro indirizzo specificato viene caricato con il

nuovo valore dello stack pointer
3. Il displacement viene esteso in segno e sommato a

SP. Questo valore viene assegnato a SP.
4. Durante l’esecuzione SP varia, mentre FP rimane

costante

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Parametri in stack – div916.a68 - 1/2

DIVPQ ADDA.L #-10,SP
 MOVE.L P,-(SP)
 CLR.L -(SP)
 MOVE.L Q,-(SP)
 JSR DIVIDEL
 MOVE.L (SP)+,PMODQ
 MOVE.L (SP)+,PDIVQ
 TST.W (SP)+
 BNE DIVOVF

*Area Dati

P DC.L 10
Q DC.L 5
PDIVQ DS.L 1
PMODQ DS.L 1

Codice programma
principale

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Parametri in stack – div916.a68 - 2/2

DIVIDEL LINK A6,#-2
 MOVE.W #32,CNT(A6)
 CLR.W STATUS(A6)
 MOVE.L HIDVND(A6),D0
 MOVE.L LODVND(A6),D1
 CMP.L DVSR(A6),D0
 BCS.S DIVLUP
 MOVE.W #1,STATUS(A6)
 BRA.S CLNSTK
DIVLUP LSL.L #1,D1
 …
 …
 BGT.S DIVLUP
 MOVE.L D0,REM(A6)
 MOVE.L D1,QUOT(A6)
CLNSTK UNLK A6
 MOVEA.L (SP)+,A0
 ADDA.L #STATUS-DVSR,SP
 JMP (A0)

Codice subroutine

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Parametri in stack – Esecuzione

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Ritorno – Esecuzione

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Ritorno - Schema

JMP (A0)

0000806A
A0

Memory

Questa istruzione
significa: salta
all’istruzione puntata
dal registro indirizzo A0

L’istruzione specifica l’operando come (A0)

0000806A MOVE.L (SP)+,PMODQ

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Ritorno – Mappa della memoria

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Evoluzione dello stack - div916.a68

FP
SP

STATUS

SP

FP

SP

STATUS STATUS

QUOT QUOT QUOT

FP FP

REM REM REM

LODVND LODVND

HIDVND HIDVND

DVSR DVSR

RETURN
ADDRESS

OLD FP

CNT

SP

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example Programs

• First example program computes:

• First elements of each array, A(0) and B(0), are stored at
memory locations AVEC and BVEC

• Consider RISC and CISC versions of program
• Use Multiply instruction on pairs of elements and

accumulate sum with Add instruction
• Some processors have MultiplyAccumulate

∑ −

=
×=

1

0
)()(n

i
iBiAProduct Dot

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example Programs

• Second example searches for 1st occurrence
of pattern string P in target string T

• String P has length m and string T has length n
• Algorithm to implement in RISC/CISC styles:

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Concluding Remarks

• Many fundamental concepts presented:
– memory locations, byte addressability, endianness
– assembly-language and register-transfer notation
– RISC-style and CISC-style instruction sets
– addressing modes and instruction execution
– assembler to generate machine instructions
– subroutines and the processor stack

• Later chapters build on these concepts

	Instruction Set Architecture
	Contact info
	Roadmap
	Sources
	The main memory (central memory)
	Memory structure
	Address and Register size
	Diapositiva numero 8
	Example
	Solution
	Example
	Solution
	BSVC memory
	Example
	Soluzione
	Example
	Solution
	Example
	Soluzione
	Register Transfer Notation
	Register Transfer Notation
	Assembly-Language Notation
	Assembly-Language Notation
	Memory Operations
	Addressing Modes
	Diapositiva numero 26
	Addressing Modes
	Variables
	Constants
	Indirection and Pointers
	Diapositiva numero 31
	Indirection and Pointers
	Diapositiva numero 33
	Indexing
	Diapositiva numero 35
	Diapositiva numero 36
	Additional Addressing Modes
	Arm Memory and Register structure, and addressing modes
	ARM – Advanced RISC Machine
	RISC: Reduced Instruction Set Computing
	Data types
	Memory structure
	Processord Modes
	Registers
	Registers
	Registers
	Registers
	Status Register
	Addressing modes
	LOAD Instruction Encoding
	Instruction Structure
	Addressing modes
	Diapositiva numero 53
	Addressing modes
	Diapositiva numero 55
	Addressing modes
	Diapositiva numero 57
	Addressing modes
	Addressing modes
	Diapositiva numero 60
	Diapositiva numero 61
	ColdFire Memory and register Structure
	Memory Organization
	Diapositiva numero 64
	Register Structure
	Data Registers
	Address Registers
	SP and PC
	Status Register
	Instructions
	Modi di Indirizzamento
	Encoding for the MOVE instruction
	Addressing Mode encoding
	Register Direct Addressing
	Register Direct Addressing
	Register Direct Addressing
	Immediate Addressing
	ImmediateAddressing - Encoding
	Absolute Addressing (or Direct Addressing)
	Absolute Addressing - Codifica
	Example for basic modes
	Assembled code
	Address Register Indirect Addressing
	Address Register Indirect Addressing - Encoding
	Auto-increment
	Auto-decrement
	Example
	Indexed
	Indexed Short Addressing - Codifica
	Based Addressing
	Based Addressing - Codifica
	Based Indexed
	Relative Addressing
	Relative Indexed Addressing
	Processor Structure
	Diapositiva numero 96
	Instructions and Sequencing
	RISC and CISC Instruction Sets
	RISC Instruction Sets
	RISC Instruction Sets
	RISC Instruction Sets
	RISC Instruction Sets
	A Program in the Memory
	Diapositiva numero 104
	Instruction Execution/Sequencing
	Details of Instruction Execution
	Branching
	Diapositiva numero 108
	Branching
	Branching
	Generating Memory Addresses
	Assembly Language
	Assembler Directives
	Diapositiva numero 114
	Diapositiva numero 115
	Program Assembly & Execution
	Number Notation
	Logic Instructions
	Shift and Rotate Instructions
	Diapositiva numero 120
	Diapositiva numero 121
	Example Program: Digit Packing
	Diapositiva numero 123
	Multiplication and Division
	32-bit Immediate Values
	CISC Instruction Sets
	CISC Instruction Sets
	Additional Addressing Modes
	Condition Codes
	Branches using Condition Codes
	Sum of the Elements in an Array
	RISC and CISC Styles
	RISC and CISC Styles
	ArM Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Diapositiva numero 153
	Diapositiva numero 154
	Program
	Sum the Elements in an Array
	Assembly language
	Diapositiva numero 158
	Assembly language
	Pseudoinstructions
	Pseudoinstructions
	Pseudoinstructions
	Pseudoinstructions
	Esempio di programma ARM
	Assembly ARM
	Conditional Execution
	Assembly ARM with conditioned instructions
	Conditional Vs Non Conditional
	Condition Code Suffixes
	COLDFIRE INSTRUCTIONS
	Instructions
	MOVE Instruction
	Diapositiva numero 173
	Arithmetic Instructions
	Diapositiva numero 175
	Multiplication and Division
	Diapositiva numero 177
	Branch and Jump Instructions
	Diapositiva numero 179
	Diapositiva numero 180
	Diapositiva numero 181
	Diapositiva numero 182
	Logic and Shift Instructions
	Diapositiva numero 184
	Diapositiva numero 185
	Diapositiva numero 186
	Stacks
	Processor Stack
	Subroutines
	Subroutines
	Subroutine Linkage
	Diapositiva numero 192
	Subroutine Nesting and the Stack
	Parameter Passing
	The Stack Frame
	Diapositiva numero 196
	ARM SUBROUTINES AND STACK
	Instructions
	Example
	Stack
	Implementing stacks with LDM and STM
	Stack usage: examples
	Stacking registers for nested subroutines
	Coldfire SUBROUTINES AND STACK
	Subroutine Linkage
	Diapositiva numero 206
	Pila
	Passaggio Parametri su Stack
	Link and allocate
	Parametri in stack – div916.a68 - 1/2
	Parametri in stack – div916.a68 - 2/2
	Parametri in stack – Esecuzione
	Ritorno – Esecuzione
	Ritorno - Schema
	Ritorno – Mappa della memoria
	Evoluzione dello stack - div916.a68
	Example Programs
	Diapositiva numero 218
	Diapositiva numero 219
	Diapositiva numero 220
	Example Programs
	Diapositiva numero 222
	Diapositiva numero 223
	Concluding Remarks

