Instruction Set Architecture

Corso di
Architettura del Sistemi a Microprocessore

Luigi Coppolino
Dipartimento di Ingegneria
Universita degli Studi di Napoli “Parthenope”

Fault and Intrusion Tolerant MNEworked SystenS

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Contact info

Prof. Luigi Coppolino
luigi.coppolino@uniparthenope.it

Universita degli Studi di Napoli "Parthenope"
Dipartimento per le Tecnologie

Centro Direzionale di Napoli, Isola C4
V Piano lato SUD - Stanza n. 512

Tel: +39-081-5476702
Fax: +39-081-5476777

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Roadmap

e Organizzazione della memoria

e Esempi di organizzazione della memoria
e | principali modi di indirizzamento

e Esempi d'impiego

e Riepilogo modi base

e Altri modi di indirizzamento

e |struzioni ARM E COLDFIRE

e Uso dello Stack e chiamata di funzioni

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

sources

e Textbook (chapter 2)

e Manuale Freescale
(http://www.freescale.com/files/archives/doc/ref _manual/M6800
OPRM.pdf)(http://www.freescale.com/files/dsp/doc/ref _manual/C
FPRM.pdf)

e Manuale ARM

(http://infocenter.arm.com/help/topic/com.arm.doc.dui0204}/DUl
0204J rvct_assembler guide.pdf)

e Quick Guides:

— ARM:
http://infocenter.arm.com/help/topic/com.arm.doc.qrc00011/Q
RC0O001 UAL.pdf

— Coldfire (m68000):
http://home.anadolu.edu.tr/~sgorgulu/micro2/2008/68KISx1.
pdf

g% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

The main memory (central memory)

e The main memory of a computer is organized as an
array of sequences of m bits, each of them is said word

(m = WORD LENGTh (LUNGHEZZA DI PAROLA) => typical values for mare 16, 32,
or 64)

e Any read or write operation from/to the main memory
accesses to a whole word

e Each word has an address, that is an integer number

between 0 and N-1 (ADDRESS SPACE - SPAZIO DI INDIRIZZAMENTO),
being N = 2¢

0
it bit i

716|5/4|3/2(1|0

MSB LSB e
N-1
!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Memory structure

e A word is typically composed of 16 bit, 32 bit, or 64 bit
e |tis impractical to give an address to each bit

e Memory is typically byte-addressable, the smallest unit of memory
that can be referenced is a byte

e Since a word is composed of four byte, addresses of bytes within
a word can be ordered in two alternative ways: big endian e little

endian
MS byte LS byte MS byte LS byte
0 1 2 3 word 0 S 2 1 0 word 0
4 5 6 7 word 4 7 6 5 4 word 4
k_ K
k.4 ok_3 ok k.1 word 2*-4 ok_1 ok_9 k.3 k.4 word 2%-4

BIG-ENDIAN ordering

LITTLE-ENDIAN ordering

g SP .

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Address and Register size

e Address size:
— Number of bits composing an address

— If the Address size is m the address space of the
memory it 2™

e Register size:
— Number of bits composing a register

e Typically Register Size is a multiple (or egual) of Memory
Size

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

 Not all the MA register bits must be connected to the bus,
thus:

— Logical address space can be lower than physical
address space ==> “aliasing”

Address
bus

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

e Draw the schema of a memory architecture with the
following characteristics:

— Logical address space: 1MB

— Physical address space: 1MB
— Word length: 1 byte

— Accessibility: byte addressable

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Solution

Address Register

00000- FFFFF

20 bit

Memory
00000 0
00001 1
FFFFF FFFFF
8 bit

e The MC68008 is organised in this way

http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

Example

e Draw the schema of a memory architecture with the
following characteristics:

— Logical address space: 4GB

— Physical address space: 16MB
— Word length: 2 byte

— Accessibility: byte addressable

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Solution

Memory
000000 0-1
Address Register 000002 2-3

00000000- FFFFFFFF

32 bit

FFFFFE | FFFFFE-FFFFFF
16 bit

e The MC68000 and MC68010 are organized in this way

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

BSVC memory

e The MC68000 memory view offered by a simulator

File Edit Wiew Aalv| 2|7

fffeel: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
fffefl: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
FELFO0: Hx XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
FEFFI0: XX X¥ ¥E XX ME XX X¥ MX XX XX XX XX MX HX XX =X
LELL20: ¥ XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
A0 xx XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
FELFA0: Hx XX XX XX ME XX XX XX XX XX XX XX XX XX XX XX
TELLO0: ¥ XX ¥¥ XX XX XX XX XX XX XX XX XX XX XX XX XX
LTELLA0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
FELF70: XX XX ¥X XX MM XX XX XX XX XX XX XX XX XX XX XX
FEIFFE0: XX X¥ HX XX ME XX XX MX XX XX XX XX MX HX XX =X
LELLO0: ¥ XX ¥¥ XX XX XX XX XX XX XX XX XX XX XX XX XX
ffffal: =x XX XX XX XX XX XX XX XX XX XX XX XX XX XX =X
FEEFRO: XX XX XX XX MM XX XX XX XX XX HX XX XX XX XX XX
TR0 WX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
LELLAD: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
ffffel: =X XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
FEIFFFO: XX X¥ HE XX ME XX X¥ MX XX MX XX XX MX HX XX =X

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

e Draw the schema of a memory architecture with the
following characteristics:

— Logical address space: 4GB

— Physical address space: 4GB
— Word length: 4 byte

— Accessibility: byte addressable

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Soluzione

Memory
00000000 0-1-2-3
00000004 4-5-6-7

Address Register

00000000- FFFFFFFF

32 bit

FFFFFFFC | FFFFFFF-C/D/E/F

32 bit

e MC68020 and following architectures are organised this
way

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example

e The MC68000 memory architecture has the following
characteristics:

— Logical address space: 4GB
— Physical addess space: 16MB

e The MC68020 memory architecture has the following
characteristics:

— Logical address space: 4GB
— Physical addess space: 4GB
e Show the aliasing regions among the two processors

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Solution

e For each address of the MC68000 there are 256 distinct
addresses in the MC68020 processor.

e The aliasing regions are identified by the following

pattern:
DOXXXXXX
OLXXXXXX
XXXXXX
FEXXXXXX

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Example

e By extendig a 16 bit address with its sign bit, to show the
memory area addressed in a 32-bit architecture

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Soluzione

0000
e Addresses
between 0000 0000000000000000 0000000000000000
and 7FFE are
mapped on ZEFE
the first 32KB
of the 4GB
memory 0000000000000000 0111111111111110
8000
e Addresses
between 8000 1111111111111111 1000000000000000
and FFFE are
mapped on FFFE
the last 32KB
of the 4GB 1111111111111111 1111111111111110
memory

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Transfer Notation

e Register transfer notation is used to describe hardware-
level data transfers and operations

e Predefined names for procr. and 1/0 registers
e Arbitrary names for locations in memory

e Use [...] to denote contents of a location

e Use <« to denote transfer to a destination

e Example: R2 « [LOC]
(transfer from LOC in memory to register R2)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Register Transfer Notation

e RTN can be extended to also show arithmetic operations
Involving locations
e Example: R4 « [R2] + [R3]
(add the contents of registers R2 and R3,
place the sum in register R4)

e Right-hand expression always denotes a value, left-hand
side always names a location

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Assembly-Language Notation

e RTN shows data transfers and arithmetic

e Another notation needed to represent
machine instructions & programs using them

e Assembly language is used for this purpose

e For the two preceding examples using RTN,
the assembly-language instructions are:
Load R2, LOC
Add R4, R2, R3

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Assembly-Language Notation

e An instruction specifies the desired operation and the
operands that are involved

e We will use English words for the operations (e.g., Load,
Store, and Add) when they are not related to a specific
architecture

e Commercial processors use mnemonics,
usually abbreviations (e.g., LD, ST, and ADD)

e Mnemonics differ from processor to processor

— Will use mnemonics to report specific processors related
code

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Memory Operations

e Memory contains data & program instructions

e Control circuits initiate transfer of data and instructions
between memory and processor

e Read operation: memory retrieves contents at address
location given by processor

e Write operation: memory overwrites contents at given
location with given data

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Addressing Modes

e Programs use data structures to organize
the information used in computations

e High-level languages enable programmers
to describe operations for data structures

e Compiler translates into assembly language

e Addressing modes provide compiler with different ways to
specify operand locations

e Consider modes used in RISC-style processors

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

- RISC-type addressing modes. —

Name Assembler syntax Addressing function
Immediate #Value Operand = Value
Register Ri EA =R

Absolute LOC EA =LOC

Register indirect (Ri) EA = [Ri]

Index X(Ri) EA=[Ri]+ X

Base with index (Ri,Ry) EA = [Ri] 4 [RJ]

EA = effective address
Value = a signed number
X = index value

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing Modes

e \We have already seen examples of the register and
absolute addressing modes

e RISC-style instructions have a fixed size, hence absolute
mode information limited to 16 bits

e Usually sign-extended to full 32-bit address Absolute mode
IS therefore limited to a subset of the full 32-bit address

space
e Assume programs are limited to this subset

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Variables

e Variable declaration in high-level language:
Integer NUM1, NUM2, SUM;

e Allocates storage to locations in the memory

« When referenced by high-level statements, compiler
translates to assembly language:
Load R2, NUM1

e Absolute mode (in subset of address space) enables access
to variables in the memory

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Constants

e Assume constant 200 is added to a variable

e /mmediate mode enables use of constants in assembly-
language instructions

e One approach for specification:
Add R4, R6, 200 mediate

e Not practical to use subscripts in this manner

e Alternative approach uses special character:
Add R4, R6, #200

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Indirection and Pointers

e Register, absolute, and immediate modes directly provide
the operand or address

e Other modes provide information from which the effective
address of operand is derived

e For program that adds numbers in a list, use register as
pointer to next number

e /ndirect mode provides address in register:
Load R2, (R5)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Main memory

RS

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indirection and Pointers

e Body of loop can now use register as pointer

e To initialize the pointer, use the instruction:
Move R4, #NUM1

e |In RISC-style processors, RO is usually always 0

e Implement using Add and immediate mode:
Add R4, RO, #NUM1

e Move is a convenient pseudoinstruction
e We now have complete list-addition program

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

[Load R2. N [Load the size of the list.

Clear R3 Initialize sum to O.

Move R4, #NUMI1 Get address of the first number.
LOOP: Load RS, (R4) Get the next number.

Add R3,R3., R5 Add this number to sum.

Add R4, R4, #4 Increment the pointer to the list.

Subtract R2. R2, #1 Decrement the counter.

Branch_if [R2]>0 LOOP Branch back if not finished.

Store R3, SUM Store the final sum.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indexing

e Consider /ndex mode in: Load R2, X(R5)
e Effective address is given by [R5] + X

e For example, assume operand address is 1020, 4 words (20
bytes) from start of array at 1000

e Can put start address in R5 and use X=20

e Alternatively, put offset in R5 and use X=1000
e Base with index mode: Load Rk, X(R/, Ry)

e Effective address is given by [R/] + [R/] + X

g% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

T 1000

20 = offset

l

—_— 1020

(a) Offset is given as a constant

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

—r 1000

20 = offset

— 1020

(b) Offset is in the index register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Additional Addressing Modes

e CISC style has other modes not usual for RISC

e Autoincrement mode: effective address given by register
contents; after accessing operand, register contents
Incremented to point to next

e Useful for adjusting pointers in loop body:
Add SUM, (R)+
MoveByte (R))+, Rk

e Increment by 4 for words, and by 1 for bytes

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

ARM MEMORY AND REGISTER
STRUCTURE, AND ADDRESSING
MODES

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

ARM — Advanced RISC Machine

e 32-bit RISC-processor core (32-bit intructions)
« 37 internal reqisters of 32-bit (16)

 Pipeline (ARM7: 3 stadi)

» Cache (depends on implementation)

* Von Neuman-type bus structure (ARM7), Harvard
(ARM9)

e Data types 8/ 16/ 32 -hit
« 7 modalita (usr, fig, irq, svc, abt, sys, und)

o Struttura semplice - buon rapporto fra velocita /
consumo

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC: Reduced Instruction Set Computing

e Instructions: simpler but more efficient
* High clock frequence
* More complex compiling and debugging

e Higher number of registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Data types

* byte
* halfword (2bytes alligned)
e word (4byte alligned)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Memory structure

* Byte addressable

e Half and full words (16 or 32 bits) can be
organized as both big-endian and little-
endian

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Processord Modes

ARM sevend processing modes, depending on the code being
executed:

User (usr)

modalita standard di esecuzione del processo
FIQ (fiq)

modalita privilegiata per gestione di flussi dato ad alta velocita
IRQ (irq)

modalita privilegiata per la gestione degli interrupt
Supervisor (svc)

modalita privilegiata per I'esecuzione del Sistema Operativo
Abort (abt)

Implementa la memoria virtuale e la protezione della memoria
System (sys)

modalita privilegiata per I'esecuzione dei task del S.O.
und

serve per il supporto allemulazione software dei coprocessori

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Registers

37 registers
e 31 general purpose

6 status registers

At every time 15 general purpose registers and two
status registers are in use

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Registers

Register | Synonym | Special Role in the procedure call standard
r1s PC The Program Counter.
r14 LR The Link Register.
r13 SP The Stack Pointer.
ri2 IP The Intra-Procedure-call scratch register.
r11 va Yariable-register 8.
r10 vT Yariable-register 7.
v6 Platform register.
3 .?E The meaning of this register is defined by the platform standard.
rg vh Yariable-register 5.
7 v Yariable register 4.
G v3 Wariable register 3.
rb w2 Wariable register 2.
rd vl Wariable register 1.
r3 ad Argument / scratch register 4.
r2 al Argument / scratch register 3.
ri a2z Argument / result [scratch register 2.
0 al Argument / result ! scratch register 1.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Registers

Modes
Privileged modes &
Exception modes &
User System Supervisor Abort Undefined Interrupt Fast interrupt
RO Rl Rl Rl Rl Rl Rl
Rt R R R R R R
Rz Rz Rz Rz Rz Rz Rz
R3 Fi3 R R R R R
R4 Fid Fid Fid Fid Fid Fid
RS RS RS RS RS RS RS
RE R RE R& R& R& R&
A7 R7 R7 R7 R7 R7 R7
RE R Rig RE Rg Rg \ RE fig
R R RY RY RY RY \ RY fig
R10 R10 R0 R0 R0 R10 \ R10_fig
A1 R R R R R \ R11_fig
R12 Ri2 Ri2 Ri2 Ri2 R12 \\ R12_fig
R13 A3 \ 13 _sve \ 13 _abt \ A13_und ’\ Ri13_ing \ R13_fig
14 Fild \ Fitd_sve \RM abt ';\Hm und "-\ Fild_ing \ R14._fig
PG PO PO PO PO PO PO
| CPSR CPSR CPSR CPSR CPSR CPSR CPSR
\SPSR e \ SPSR_abi \ SPSR_und \ SPSA_in \ SPSR fig

k indicales that the normal register used by User or System mode has
been replaced by an alemalive register speciic lo the exception mode

The Fault and Intrusion Tolerant NEtworked SystemS_-(FITN_EéS_) Research G-rou-p
http://www.dit.uniparthenope.it/FITNESS/

Registers

e The first 7 registers (RO-R7) are unbanked (physical
location shared among all the processor modes)

e Registers from R8 to R14 are banked (depending on the

specific processor mode they point to a specific physical
location)

— R8-R12 banked only for the FIQ mode (quick context
switch for executing high ISR)

— R13, R14 ed R15 normally used as Stack Pointer, Link
Register, and Program Counter

e A status register (CPSR) holds the condition code flags (N,

Z, C, V), two interrupt-disable bits, and five processor mode
bits

g% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
L http://www.dit.uniparthenope.it/FITNESS/

Status Register

0
15
General
purpose
registers
0
Program counter
0
.. Status
register

31
RO
R1
R14
31
R15 (PC)
31 30 29 28
CPSR
N—-Negative _ |
Z—7ero
C—Carry
V-Overflow
Y
Condition
code
flags

I— Processor mode bits

[nterrupt disable bits

[and F

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

e All modes are derived from a basic form of indexed
addressing

 The effective address of a memory operand is the sum of
the contents of a base register Rn7 and a signed offset

e The offset is either a 12-bit immediate value in the
Instruction or the contents of a second register R/m

e Examples of addressing modes can be shown by using the
Load instruction LDR, whose format is given in following
slide

e The store instruction STR has same format
e Both LDR and STR access a word location

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

LOAD Instruction Encoding

28 27 2019 16 15 12 11

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instruction Structure

Data pocessEng mmeadiale shifl

Miscallanaods. insinn hons:
Sea Fugure 3-3

Data processing register shift [2]

iz callaneous instructions:
Ses Fagurne 33

Mulliplies, exira hoadésionas:
Saas: Fhgume 3-2

Data processng immeadiale [2]

Undefined instructon [3]

Move mmediale 1o slakus register

Laosd siore immediale ofiset

Lol siore regisier olised

LI ruchefiresdl imesidm ne S

Undetnad inatruction [4,7]

Loadd stom mrulhpla

Undefinad instrocton [4]

Branch and beamdh wilh link

Branch and bramnch with ink
and ehange o Thumb [4]

Coprocessor loadfzions and doulble
regsier iransiens [§

Coprocessor data proces Sng
Coprocessor ragisier iransiars
Software intermupd

Undefinad instruction [4]

A0 30 29 28T 2E IF 282322220 9 18 1T IrE 818 302 00 10 9 a r B - E a =2 1 a
cd[1] [0 0 0| opeeds |5 Fin Fid ahift amourt | shift |0 Frm
cond [1] |0 O @ |1 o0 = = [0|x = = = x x x x x x ¥ x ¥ x x|0|x x x x
cond[1] [0 © 0| ocpcode |S o Rd Ra 0| shdt |1 Rm
S [1] D D)1 0 o x = |D|x® x ¥ x X X X x ¥ ¥ ¥ x|0|x =x[71]|x X x X
Loy b [1] DD D X X X X ¥ X ¥ X x X x x ¥ ¥ ¥ x|71|x =x|1|x X X X
cond[1] [0 O 1| opcode |5 Fn R rotate immediate
cond [1] [0 @ 11 Ofx |0 O] x = x x» x» ®x x ®x ¥ ¥ x® ¥ X X X X N X ¥ X
cond[1] [0 @ 1|1 o(R|1 O] Mask S8O rotate immeadiate
cond[1] [0 1 o|F(u|aWw|L Rn R immadiate
comd [1] [0 1 1|F|u|a|w|L Fin Fd shift amount | shift |0 Rm
cond [1] |@ 1 1 |x = x = x x x * x® x® x® x x ¥ x ¥ x x ¥ |1 |x m x x
1 1 1 Olx = = = = =® = ¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
cond[1] |1 o o|F|u|s|w|L i registar lis
1 1 1 1 0 D] ® ® ® ¥ ® ® ® ¥ X ¥ x % % ¥ ¥ ¥ ¥ ¥ x ¥ x ¥ ¥ X
comd [1] [1 @ 1]|L 24-bit offlsal
11 1 10 1]|H 24-pit offsad
cond[5] (1 1 o|F|u|N|w|L R CRd N 8-bit offaed
cond[5] (1 1 1 0| opoods CRn CifRd o _num (opoode | 0 CRm
cond[B] [1 1 1 0 |cpeoodet |L CRn Rd o num (opoode | 1 CRm
cond[1] [1 1 1 1 awi numibar

T = = = »x = »x X x x x »x »x X N X X x x x X ¥ X X

Addressing modes

e Pre-indexed mode:

LDR Ra, [Rn, #offset]
performs
Rd < [[Rn] + offset]

LDR Ra, [Rn, Rm]
performs
Rd « [[Rn] + [Rm]]

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Base register

T Offset register

200 = offset

1200 Operand —l—

1000

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

e Relative mode:
LDR Rd, ITEM
performs
Rd « [[PC] + offset]

where offset is calculated by the assembler

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Memory
address

1000 LDR RI,ITEM
1004

1008 —— updated [PC] = 1008

52 = offset

ITEM = 1060 Operand - .

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

e Pre-indexed with writeback (a generalization
of the autodecrement mode):

LDR Ra, [Rn, #offset]!
performs

Rd < [[Rn] + offset]
followed by

Rn <« [Rn] + offset

(Rm can be used instead of #offset)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

2012 R5

Base register (Stack pointer)

R{]

Push instruction:

2008

2012

after execution of
Push 1nstruction STR RO, [R5, #-4]!

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

e Post-indexed mode (a generalization of the
autoincrement mode):

LDR
performs
Rd «

followed by

R«

Rd, [Rn], #offset

[RA]

Rn] + offset

(Rm can be used instead of #offset)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Addressing modes

e |f the offset is given as the contents of Rm,
It can be shifted before being used

Example:

LDR RO, [R1, —R2, LSL #4]!

performs

RO «[[R1] — 16 x [R2]]
followed by

R1 « [R1] — 16 x [R2]

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

100 =

Memory
address

— 1000

25 x4

Y 1100

100 =

25 x4

Y 1200

Base register

Offset register

Load instruction:

LDR RI, [R2], R10, LSL #2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

ARM indexed addressing modes.

Name Assembler syntax Addressing function

With immediate offset:

Pre-indexed [Rn, #offset] EA = [Rn] + offset
Pre-indexed
with writeback [Rn, #offset]! EA = [Rn] + offset:
Rn < [Rn| + offset
Post-indexed [Rn], #offset EA = [Rn];

Rn < [Rn] + offset

With offset magnitude in Rm:
Pre-indexed [Rn, £ Rm, shift] EA = [Rn] £ [Rm] shifted

Pre-indexed
with writeback [Rn, == Rm, shift]! EA = [Rn] £ [Rm] shifted;
Rn < [Rn] &= [Rm] shifted

Post-indexed [Rn], &= Rm, shift EA = [Rn];
Rn < [Rn] &= [Rm] shifted
Relative Location EA = Location
(Pre-indexed with = [PC] + offset

immediate offset)

EA = effective address

offset = a signed number contained in the instruction

shift = direction #integer
where direction is LSL for left shift or LSR for right shift: and
integer is a 5-bit unsigned number specifying the shift amount

Tt +Rm = the offset magnitude in register Rm can be added to or subtracted from the

contents of base register Rn

IR S A A] LR R S I A NN LA T e g 4

COLDFIRE MEMORY AND
REGISTER STRUCTURE

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Memory Organization

e Byte-addressable, 32-bit address space
e Big-endian addressing scheme

e Longword (32-bit), word (16-bit),
and byte (8-bit) sizes for integer data

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Word
address Contents

o
z

> Longword 0

(byte O is the
high-order byte)

LN

f

> Longword i

(byte 1 1s the
high-order byte)

L

http://www.dit.uniparthenope.it/FITNESS/

Register Structure

e Eight data registers, DO to D7

e Eight address registers, A0 to A7,
and register A7 is the stack pointer (SP)

e Status register (SR) with condition codes

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Data Registers

______________ | Longword -
Longword I
e Word ——e1 | #=————— Word ——=|
| = Byte -=|
DOI3| 16|]5 8|7 ol |« Byte-.|
D1 | | I | 31 16 15 8 7 0
N
D2 | | | | DO I I
DJI | | I L Data
D4 I | | I registers
os T 1 DI | |
Ds | | I |
o I I D2 I I
A0 | |] \\
\
o | 1| D3 | |
" | I L Data
o | | [e registers
M | | D4 | |
\\
as| | | \
Abl | I \\“\ D5 I I
\
\
AT I | I Stack pointer \\\
. Dol |
PC I I Program counter \\
\
\\
1513 108 40 \
SR | | | | | | | | | | I Status register N D7 I I

T — Trace mode select mm— | L c_cun ‘
S — Supervisor mode select 4 |— V- OVE?HOW
M — Master/interrupt state - Zero

VA
I = Interrupt mask N — Negative
X - Extend

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Address Registers

Longword |

| #—— Word ——=|

| = Byte -=|

31 16 15 8 7 0
Do |

DI |

D2 |

D3 |

Data e A

registers -
7
-
-

D4 |

Ds |

D6 |

/”
-
- Al
.

A0 |

A2 |

At

a2

Address
registers

L Address A3 I

A3 I registers.

ad|

as|

A4 |

| |
| |
| |
| |
| |
| |
| |
07| |]
| |
| |
| |
| |
| I
| |
| |

A6 |

A7 I | I Stack puinl:l“ \\\\\ - AS I

pe I I Progrmeomnter s A6 I
1513 108 4 0 h |

SR Status register

T - Trace mode select) | L c_cy
S — Supervisor mode select 4 |— V- Oi:z'low
M — Master/interrupt state - Zero

VA
I = Interrupt mask N — Negative
X - Extend

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

SP and PC

Longword |

| #—— Word ——=|

| = Byte -=|

31 16 15 8 7 0

Data
registers

Address

registers //,/ A7 I I StﬂCk pOil‘lter

| |
| |
| |
| |
| |
| |
| |
07| | |
| |
| |
| |
| |
| I
| |
| |

a
%

-
-
%

PC I I Program counter

AT I | I S:nuk pointer

1513 108 4 0

SR Status register

T — Trace mode select mm— | L— ¢ -cam
S — Supervisor mode select 4 |— V- O\'er?;‘]ow
M — Master/interrupt state Z - Zero

I = Interrupt mask N — Negative
X - Extend

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Status Register

Longword |

| #—— Word ——=|

| = Byte -=|

31 1615 8 7 0

Data
registers

Address
registers.

| |
| |
| |
| |
| |
| |
| |
07| | |
| |
| |
| |
| |
| I
| |
| |

AT I | I Stack pointer

._.
h
J#

10 8 4 0
———————— SR Status register

513108 4 0 .- p—

s [TTTTTTTT TITIT] stacus regiser T - Trace mode select I) L—— ¢ - Can Y
s oholrace mode slect —— | ||‘— ¢-Camy S — Supervisor mode select ———— —— V — Overflow
M~ Masterfnterrup sate | G e M — Master/interrupt state —————— L — Zero

I = Interrupt mask N = Negati
I = Interrupt mask N — Negative
------------------- X — Extend

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

e One, two, or three consecutive words
e (OP-code word is first — it specifies operation

e Also provides some addressing information; one or two
extension words provide more

e Most arithmetic and data-transfer instructions have
source/destination operands:
OP src, dst

e L, W, or .B suffix for OP code specifies size

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Modi di Indirizzamento

e Register Direct * Indexed short
— Data-register Direct e Based
— Address-register Direct

e Immediate (or Literal) » Based Indexed

— Short
e Absolute Lon
— Short .g
_ Long e Relative
 Address-register e Relative Indexed
Indirect — Short
e Auto-Increment — Long
e Auto-Decrement
g% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

}h

Encoding for the MOVE Instruction

15 14 13121110 9 8 7 6 5 4 3 2 1 0
op size EA1(dest) EA2(source)

e the EA field is 6 bit long and is organized in two sub-fields (3 bit each)

11 10 9 8 7 6 5 4 3 2 1 O
reg mode mode reg
alcuni modi possibili:

mode | reg syntax EA name #He.w.
0 0-7 Dn Dn Data-register direct 0

1 0-7 An An Address-register direct 0

2 0-7 (An) MEMI[AnN] Address-register indirect |0

7 0 addr MEM[addr] Absolute short 1

7 4 #data data Immediate lo 2

« all the addressing modes can be used for both sourse and destination (with the exception of the
immediate for the destination)

e The MOVE instruction is full ortogonal (ortogonal ISA == all the instruction are ortogonal)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Addressing Mode encoding

e EA Is encoded over 6 bits in the first word of the instruction
(opcode word)

e The MOVE instruction has two of such a filed (one for each
operand)

e Some addressing modes need more information given in
additional words (extension words)

11 10 9 8 7 6 5 4 3 2 1 0

reg mode mode reg

Destination operand EA field for all the other
MOVE cases

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Register Direct Addressing

The instruction refers a

?_‘/data register

MOVE.B (DO,D1 (same for address reg.)

Source: data register DO

ﬂ‘ 25 ‘DC
| | o1

The MOVE.B DO0,D1 instruction has data registers for both
source and destination

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Direct Addressing

MOVE.B DO/

25 DC

25 D1

The final result is that DO content Is
copied to D1

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Register Direct Addressing

» No access to external memory: fast
» One word only instructions (only 6 bits per operand)

» Mode =0, reg = 0-7 per Dn
» Mode =1, reg = 0-7 per An

» Used to store frequently used variable (scratchpad storage)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Immediate Addressing

» The real operand is made available as part of the instruction
» Only used for sourse operand

» The symbol # used ahead of the value

» The immediate operand is also said «literal»

MOVE.BDO MOVE.BDO

\ \
K_. DC \\—>@) DC

The MOVE.B #4,D0 has a literal as source operand and
makes use of register direct for destination

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

ImmediateAddressing - Encoding

» May use extension words for the operand
»Mode =7,reg=4

opcode

opcode

ﬁ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Faudh anclimirusion Talgran Nhamrhed Sysiers

Absolute Addressing (or Direct Addressing)

e The instruction refers a memory address that contains the actual operand
e TwoO memory accesses:

— Instruction fetch

— Operand assembly

Memory
MOVEDO
0 42
42 DC
E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Absolute Addressing - Codifica

Absolute Long: Absolute Short:
mode = 7, reg =1 mode = 7, reg = 0

opcode

0 or sign-extend

opcode

Memory Memory

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example for basic modes

Lets consider the high level statement
Z=Y + 24

It can be performed by the following assembly program

ORG $400 code section
MOVE.B Y,DO
ADD #24,DO
MOVE.B DO0,Z
ORG $600 data section
Y DC.B 27 store a constant
Z DSB 1 reserve a byte for Z

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembled code

1 00000400 ORG $400

2 00000400 103900000600 MOVE.B Y,DO
3 00000406 06000018 ADD.B #24,D0
4 0000040A 13C000000601 MOVE.B DO0,Z
5 00000410 4E722700 STOP #3$2700
6 *

7 00000600 ORG $600

8 00000600 1B Y: DC.B 27

9 00000601 00000001 Z. DSB 1

10 00000400 END $400

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Address Register Indirect Addressing

« The EA is the content of the specified address register

|

AO Iﬂ)VE.B (A0),DO

DC

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Address Register Indirect Addressing -

Encoding
 mode =2; reg = 0-7
Registers
OPCODE | R 1
——1 Indirect address _|R
.

Memory

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Auto-increment

- As address indirect but the after the instruction the content of the
address Is updated by increasing its value according to the data
size

- Example:

- MOVE.W (A7)+, DO Pop to DO from A7 stack

- Encoding

- mode =3, reg =0-7

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Auto-decrement

- As address indirect but before the instruction the content of the

address Is updated by decreasing its value according to the data
size

- Example:
- MOVE.W DO0,-(A7) Push of DO to A7 stack

- Encoding
- mode =4, reg = 0-7

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
& http://www.dit.uniparthenope.it/FITNESS/

Example

* File: autoinc.a68 — Sum up consecutive numbers

ORG $8000
MOVE.B #5,DO0
LEA Table,AO0 AO points the list
CLR.B D1 clear the accumulator
Loop ADD.B (A0)+,D1 add up next element
SsuB.B #1,DO
BNE Loop
ORG $8100
Table DC.B 1,2,3,4,5 Sample vector

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Indexed

e In generale, I'lndexed Addressing combina due componenti mediante
somma, per formare 'EA

— 1l primo componente e detto base address ed e specificato come parte
dell'istruzione (come nell’absolute addressing)

— 1l secondo componente e detto /ndex register e contiene il valore da
sommare al base address per ottener 'EA
« E adatto per accedere ai valori di array e di tabelle

e |l processore MC68000 non supporta esplicitamente I'lndexed
Addressing. Tuttavia, e possibile usare I'lndexed Short Addressing nei
(32+32)Kbyte agli estremi dei 4GB dello spazio di memoria

e Esempio:
MOVEA.W I,AO
MOVE.B CLIST-1(A0O),D1 Leggi clist[i]
!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Indexed Short Addressing - Codifica

e mode =5, reg = 0-7

Address Registers

opcode

R

| { Sgnedofiet |-

sign-extend

e

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Based Addressing

e Based Addressing e esattamente I'inverso dell’Indexed
Addressing, in quanto combina due componenti mediante
somma, per formare 'EA, ma:

— Il primo componente e detto displacement ed e
specificato come parte dell’istruzione (come
nell’absolute addressing)

— Il secondo componente e detto base address ed e
contenuto in un registro

 E adatto per accedere ai valori di array e di tabelle di cui
siconosca la posizione relativa ad assembly time, ma non
guella iniziale

e || processore MC68000 supporta il Based Addressing come
I'Indexed

g% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

Based Addressing - Codifica

e mode =5, reg = 0-7

Address Registers

opcode

R

 dopement | { Base Address |-

sign-extend

| depoment (")

Memory

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Based Indexed

e Based Indexed Addressing: EA given by the sum of two components:
— base address
— displacement

e Useful for array and tables

e Coldfire (MC68000) supports both Short Based Indexed and Long
Based Indexed

e Encoding: Opcode Word

— mode = 6, reg = 0-7 RB -

Registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Relative Addressing

(Relative to the PC)
The EA is given by adding the displacement to the PC value

Often small displacements, 8 or 16 bits, to point to an instruction next
to the current one (instead of absolute 32 bits addresses)

Encoding opcode

T mode=r.reg =2 —-j
Memory

opcode

‘ Memory

N — O — e

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Relative Indexed Addressing

e Similar to the Based Indexed but the base register is substituted by PC
e Encoding PC

- mode =7, reg = 3 | veseaddess |

Opcode Word

s —
. O Es

F

A 4

NOT USED

Address/Data Registers

ﬁ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Processor Structure

Tabella A2.1 Memoria e registri nei processori NIOS Il, ColdFire, ARM e |A-32

Caratteristica NIOS I ColdFire ARM IA-32

Architettura RISC CISC RISC CISC

Lunghezza di parola 32 bit 16 hit 32 bit 32 bit

Lunghezza d'istruzione 1 parola 1--3 parole 1 parola 112 byte

Spazio degli indirizzi 232 byte 232 pyte 232 pyte 232 pyte

Lunghezze di dati (byte) 1,24 1,24 1,24 1,24,8,16

Ordinamento dei byte decresc. Crescente opzione decresc.

Reqgistri r0-r31 AD-A7,PC, DO-D7,SR RO-R15, CPSR siveda Caso di Studio C2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Tabella A2.2 Modi di indirizzamento e relativa notazione simbolica nelle ISA NIOS II,
ColdFire, ARM e |A-32

|

Modo di indirizzamento NIOS Il ColdFire ARM IA-32

Immediato Walore #Valore #Val Walore

Assoluto o diretto LOC(r0) Valore Wal LOC

Di registro ri Ri Ri R

Indiretto di registro {ri) (A [Ri] [R]

Con base e spiazzamento K WIAD [Ri#\al] [R+X]

Con indice e spiazz. [R,*S+X]

Con base e indice [Ri,4Ry,5] [R+R,*5]

Con base, indice e spiazz. B(ALRS [R+R,*5+X]

Con autoincremento (AN+

Con autodecremento —(AJ)

Relativo a PC WIPC) L L

Relativo a PC con indice B(PC R

Indiretto da memaria *LOC oppure [R,*S5+X]

Con pre-base e spiazz. [Ri #val]l

Con post-base e spiazz. [Ri],#Val

Con pre-base e indice [R/ 4Ry, s]!

Caon post-base e indice [Ril,£=Rj.s

|

Legenda:

Valore numero con segno (a 16 bit in NIOS II, a 8 0 32 bit in 1A-32) rappresentato esplicitamente o da etichetia;

Val numero rappresentato in valore assoluto e segno a 9 bit nel modo immediato, a 13 bit nei modi assoluto e con
spiazzamento;

LOC indirizzo assoluto (@ 16 bit in NIOS 1I, 3 32 bit in 1A-32);

R, R, uno degli otto registri generali 14-32, ma non si pud usare il registro ESP (puntatore alla pila) come registro indice
R, Ri, Rj, I5A ColdFire: registro Ai o Df (rispettivamente &f o Djfj;

X spiazzamento: numero con segno (3 16 bit in MIOS 1, a 8 0 32 bitin 14-32, ma solo a 32 bit nel modo con indice
e spiazzamenta);

5 fattore di scala (14-32). 1, 2, 4 0 8;

5 scorrimento logico (ARM): ds #vs dove ds = {LSL, LSR}: direzione dello scorrimento e vs: valore dello scorrimento
(numero a 5 bit);

W Valore 3 16 bit;

B Valore a 8 bit;

L Etichetta.

Instructions and Sequencing

e Instructions for a computer must support:
— data transfers to and from the memory
— arithmetic and logic operations on data
— program sequencing and control
— Input/output transfers
e First consider data transfer & arithmetic/logic
e Control and input/output examined later
e Introduce notation to facilitate discussion

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

RISC and CISC Instruction Sets

e Nature of instructions distinguishes computer
e Two fundamentally different approaches

e Reduced Instruction Set Computers (RISC) have one-word
Instructions and
require arithmetic operands to be in registers

e Complex Instruction Set Computers (CISC)
have multi-word instructions and
allow operands directly from memory

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

RISC Instruction Sets

e Focus on RISC first because it is simpler
e RISC instructions each occupy a single word
e A load/store architecture is used, meaning:

— only Load and Store instructions are used to access
memory operands

— operands for arithmetic/logic instructions must be in
registers, or one of them may be given explicitly in
Instruction word

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

RISC Instruction Sets

e Instructions/data are stored in the memory
e Processor register contents are initially invalid

e Because RISC requires register operands, data transfers are
required before arithmetic

e The Load instruction is used for this purpose:
Load procr register, mem location

e Addressing mode specifies memory location; different
modes are discussed later

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

RISC Instruction Sets

e Consider high-level language statement:
C=A+B
e A, B, and C correspond to memory locations
e RTN specification with these symbolic names:
C « [A] + [B]
e Steps: fetch contents of locations A and B,
compute sum, and transfer result to location C

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

RISC Instruction Sets

e Sequence of simple RISC instructions for task:

Load R2, A
Load R3, B
Add R4, R2, R3
Store R4, C

e Load instruction transfers data to register
e Store instruction transfers data to the memory
e Destination differs with same operand order

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

A Program in the Memory

e Consider the preceding 4-instruction program

e How is it stored in the memory?
(32-bit word length, byte-addressable)

e Place first RISC instruction word at address /
e Remaining instructions areat /+ 4, /+ 8, /+ 12

e For now, assume that Load/Store instructions specify
desired operand address directly;
this issue is discussed in detail later

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Address Contents

Begin execution here —= | Load R2, A
i+4 Load R3,B 4-instruction
> program
i+ 8 Add R4,R2,R3 segment
i+ 12 Store R4,C
A - -—
the program
I N

nup:-77vwww.ait.uniparuenope.iv el i Ne>>/

Instruction Execution/Sequencing

e How is the program executed?
e Processor has program counter (PC) register
e Address /for first instruction placed in PC

e Control circuits fetch and execute instructions, one after
another — straight-line sequencing

e During execution of each instruction, PC register is
Incremented by 4

e PC contents are 7+ 16 after Store Is executed

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Detalls of Instruction Execution

e Two-phase procedure: fetch and execute
e Fetch involves Read operation using PC value
e Data placed in procr. instruction register (IR)

e To complete execution, control circuits
examine encoded machine instruction in IR

e Specified operation is performed in steps,
e.g., transfer operands, perform arithmetic

e Also, PC is incremented, ready for next fetch

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Branching

e \We can illustrate the concept of branching with a program
that adds a list of numbers

e Same operations performed repeatedly,
so the program contains a loop

e Loop body is straight-line instruction sequence

e |t must determine address of next number,
load value from the memory, and add to sum

e Branch instruction causes repetition of body

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

[Load R2, N

Clear R3

LOOP Determine address of

"Next" number, load the
"Next" number into RS,

Program < and add it to R3
loop

Subtract R2, R2, #1

Branch_if [R2]>0 LOOP

Store R3, SUM

http://www.dit.uniparthenope.it/FITNESS/

Branching

e Assume that size of list, n, stored at location N
e Use register R2 as a counter, initialized from N

e Body of loop includes the instruction
Subtract R2, R2, #1
to decrement counter in each loop pass

e Branch_if [R2]>0 goes to branch target LOOP
as long as contents of R2 are greater than zero

e Therefore, this is a conditional branch

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Branching

e Branches that test a condition are used in loops and various
other programming tasks

e One way to implement conditional branches
IS to compare contents of two registers, e.g.,
Branch_if [R4]>[R5] LOOP

e In generic assembly language with mnemonics the same
Instruction might actually appear as
BGT R4, R5, LOOP

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Generating Memory Addresses

e Loop must obtain next number in each pass

e |Load instruction cannot contain full address since address
size (32 bits) = instruction size

e Also, Load instruction itself would have to be modified In
each pass to change address

e Instead, use register R/ for address location
e An example of addressing modes (next topic)
e [nitialize to NUM1, increment by 4 inside loop

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Assembly Language

e Mnemonics (LD/ADD instead of Load/Add) used when
programming specific computers

e The mnemonics represent the OP codes

e Assembly language is the set of mnemonics and rules for
using them to write programs

e The rules constitute the language syntax

e Example: suffix ‘I' to specify immediate mode
ADDI R2,R3,5 (instead of #5)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Assembler Directives

e Other information also needed to translate source program
to object program

e How should symbolic names be interpreted?

e Where should instructions/data be placed?

e Assembler directives provide this information

e ORIGIN defines instruction/data start position
e RESERVE and DATAWORD define data storage
e EQU associates a hame with a constant value

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Memory Addressing
address or data
label Operation information
Assembler directive ORIGIN 100
Statements that LD R2, N
generate CLR R3
machine MOV R4, #NUM
instructions LOOP: LD RS, (R4)
ADD R3, R3, RS
ADD R4, R4, #4
SUB R2, R2, #1]
BGT R2, RO, LOOP
ST R3, SUM
next instruction
Assembler directives ORIGIN 200
SUM: RESERVE 4
N: DATAWORD 150
NUMI1: RESERVE 600
END

http://www.dit.uniparthenope.it/FITNESS/

Tabella A2.4 Direttive di assemblatore GAS, NIOS ll, ColdFire, ARM e MASM
I ———
GAS NIOS Il ColdFire ARM MASM
.org .org .org ORG
equ|= equ equ|= EQU|= EQU|=
space].skip skip space|ds.t SPACE Dt n DUP(v)
byte byte byte|dc.b DCB DB
short|.hword|.word ‘hword short/dc.w DCWa DW
longl.int|.word .word longldc.| DCDa DD
.quad DCQa DQ
.ascii .ascii .ascii DCB
.asciz|.string .asciz .asciz DCB "s",0
.data .data .data AREA s DATA .DATA
dext fext text AREA s CODE .CODE

entry ENTRY

extequ TEXTEQU
.req RN
title TTL TITLE
.end .end END END e
I ———
Legenda:
t suffisso del codice mnemonico: tipo (dimensione) di ciascun elemento ColdFire: t € {b,w,I}; MASM: t € {B,W,D,Q};
n numero di elementi;
v valore iniziale di ogni elemento, “?" se dati non inizializzati;
a suffisso del codice mnemonico: nessun allineamento se a = U, altrimenti a, assente e allineamento a indirizzo pari se

DCW, multiplo di 4 se DCD o DCQ;

s stringa di caratteri ASCII (nella direttiva AREA: nome del segmento);
e etichetta (opzionale): indirizzo di inizio dell’esecuzione del programma.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Program Assembly & Execution

e From source program, assembler generates machine-
language object program

e Assembler uses ORIGIN and other directives
to determine address locations for code/data

e For branches, assembler computes zoffset
from present address (in PC) to branch target

e Loader places object program in memory
e Debugger can be used to trace execution

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Number Notation

e Decimal numbers used as immediate values:
ADDI R2, R3, 93

e Assembler translates to binary representation

e Programmer may also specify binary numbers:
ADDI R2, R3, %01011101

e Hexadecimal specification is also possible:
ADDI R2, R3, 0x5D

e Note that 93 = 1011101, = 5D,

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Logic Instructions

e AND, OR, and NOT operations on single bits
are basic building blocks of digital circuits

e Similar operations in software on multiple bits

e Using RISC-style instructions, all operands are
In registers or specified as immediate values:
Or R4, R2, R3
And R5, R6, #0xFF

e 16-bit immediate is zero-extended to 32 bits

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
& http://www.dit.uniparthenope.it/FITNESS/

Shift and Rotate Instructions

e Shifting binary value left/right = mult/div by 2
e Arithmetic shift preserves sign in MS bit

e Rotate copies bits from one end to other end
e Shift amount in register or given as immediate
e Carry flag (discussed later) may be involved

e Examples:
LShiftLR3, R3, #2 (mult by 4)
RotateL R3, R3, #2 (MS bits to LS bits)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

before:O\ |01110---011|
after:l\ ‘110---01100\

(a) Logical shift left LShiftL R3, R3, #2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

before:

after:

-] [=]
-
-
-

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example Program: Digit Packing

e [lllustrate shift, logic, byte-access instructions
e Memory has two binary-coded decimal digits

e Pointer set to 15t byte for index-mode access to load 1%t
digit, which is shifted to upper bits

e Upper bits of 2nd digit are cleared by ANDing

e ORing combines 2Md digit with shifted 1st digit for result of
two packed digits in a single byte

e 32-bit registers, but only 8 lowest bits relevant

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Move
LLoadByte
LShiftL
Add
LoadByte
And

Or
StoreByte

R2, #L.OC R2 points to data.

R3, (R2) Load first byte into R3.

R3, R3, #4 Shift left by 4 bit positions.
R2, R2, #1 Increment the pointer.

R4, (R2) Load second byte into R4.

R4, R4, #0xF Clear high-order bits to zero.
R3,R3, R4 Concatenate the BCD digits.
R3, PACKED Store the result.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Multiplication and Division

e Signed integer multiplication of n-bit numbers produces a
product with as many as 21 bits

e Processor truncates product to fit in a register:
Multiply Rk, RiLRf (Rk<« [R] x [R)])
e For general case, 2 registers may hold result

e [Integer division produces quotient as result:
Divide Rk, R/, Rf (Rk<« [R]/ [R)])

e Remainder is discarded or placed in a register

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

32-bit Immediate Values

e To construct 32-bit immediates or addresses, use two
Instructions in sequence:
OrHigh R2, RO, #0x2000
Or R2, RO, #0x4FFO

e Result is 0x20004FFO0 in register R2

e Useful pseudoinstruction:
MovelmmediateAddress R2, LOC

e Assembler can substitute OrHigh & Or

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

CISC Instruction Sets

e Not constrained to load/store architecture
e |Instructions may be larger than one word

e Typically use two-operand instruction format, with at least
one operand in a register

e Implementation of C = A + B using CISC:
Move R/ A
Add R/, B
Move C, R/

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

CISC Instruction Sets

e Move instruction equivalent to Load/Store

e But also can transfer immediate values
and possibly between two memory locations

e Arithmetic instructions may employ
addressing modes for operands in memory:
Subtract LOC, R/
Add R/, 16(RA)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Additional Addressing Modes

e Autodecrement mode: before accessing operand, register
contents are decremented, then new contents provide
effective address

e Notation in assembly language:

Add R/, —(R)
e Use autoinc. & autodec. for stack operations:

Move —(SP), NEWITEM (push)
Move ITEM, (SP)+ (pop)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
& http://www.dit.uniparthenope.it/FITNESS/

Condition Codes

e Processor can maintain information on results to affect
subsequent conditional branches

e Results from arithmetic/comparison & Move

e Condition code flags in a status register:
N (negative) 1 if result negative, else O
Z (zero) 1 if result zero, else O
V (overflow) 1 if overflow occurs, else O

C (carry) 1 if carry-out occurs, else 0O
% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Branches using Condition Codes

e CISC branches check condition code flags

 For example, decrementing a register causes N and Z flags
to be cleared if result is not zero

e A branch to check logic condition N + Z = O:
Branch>0 LOOP

e Other branches test conditions for <, =, #, <, >
e Also Branch_if overflow and Branch_if carry
e Consider CISC-style list-summing program

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Sum of the Elements Iin an Array

Move R2, N Load the size of the list.

Clear R3 Initialize sum to 0.

Move R4, #NUMI1 Load address of the first number.
LOOP: Add R3, (R4)+ Add the next number to sum.

Subtract R2, #1 Decrement the counter.

Branch>0 LOOP Loop back if not finished.

Move SUM, R3 Store the final sum.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

RISC and CISC Styles

e RISC characteristics include:
simple addressing modes
all instructions fitting in a single word
fewer total instructions
arithmetic/logic operations on registers
load/store architecture for data transfers
more instructions executed per program

e Simpler instructions make it easier to
design faster hardware (e.g., use of pipelining)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

Jk

RISC and CISC Styles

e CISC characteristics include:
more complex addressing modes
Instructions spanning more than one word
more instructions for complex tasks
arithmetic/logic operations on memory
memory-to-memory data transfers
fewer instructions executed per program

e Complexity makes it somewhat more difficult to design fast
hardware, but still possible

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

ARM INSTRUCTIONS

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

e Load and Store:

LDR and STR for words

LDRH and STRH for half words (zero-extended on a
Load)

LDRB and STRB for bytes (zero-extended on a Load)

LDRSH and LDRSB are used for sign-extended Loads
(Half words and bytes are positioned at the
low-order end of a register)

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Multiple-word Load and Store:
Any subset of the processor registers can be loaded or

stored with the Block Transfer instructions LDM and
STM

Example: LDMIA R10!, [RO, R1, R6, R7]

If [R10] = 1000, words at 1000, 1004, 1008, and 1012 are

loaded into the registers, and R10 contains 1016 after
all transfers

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Arithmetic:
Assembly language format is
OP Rd, Rn, Rm or #offset

ADD RO, R2, R4
performs
RO « [R2] + [R4]

SUB RO, R3, #17
performs
RO « [R3] — 17

(immediates are unsigned values in the range 0 to 255)

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Arithmetic: The second source operand can be shifted or

rotated before being used
ADD RO, R1, R5, LSL #4

performs
RO « [R1] + 16 x [R5]

Shifts and rotations available:
LSL Logical shift left
LSR Logical shift right
ASR Arithmetic shift right
ROR Rotate right

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Shifting/rotation of the second source operand Iin
arithmetic instructions:

The last bit shifted (or rotated) out is written into the C flag

A second rotation operation, labelled RRX (Rotate right
extended), includes the C flag in the bits being rotated,;
only rotates by 1 bit

(If the second source operand is an immediate value, a
limited form of rotation is provided)

g% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Instructions

e Arithmetic:

MUL RO, R1, R2
performs
RO « [R1] x [R2]

The low-order 32 bits of the 64-bit product are written into
RO

For 2's-complement numbers, the value in RO is correct if
the product fits into 32 bits

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Arithmetic:

MLA RO, R4, R5, R6
performs
RO <« ([R4] x [R5]) + [R6]

This Multiply-Accumulate instruction is useful in signal-
processing applications

Other versions of MUL and MLA generate 64-bit products

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Instructions

e Move:
MOV Rd, Rm
performs
Rd < [Rm]
MOV Rd, #value
performs
Rd « value

(The second operand can be shifted/rotated)

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Instructions

e Move:
MVN Rd, Rm or #value

loads the bit-complement of [R/m] or value
into Rd

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

e Implementing Shift and Rotate instructions:
MOV R/ Ry, LSL #4

achieves the same result as the generic
Instruction:

LShiftL R/ Rj, #4

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

e Logic:
AND Rd, Rn, Rm
performs the bit-wise logical AND of the operands In
registers Rn and R/m and writes the result into register

Rd

ORR (bit-wise logical OR)
EOR (bit-wise logical XOR)

are also provided

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Logic:
The Bit Clear instruction, BIC, is closely related to the AND

Instruction
The bits of R/m are complemented before they are ANDed

with the bits of Rn

If RO contains the hexadecimal pattern 02FA62CA, and R1
contains O0O0O0OFFFF,
BIC RO, RO, R1

results in 02FA0000 being written into RO

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Instructions

e Test:

TST Rn, Rmor #value
performs bit-wise logical AND of the two operands, then
sets condition code flags

TST R3, #1
sets Z =1 if low-order bit of R31s 0
sets Z = 0 if low-order bit of R3is 1

(useful for checking status bits in 1/0 devices)

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Test:

TEQ Rn, Rmor #value
performs bit-wise logical XOR of the two operands, then
sets condition code flags

TEQ R2,#5
sets Z =1 if R2 contains 5
sets Z =0 otherwise

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Instructions

e Compare:
CMP Rn,Rm
performs
[RA] — [Rm]

and updates condition code flags based on the result

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

e Setting condition code flags

CMP, TST, and TEQ, always update the condition code
flags

Arithmetic, Logic, and Move instructions do so only if S
IS appended to the OP code

ADDS updates flags, but ADD does not

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Instructions

e Adding 64-bit operands

ADC RO, R1, R2 (Add with carry)
performs RO « [R1] + [R2] + [C]

If pairs R3,R2 and R5,R4 hold 64-bit operands,
ADDS R6, R2, R4
ADC R7, R3, R5

writes their sum into register pair R7,R6

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Instructions

e Branch:
B{condition} LOCATION

branches to LOCATION if the settings of the
condition code flags satisfy {condition}

BEQ LOCATION
branches if Z =1

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

1000 BEQ LOCATION
1004

updated [PC] = 1008

:

Offset = 92

_L LOCATION = 1100 Branch target instruction

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Condition field encoding in ARM instructions.

Condition Condition Name Condition

field suffix code

by ... byg test

0000 EQ Equal (zero) Z=

0001 NE Not equal (nonzero) =0

0010 CS/HS Carry set/Unsigned higher or same C=1

0011 CC/LO Carry clear/Unsigned lower C=0

0100 MI Minus (negative) N=1

0101 PL Plus (positive or zero) N=0

0110 VS Overflow V=1

0111 VC No overflow V=0

1000 HI Unsigned higher CvZ=0
1001 LS Unsigned lower or same CVvZ=
1010 GE Signed greater than or equal NV =
1011 LT Signed less than NV =1

1 100 GT Signed greater than ZvV(NeV)=0
1101 LE Signed less than or equal ZvV(NeV)=1
1110 AL Always

1111 not used

http://www.dit.uniparthenope.it/FITNESS/

Program

e An assembly-language program for adding numbers
stored in the memory is shown
In the next slide

The instruction
LDR R2, =NUM1

IS a pseudoinstruction that loads the 32-bit
address value NUM1 into R2

It is implemented using actual instructions

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
& http://www.dit.uniparthenope.it/FITNESS/

Sum the Elements in an Array

LDR RI1. N [Load count into R1.
LDR R2. =NUMI1 Load address NUMI into R2.
MOV RO, #0 Clear accumulator RO.

LOOP LDR R3,[R2]. #4 Load next number into R3.
ADD RO, RO, R3 Add number 1nto RO.
SUBS RI.RI, #1 Decrement loop counter R1.
BGT LOOP Branch back 1f not done.
STR RO, SUM Store sum.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly language

e An assembly language program for adding
numbers is given in the next slide

e Comments:

1. The AREA directive specifies the start of
Instruction (CODE) and data (DATA) areas

2. The ENTRY directive specifies the start
point for program execution

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
& http://www.dit.uniparthenope.it/FITNESS/

Memory Addressing
address or data
label Operation information
Assembler directives AREA CODE
ENTRY
Statements that LDR R1,N
generate LDR R2, POINTER
machine MOV RO, #0
instructions LOOP LDR R3. [R2]. #4
ADD RO, RO, R3
SUBS R1, R1, #1
BGT LOOP
STR RO, SUM
Assembler directives AREA DATA
SUM DCD 0
N DCD 5
POINTER. DCD NUMI
NUMI DCD 3, 17,27, -12, 322
END

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Assembly language

e Comments (continued)

3. The combination of the instruction
LDR R2, POINTER
and the data declaration
POINTER DCD NUM1

Implements the pseudoinstruction
LDR R2, =NUM1

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pseudoinstructions

e Operations specified by pseudoinstructions
are implemented with actual machine
iInstructions by the assembler

e Example: An immediate is an 8-bit unsigned value
The pseudoinstruction
MOV RO, #-5
IS Implemented with the actual instruction
MVN RO, #4
(the bit-complement of 4 = 00000100
-5=11111011)

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Pseudoinstructions

e Loading 32-bit values:

The pseudoinstruction
LDR Rd, =value
loads a 32-bit value into Rd

LDR R3, =127
IS Implemented with
MOV R3, #127

(used for “short” values)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pseudoinstructions

e Loading 32-bit values:

LDR R3, =&A123B456
IS Implemented with
LDR R3, MEMLOC (instruction)
MEMLOC DCD &A123B456 (data)

(used for “long” values, including addresses)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Pseudoinstructions

e Loading 32-bit address label values:
If the address Is “close” to the current value
of the program counter (R15), the ADR
pseudoinstruction can be used

ADR Rd, LOCATION

IS Implemented with
ADD Rd, R15, #offset, or
SUB Rd, R15, #offset

(offset Is calculated by the assembler)

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Esempio di programma ARM

Si consideri il seguente codice (Algoritmo di Euclide per il
Massimo Comun Divisore):

function gcd (integer a, integer b): result is integer
while (a<>b) do
If (a > b) then
a=a-b
else
b=b-a
endif
endwhile
result = a

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Assembly ARM

gcd
CMP r0O,r1
BEQ end
BLT less
SUB r0,rO,r1
BAL gcd
less
SUB rl1,r1,r0
BAL gcd
end

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Conditional Execution

Almost every ARM instruction can be executed conditionally on the
state of the ALU status flags

The instructions that can be conditional have an optional condition code

31 28 27 2019 16 15 12 11 0

Condition OP code Rn Rd Offset or Rm

The conditioned instruction is only executed if the condition code flags
meet the specified condition

Example:
ADD r0, r1,r2 ;r0=rl+r2, don't update flags
ADDS r0O, r1,r2 ; rO =rl1 + r2, and update flags

ADDSCS 0, r1, r2 ; If C flag set then rO =rl1 + r2, and
; update flags

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Assembly ARM with conditioned instructions

Same algorithm as before

gcd
CMP rO,rl
SUBGT r0,rO,rl1
SUBLT r1,r1,rO
BNE gcd

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Conditional Vs Non Conditional

Cycles Cycles
Instruct
-- nstruction (ARM7) Instruction (ARM7)

SulP 1T, [CMP 10, r1
1 (not
1 2 BEQ end executed) 1 2 SUBGT r0,r0,r1 o
executed)
1 2 BLT less 3
1 1 SUBLT r1,r1,r0 1
1 2 SUB 1, r1, r0 1
1 1 BNE gcd 3
1 2 B gcd 3
1 1 CMP r0,r1 1
1 1 CMP 10O, rl1 1
R) SUBGT r0,r0,r1 - (et
1 1 BEQ end 3 executed)
1 (not
Total = 13 1 1 SUBLT r1,r1,rO0 ST
1 (not
! 1 BNE ged executed)
Total = 10

case where r0 equals 1 and rl1 equals 2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Condition Code Suffixes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set glgh)er or same (unsigned
CCor LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or 7 set |;0:V\)/er or same (unsigned
GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is

normally omitted.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

COLDFIRE INSTRUCTIONS

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

e One, two, or three consecutive words
e (OP-code word is first — it specifies operation

e Also provides some addressing information; one or two
extension words provide more

e Most arithmetic and data-transfer instructions have
source/destination operands:
OP src, dst

e L, W, or .B suffix for OP code specifies size

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

MOVE Instruction

e Used to perform transfers between memory, 1/0 interfaces,
and registers

e Value being transferred affects N and Z flags
In status register

e Byte, word, and longword sizes are permitted
e All addressing modes valid for source operand
e Some modes not permitted for destination
e Some source/dest. mode pairings not valid

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Address Contents

I OP-code word
[+ 2 002A Upper 16 bits of immediate value

[+ 4 4C80 Lower 16 bits of immediate value

[+ 6

The instruction MOVE.L #$2A4C80 in memory.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Arithmetic Instructions

e Most permit only longword size,
and most require at least one register operand

e Addition, subtraction, comparison, negation:
ADD.L, SUB.L, CMP.L, NEG.L

e ADDI.L, ADDQ.L for immediate operands

e ADDA.L, SUBA.L, CMPA.L for address registers
e Arithmetic operations affect condition codes

e ADDX.L, SUBX.L, NEGX.L for numbers > 32 bits

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

MOVE.L #$A72CI0F8, D2 D2 contains A72C10FS.

MOVE.L #$10, D3 D3 contains 10.

MOVE.L #3$5CO0FE04, D4 D4 contains SCOOFE04.

MOVE.L #$%4A., D5 D5 contains 4A.

ADD.L D2, D4 Add low-order 32 bits; carry-out sets X and C flags.
ADDX.L D3, D5 Add high-order bits with X flag as carry-in bit.

Program to add numbers larger than 32 bits using the ADDX instruction.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Multiplication and Division

e Signed/unsigned multiply of 16-bit numbers,
or 32-bit numbers (where result is truncated)

e N and Z flags affected; V and C flags cleared

e Signed/unsigned division where divisor is either 16 or 32
bits (dividend is always 32 bits)

e For 16-bit divisor, remainder placed in register, but for 32-
bit divisor, remainder is discarded

e Special instruction gives remainder separately

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

MOVE.W #SFFFF, D2 The low-order word of D2 is treated as —1.
MOVE.W #50001, D3 The low-order word of D3 contains 1.
MULS.W D2, D3 The signed longword result in D3 1s —1

or SFFFFFFFF, hence the N flag is set.

(a) Signed computation of -1 x 1 = —1

MOVE. W #$FFFF, D2 The low-order word of D2 is treated as 65535.

MOVE.W #$0001, D3 The low-order word of D3 contains 1.

MULU.W D2, D3 The unsigned longword result in D3 1s 65535
or SOO00OFFFF, hence the N flag is cleared.

(b) Unsigned computation of 65535 x 1 = 65535

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Branch and Jump Instructions

e Conditional branches test combinations of condition code
flags; e.g., BEQ checks if Z=1

e BRA is unconditional branch

e Target address for branch computed by
adding signed offset to program counter value

e Offset is part of branch instruction encoding
e May be 8, 16, or 32 bits in size

e Unconditional JMP instruction can specify target address
with an addressing modes

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Condition

The

suffix

cc Name Test condition
HI High CvZ=0

LS Low or same CvzZ=1

CC Carry clear C=0

CS Carry set C=1

NE Not equal Z=0

EQ Equal =

VC Overflow clear V=0

VS Overflow set V=l

PL Plus N=0

MI Minus N=1

GE Greater or equal NeV=0

LT Less than NpV=

GT Greater than ZVINDV)=0
LE Less or equal ZVINPV)=1

15 8 7 0

| OP code | Offset |

Branch address = [updated PC] + offset

(a) Short-offset branch instruction format

LOOP 1000 OP-code word <— LOOP: ADD.L (A2)+, DO

1002 OP-code word <«———— SUBQ.L #1,DlI
1004 6 | =—— BGT LOOP
1006
N . , . y ,
Appearance of loop in memory Assembly language

version of loop

[PC] = 1006 when branch address is computed
Branch address = 1006 — 6 = 1000

(b) Example of using a branch instruction

MOVEA.LL #NUMI, A2 Put the address NUMI1 in A2.

MOVE.L N, DIl Put the number of entries n in D1.
CLR.L DO
LOOP: ADD.L (A2)+, DO Accumulate sum in DO.
SUBQ.L #1, DI
BGT LOOP

MOVE.L DO, SUM Store the result when finished.

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

MOVEA.L #LIST, A2 Get the address LIST.

CLR.L D3
CLR.L D4
CLR.L D3
MOVE.L N, D6 Load the value n.

LOOP: ADD.L 4(A2), D3 Add current student mark for Test 1.
ADD.L 8(A2), D4 Add current student mark for Test 2.
ADD.L 12(A2), DS Add current student mark for Test 3.
ADDA.L #16, A2 Increment the pointer.
SUBQ.L #1, D6 Decrement the counter.
BGT LOOP Loop back it not finished.

MOVE.L D3, SUMI1 Store the total for Test 1.
MOVE.L D4, SUM2 Store the total for Test 2.
MOVE.L D5, SUM3 Store the total for Test 3.

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Logic and Shift Instructions

e AND.L, OR.L, EOR.L, NOT.L instructions
require at least one data register operand

e ANDI.L, ORI.L, EORI.L — immediate src operand
e N and Z flags affected; V and C flags cleared

e LSL.L, LSR.L, ASL.L, ASR.L instructions require immediate
or data register for shift amount

e Operand to be shift is in a data register

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

MOVEA.L #LOC, A0 A0 points to two consecutive bytes.
MOVE.B (AO0)+, DO Load first byte into DO.

LSL.L #4, DO Shift left by 4 bit positions.
MOVE.B (AO), DI Load second byte into D1.
ANDI.L #$F, D1 Clear all high-order bits in D1.
OR.L D0, DI Concatenate the digits.

MOVE.B DI1. PACKED Store the result.

E& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

P

Tabella A2.7a Istruzioni NIOS Il, ColdFire, ARM e |A-32

Tipo di istruzioni NIOS I ColdFire ARM IA-32
(a) Istruzioni di trasferimento, di controllo
Trasferimento

Load Idb ri, X(rj) LDRb

Store stb ri, X(rj) STRb

Move mova MOVEa.b MOV, MVN MOV, LEA, PUSH,

POP

Multiplo MOVEM.b LDMw, STMw POPAD, PUSHAD
Controllo

Salto incondiz. br/, jmp ri JMP B/ JMP

Salto condiz. bcri, rj, | Bc / Bc/ Ic !

LOOP /

Chiamata e rientro: si veda Tabella A2.5

Legenda:

b suffisso del codice operativo, dimensione del dato in memoria, estensione a 32 bit: NIOS II: b e {w,b,h,bu,hu}, ColdFire:

b e {BWL}, ARM: b = {B,H,SB,SH} opzionale;

a suffisso opzionale del codice operativo, modo di indirizzamento: NIOS II: @ = {i,ui,ia}, indirizzamento immediato, ColdFire:
a = {A,Q}, se la dest. & un registro indirizzo o dati, rispettivamente;

w suffisso del codice operativo, progressione del registro di base, w = {IA,DA,IB,DB}; /, etichetta; ¢, suffisso del codice
operativo, condizione aritmetico-logica di salto: NIOS Il: ¢ = {eq,ne,ge,geu,gt,gtu,le leu,lt, Itu}, ColdFire, ARM, 1A-32: si veda

Tabella A2.8

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

The Fa

Tabella A2.7b Istruzioni NIOS Il, ColdFire, ARM e |IA-32

Tipo di istruzioni NIOS I ColdFire ARM 1A-32
(b) Istruzioni aritmetiche, di confronto, logiche, di scorrimento
Aritmetiche
Addizione addm ADDm.L ADDf, ADC ADD, ADC
Sottrazione subm SUBm.L SUBT, SBC SUB, SBB
NEGm L NEG
Moltiplicazione mulm MULs.b MUL, MLA IMUL
Divisione div, divu DIVs.b DIV
Resto REMSs.L
Altre EXT.b INC, DEC
CLR.b
Confronto cmpecm CMPm.L CMP, CMN CMP
Logiche
Congiunzione andm, andhi ANDm.L AND, TST AND
Disgiunzione orm, orhi ORm.L ORR OR
Disg. esclusiva xorm, xorhi EORm.L EOR, TEQ XOR
Negazione NOTm.L NOT
Altre nor BIC
Scorrimento
Logico stlm LSR.L t, LSR SHR
sllm LSL.L t, LSL SHL
Aritmetico sram ASR.L t, ASR SAR
ASL.L SAL
Rotazione ror t, ROR ROR, RCR
rolm ROL, RCL
. __|

Legenda:

m suffisso opzionale del codice operativo, NIOS Il: m e {i}, secondo operando sorgente immediato, ColdFire: m = {I,A X},
sorgente immediato (sola opzione nelle istruzioni logiche), o dest. registro indirizzo, o riporto in ingresso da bit di esito X
(sola opzione in NEG, esclusa in CMP);

f suffisso opzionale del codice operativo, imposta i bit di esito C, V se f = S; s, suffisso del codice operativo, operandi con o
senza segno, s < {S,U};

b suffisso del codice operativo, dimensione dell'operando sorgente o di destinazione; ColdFire: b = {W,L} in MUL, DIV;

b e {B,W,L} in EXT, CLR;

¢ suffisso del codice operativo, condizione di confronto (come nelle istruzioni di salto); t, istruzione MOV o ADD, lo

scorrimento si applica al secondo operando sorgente.

roup

Stacks

e A stack is a list of data elements where
elements are added/removed at top end only

e Also known as pushdown stack or
last-in-first-out (LIFO) stack

e We push a new element on the stack top
or pop the top element from the stack

e Programmer can create a stack in the memory
 There is often a special processor stack as well

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Processor Stack

e Processor has stack pointer (SP) register
that points to top of the processor stack

e Push operation involves two instructions:
Subtract SP, SP, #4
Store R/, (SP)

e Pop operation also involves two instructions:
Load R/, (SP)
Add SP, SP, #4

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Subroutines

e |In a given program, a particular task may be
executed many times using different data

e Examples: mathematical function, list sorting
e Implement task in one block of instructions
e This is called a subroutine

e Rather than reproduce entire subroutine block in each part
of program, use a subroutine call

e Special type of branch with Call instruction

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Subroutines

e Branching to same block of instructions
saves space in memory, but must branch back

e The subroutine must return to calling program
after executing last instruction in subroutine

e This branch is done with a Return instruction
e Subroutine can be called from different places
e How can return be done to correct place?

e This is the issue of subroutine linkage

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Subroutine Linkage

e During execution of Call instruction,
PC upated to point to instruction after Call

e Save this address for Return instruction to use
e Simplest method: place address in link register

e Call instruction performs two operations:
store updated PC contents in link register,
then branch to target (subroutine) address

e Return just branches to address in link register

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Memory Memory

location Calling program location Subroutine SUB
200 Call SUB - 1000 first instruction
204 next instruction — =e—— .
Return
1000

'
. I—
f
Link | | 204

Call Return
http://www.dit.uniparthenope.it/FITNESS/

Subroutine Nesting and the Stack

e \We can permit one subroutine to call another,
which results in subroutine nesting

e Link register contents after first subroutine call are
overwritten after second subroutine call

e First subroutine should save link register
on the processor stack before second call

e After return from second subroutine,
first subroutine restores link register

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Parameter Passing

e A program may call a subroutine many times with different
data to obtain different results

e [nformation exchange to/from a subroutine
Is called parameter passing

e Parameters may be passed in registers
e Simple, but limited to available registers

e Alternative: use stack for parameter passing,
and also for local variables & saving registers

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

The Stack Frame

e Locations at the top of the processor stack are used as a
private work space by subroutines

e A stack frame is allocated on subroutine entry and
deallocated on subroutine exit

e A frame pointer (FP) register enables access to private
work space for current subroutine

e With subroutine nesting, the stack frame also saves return
address and FP of each caller

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Sp
(stack pointer)

FP
(frame pointer)

saved [R2]
localvar3
localvar2 Stack
frame
localvarl > for
called
saved [FP] subroutine
param|
param?2
param3
param4
/
<—— (OId TOS

R T St L AR A A B I Lttt

ARM SUBROUTINES AND
STACK

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Instructions

e Subroutine linkage:
BL SUBADDRESS

Actions taken:

1. The value of the updated PC is stored in
R14 (LR), the Link register
2. A branch is taken to SUBADDR

e Return from subroutine
BX Ir

— By convention, registers rO to r3 are used to pass parameters to
subroutines, and r0 is used to pass a result back to the callers.

e Calls between separately assembled or compiled modules => procedure call
standard (Procedure Call Standard for the ARM Architecture specification)

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

Example

AREA subrout, CODE, READONLY : Name this block of code

ENTRY ; Mark first instruction to execute

start MOV r0, #10 ; Set up parameters
MOV rl, #3
BL doadd ; Call subroutine

stop
More instructions

doadd ADD 10O, r0,rl ; Subroutine code (and prepare return value)
BX Ir ; Return from subroutine
END ; Mark end of file

E% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

g SP .

Stack

e Stack Instructions. No specific instructions (push/pop)

— Push and pop operations are performed by memory
access instructions, with auto-increment addressing
modes.

e Stack pointer. No special register, any general purpose
register can be used (typically r13 also referred as SP)

e Stack Types.
— Stack ascending and descendig
— SP to last full or first empty
-FA Full-Ascending -EA Empty-Ascending
-FD Full-Descending -ED Empty-Descending

g% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Implementing stacks with LDM and STM

Stack-oriented suffixes and equivalent addressing mode suffixes

Stack-oriented suffix

For store or push
instructions

For load or pop
instructions

FD (Full Descending stack)

DB (Decrement Before)

IA (Increment After)

FA (Full Ascending stack)

IB (Increment Before)

DA (Decrement After)

ED (Empty Descending stack)

DA (Decrement After)

IB (Increment Before)

EA (Empty Ascending stack)

IA (Increment After)

DB (Decrement Before)

Suffixes for load and store multiple instructions

Stack type

Store

Load

Full descending

STMFD (STMDB, Decrement
Before)

LDMFD (LDM, increment
after)

Full ascending

STMFA (STMIB, Increment
Before)

LDMFA (LDMDA, Decrement
After)

Empty descending

STMED (STMDA, Decrement
After)

LDMED (LDMIB, Increment
Before)

Empty ascending

STMEA (STM, increment
after)

LDMEA (LDMDB, Decrement
Before)

g SP .

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Stack usage: examples

STMFD sp!, {rO-r5} ; Push onto a Full Descending
, Stack
LDMFD sp!, {rO-r5} ; Pop from a Full Descending
Stack

e The Procedure Call Stanaard for the ARM
Architecture (AAPCS), and ARM and Thumb C and C++
compilers always use a full descending stack.

e The PUSH and POP instructions assume a full descending
stack. They are the preferred synonyms
for STMDB and LDM with writeback.

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

Stacking registers for nested subroutines

e At the start of a subroutine, any working registers required can be
stored on the stack, and at exit they can be popped off again.

e In addition, if the link register is pushed onto the stack at entry,

additional subroutine calls can be made safely without causing the
return address to be lost.

— If you do this, you can also return from a subroutine by popping pc

off the stack at exit, instead of popping Ir and then moving that
value into pc. For example:

sub PUSH {r5-r7,Ir} ; Push work registers and Ir
; code
BL somewhere_else
; code
POP {r5-r7,pc} ; Pop work registers and pc
% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

2 http://www.dit.uniparthenope.it/FITNESS/

COLDFIRE SUBROUTINES
AND STACK

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Subroutine Linkage

e Address register A7 is the stack pointer (SP)

e Subroutine call/return instructions use A7
to save/restore return address automatically

e JSR, BSR instructions for subroutine calls
e RTS instruction for returning from subroutines
e Pass parameters in registers or using stack

e |f parameters pushed to or popped from stack, register A7
must always be a multiple of 4

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

M, e

_ Calling program _

MOVEA.L #NUMI1, A2 Put the address NUMI in A2.
MOVE.L N, DI Put the number of elements n in D1.
BSR LISTADD Call subroutine LISTADD.
MOVE.L DO, SUM Store the sum in SUM.

next instruction

Subroutine

LISTADD: CLR.L DO

LOOQOP: ADD.L (A2)+, DO Accumulate sum 1n DO.
SUBQ.L #1, DI
BGT LOOP
RTS

Eﬁ%& http://www.dit.uniparthenope.it/FITNESS/

Pila

O| Move N,R1
o
o @@@ - SP punta
‘ l o all’'ultima locazione
occupata
SP -28
Push: -17 Pop:
Decrement SP 739 Move (SP), ITEM
Move NEWITEM, (SP) : Increment SP
®
FONDO 43
Push: o Pop:
Move NEWITEM, -(SP) : Move (SP)+, ITEM
2k -1

http://www.dit.uniparthenope.it/FITNESS/

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

Passaggio Parametri su Stack

Immediatamente
dopo la chiamata

a SUB1

A7=SP

Indirizzo di
Ritorno 1

Parametri di
input 1

Parametri di
output 1

FP

Durante
I'esecuzione
di SUB1

Variabili
locali 1

Vecchio
FP1

Indirizzo di
Ritorno 1

input 1

Parametri di

output 1

Parametri di

Immediatamente \

a SUB2

SP

FP

/

prima della chiamzﬁ

I—
Parametri di
input 2

Parametri di
output 2

Variabili
locali 1

Vecchio
FP1

Indirizzo di
Ritorno 1

Parametri di
input 1

Parametri di
output 1

Indirizzo di
Ritorno 2

Parametri di
input 2

Parametri di
output 2

Variabili
locali 1

Vecchio
FP1

Indirizzo di
Ritorno 1

Parametri di
input 1

Parametri di
output 1

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Link and allocate

Syntassi:
— LINK An,#<displacement>
Funzionamento:

1. Esegue push su stack del contenuto del registro
Indirizzo specificato

2. 1l reqgistro indirizzo specificato viene caricato con il
nuovo valore dello stack pointer

3. Il displacement viene esteso in segno e sommato a
SP. Questo valore viene assegnato a SP.

4. Durante I'esecuzione SP varia, mentre FP rimane
costante

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Parametri in stack — div916.a68 - 1/2

DIVPQ ADDA.L #-10,SP
MOVE.L P,-(SP)
CLR.L -(SP)
MOVE.L Q,-(SP)
JSR DIVIDEL
MOVE.L (SP)+,PMODQ Codice programma
MOVE . L (SP)+,PDIVQ principale
TST.W (SP)+
BNE DIVOVF

*Area Dati

P DC.L 10
Q DC.L 5
PDIVQ DS.L 1
PMODQ DS.L 1

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Parametri in stack — div916.a68 - 2/2

DIVIDEL L INK AG ,#-2
MOVE . W #32 ,CNT(AB)
CLR.W STATUS(A6)
MOVE . L HIDVND(A6G) , D0
MOVE . L LODVND(A6) ,D1
CMP.L DVSR(A6) ,D0
BCS.S DIVLUP
MOVE . W #1,STATUS(A6G) Codice subroutine
BRA.S CLNSTK
DIVLUP LSL.L #1,D1
BGT.S DIVLUP
MOVE . L DO, REM(AB)
MOVE . L D1,QUOT(A6)
CLNSTK UNLK A6
MOVEA. L (SP)+, A0
ADDA.L #STATUS-DVSR, SP
JMP (A0)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Parametri in stack — Esecuzione

i ASIM - simple.cfg

File Proc Unit Wiew Simulation Window Tool: Help

B> | e|a e oo Bl @] 4] 4|23

simple: Memonia 2 O] =]

geep8eAd M4E 56 FF FE 3D 7C 68 28 FF FE 42 6E 688 1C 28 2E 688 aC 22 2E 66 18 3‘ Ed =101
goep8e16 BO AE O8 B8 65 B8 3D 7C 68 61 88 1C 68 28 E3 89 E3 98 65 66 BA AE
gggggg simple: M68000 1
(ESTTDEETSI 336363696 36 9 36 M B R E N R R ER KRR EREXREREEEER RN XXX KRR R ER RN R R ER R RN EEEXEREEEER NN ERERENR
GELLEEE = Wakerly - Table 9-16 Page 332
aaeas o ey
gaeas A
gaeas A
gaeas A
gaeas A

input:

output:

*
*
*
*

(ESTTDEEESI 3 a6 36696369 6 M R E N R R ER KRR EREXEEREEEER RN XXX ERERER RN R R ERREEREEEXE R R XXX RN ERERER

aaoes1
aaoes1 L8000
aaoes1

000081 | ~0~ " -
ﬂﬂﬂﬂ!ﬁ.éll

@@eps1 | DO : 00000000 D4:00000000 AO:00000000 A4:00000000
@eees1| 0l : 00000000 D5:00000000 Al:00000000 A5:00000000
| I2: 00000000 Ik:00000000 AZ:00000000 Ak:O0000000OO
[3:00000000 ©7:00000000 A3:00000000 A7:00009000
| Cycles | IT & INT ¥NZWC | A7 :00009200
|000000001 1SR :0010011100000000 | PC: 00000000

For Help, prezz F1 | | |
I he Fault and Intrusion [olerant NEtworked SystemsS (F1 1 NESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Ritorno — Esecuzione

EASIH - simple.cfg

File Proc_Unit “iew Simulation “Window Took Help

B2 = || e|a 2| oo Bl @] 4]]z

zimple: Memoria 2 = 0] %]

I [simple: MEB000 1

MOVE.L D1,QUOT{AG) -
CLH3TK UMLK Ab
MOVERA.L (5P)+,A8

ADDA.L HSTATUS-DUSR,SP
JHP (AB)

3636363636 36 36 36 3 363636 36 3 3 -3 3636 36 3 3 -3 3636 36 3 -3 36 363636 36 33636 3636 I I3 IE 363636 36 I 36 36 3636 36 I 36 3636 36 I 36 36636 336 IE I3 HHD

* Main Program: COMPUTES PDIVUQ:=P DIV Q; PHODQ:=P HOD Q

*

* Wakerly - Table 9-17 Page 336

DIVPQ] APDA.L #-18,35P

L _

IO:00000000 ©4:00000000 a0:0000&8064A A4:00000000
I'1:00000002 ©s:00000000 aAl:00000000 A5:00000000
I2: 00000000 Dk:00000000 Ac:00000000 Ak:O00000000
I3:00000000 ©Y:00000000 aA=:00000000 A7:00009000
| Cycles | T = INT AMZMC L AT O00091EA
1 O0000E 72 | |5R:001.0011 100000000 | PC:0000804%5

I

For Help, prezz F1 | | |
I he Fault and Intrusion [olerant NEtworked SystemsS (F1 1 NESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Ritorno - Schema

Memory
AO & JMP (AO
0000806A MOVE . L /(SP)+ , PMODQ

/

Questa istruzione
significa: salta
all’istruzione puntata
dal registro indirizzo AO

L'istruzione specifica I'operando come (AO)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Ritorno — Mappa della memoria

File Modifica Visualizza |nsenzci Formato 7
000080458 DFFC 00000014 44 ADDA.L HSTATUS-DVSE, SIA)
0000S04E 4EDO 45 JMP {A0)
DDDDBDSD 46 o o o e e e
00008050 47 + Main Program: COMPUTES PDIVQ:=P DIV
00008050 45
00008050 49 * Wakerly - Table 9-17 Page 336
00008050 50
00008050 DFFC FFFFFFFG 51 DIVPQ ADDA.L #-10,5P
00008056 2F39 00008500 52 MOVE. L P, - (3P
0000305C 4247 53 CLE.L - (3P
0000S05E 2F39 00008504 54 MOVE. L Q, - (3P
00008064 4EB9 00008000 55 JSE DIVIDEL
00008064 23DF 0000SS50C 56 MOVE. L (SP) +, PHODO
00008070 2Z3DF 00008508 57 MOVE. L (SP)+, PDIVO
00003076 4ASF 53 T3ST.W (3] +
00008078 6600 9786 59 BNE DIVOVF
0000807C &0
0000807C 61 *irea Dati
00008500 62 ORG $5500
00008500 63
00008500 00000004 64 F DC.L 10
00008504 00000005 5 0 DC. L 5
00008503 66 PDIVQ D3.L 1
0000850C 67 PMODQ D3.L 1 |
00008510 68
00008510 =00001800 65 DIVOVF EQU $1800 -
NOAN=2c1n =N
J | _|J
Per aprire la Guida, premers F1. l_ I_ o
!gg The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

Evoluzione dello stack - div916.a68

SP | CNT
FP | oLp Fp
RETURN
ADDRESS
SP
DVSR DVSR
HIDVND HIDVND
LODVND LODVND
SP
REM REM REM
QUOT QUOT QUOT
STATUS STATUS STATUS
EP EP

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.dit.uniparthenope.it/FITNESS/

Example Programs

e First example program computes:

Dot Product = Z:A(i) x B(i)

e First elements of each array, A(0) and B(0), are stored at
memory locations AVEC and BVEC

e Consider RISC and CISC versions of program

e Use Multiply instruction on pairs of elements and
accumulate sum with Add instruction

e Some processors have MultiplyAccumulate

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

Move R2, #AVEC R?2 points to vector A.

Move R3, #BVEC R3 points to vector B.

Load R4, N R4 serves as a counter.

Clear RS RS accumulates the dot product.
LOOP: Load R6, (R2) Get next element of vector A.

Load R7, (R3) Get next element of vector B.

Multiply RS, R6, R7 Compute the product of next pair.

Add RS5, R5, RS Add to previous sum.

Add R2, R2, #4 Increment pointer to vector A.

Add R3, R3. #4 Increment pointer to vector B.

Subtract R4, R4, #1 Decrement the counter.

Branch_if_[R4]>0 LOOP Loop again if not done.

Store RS, DOTPROD Store dot product in memory.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Move R2, #AVEC R2 points to vector A.

Move R3, #BVEC R3 points to vector B.

Move R4, N R4 serves as a counter.

Clear RS RS accumulates the dot product.
LOOP: Move RO, (R2)+ Compute the product of

Multiply R6, (R3)+ next components.

Add R5, R6 Add to previous sum.

Subtract R4, #1 Decrement the counter.

Branch>0 LOOP Loop again if not done.

Move DOTPROD, R5 Store dot product in memory.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Tabella A2.5 Collegamento di sottoprogrammi NIOS I, ColdFire, ARM, 1A-32

Caratteristica NIOS lI ColdFire = ARM 1A-32
Meccanismo di collegamento Registro di In pila, Registro di In pila,
collegamento implicito collegamento implicito
Registri:
PC PC R15|PC EIP
SP r27 |sp A7 R13|SP ESP
FP r28|fp Aj R12|FP EBP
LR r31]ra R14|LR
Istruzioni di chiamata e di rientro call / BSR / BL/ CALL /
callr ri JSR a
ret RTS LDMFD SP!, {r,PC} RET
Altre istruzioni rilevanti MOVEM.L STMFD PUSH s
r, (A7) SP!, {r,LR} POP d
LINK Aj, #p PUSHAD
UNLK Aj POPAD
|
Legenda:
Aj registro di indirizzo usato come puntatore all’area di attivazione (0 < j < 6);
| etichetta;
a indirizzo del sottoprogramma, modi: assoluto, indiretto da registro, con base, indice e spiazzamento, relativo a PC
(con indice);
r lista di registri;
p spiazzamento;
s operando sorgente da impilare;
d destinazione di operando da spilare.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Example Programs

e Second example searches for 15t occurrence
of pattern string P in target string 7

e String P has length m and string 7 has length n
e Algorithm to implement in RISC/CISC styles:

for 71 <0 ton—m do
j <0
while j < mand P[j]=T[i + j] do
Jj<—Jj+1
if j = m returni
return —I

% The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
- http://www.dit.uniparthenope.it/FITNESS/

g SP .

LOOPI:

LOOP2:

NOMATCH:

Move

Move

Load

Load

Subftract

Add

Add

Move

Move

LoadByte

LoadByte
Branch_if_[R8][R9]
Add

Add

Branch_if [R5]>[R7]
Store

Branch

Add

Branch_if [R4]=[R2]
Move

Store

next instruction

http://www.dit.uniparthenope.it/FITNESS/

R2, #T

R3. #P

R4, N

R5. M

R4, R4, RS
R4, R2, R4
R5.R3,R5
R6, R2
R7.R3

R8. (R6)
R9. (R7)
NOMATCH
R6. R6, #1
R7.R7, #1
LOOP2

R2, RESULT
DONE

R2. R2, #1
LOOPI

RS, # -1

R8, RESULT

R2 points to string 7.
R3 points to string P.
Get the value n.
Get the value m.
Compute n — m.
The address of T(n — m).
The address of P(m).
Use R6 to scan through string T'.
Use R7 to scan through string P.
Compare a pair of
characters in
strings 7" and P.
Point to next character in 7.
Point to next character in P.
Loop again if not done.
Store the address of 7°(7).

Point to next characterin 7.

Loop again if not done.

Write —1 to indicate that
no match was found.

LOOPI:

LOOP2:

NOMATCH:

Move
Move
Move
Move
Subtract
Add

Add

Move
Move
MoveByte
CompareByte
Branch#£0
Compare
Branch>0
Move
Branch
Add
Compare
Branch=0
Move

next instruction

R2. #T

R3. #P

R4, N

R5. M

R4, R5

R4, R2

R5. R3

R6, R2
R7.R3

R8. (R6)+
R8, (R7)+
NOMATCH
R5. R7
LOOP2
RESULT, R2
DONE

R2, #1

R4, R2
LOOPI
RESULT, #-1

R2 points to string 7.
R3 points to string P.
Get the value n.
Get the value m.
Compute n — m.
The address of T(n — m).
The address of P(m).
Use R6 to scan through string 7.
Use R7 to scan through string P.
Compare a pair of
characters in
strings 7" and P.
Check if at P(m).
Loop again if not done.
Store the address of 7(1).

Point to next character in 7.
Check ifat T(n — m).
Loop again if not done.

No match was found.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.dit.uniparthenope.it/FITNESS/

Concluding Remarks

e« Many fundamental concepts presented:
— memory locations, byte addressability, endianness
— assembly-language and register-transfer notation
— RISC-style and CISC-style instruction sets
— addressing modes and instruction execution
— assembler to generate machine instructions
— subroutines and the processor stack

e Later chapters build on these concepts

!% g The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
B http://www.dit.uniparthenope.it/FITNESS/

M, e

	Instruction Set Architecture
	Contact info
	Roadmap
	Sources
	The main memory (central memory)
	Memory structure
	Address and Register size
	Diapositiva numero 8
	Example
	Solution
	Example
	Solution
	BSVC memory
	Example
	Soluzione
	Example
	Solution
	Example
	Soluzione
	Register Transfer Notation
	Register Transfer Notation
	Assembly-Language Notation
	Assembly-Language Notation
	Memory Operations
	Addressing Modes
	Diapositiva numero 26
	Addressing Modes
	Variables
	Constants
	Indirection and Pointers
	Diapositiva numero 31
	Indirection and Pointers
	Diapositiva numero 33
	Indexing
	Diapositiva numero 35
	Diapositiva numero 36
	Additional Addressing Modes
	Arm Memory and Register structure, and addressing modes
	ARM – Advanced RISC Machine
	RISC: Reduced Instruction Set Computing
	Data types
	Memory structure
	Processord Modes
	Registers
	Registers
	Registers
	Registers
	Status Register
	Addressing modes
	LOAD Instruction Encoding
	Instruction Structure
	Addressing modes
	Diapositiva numero 53
	Addressing modes
	Diapositiva numero 55
	Addressing modes
	Diapositiva numero 57
	Addressing modes
	Addressing modes
	Diapositiva numero 60
	Diapositiva numero 61
	ColdFire Memory and register Structure
	Memory Organization
	Diapositiva numero 64
	Register Structure
	Data Registers
	Address Registers
	SP and PC
	Status Register
	Instructions
	Modi di Indirizzamento
	Encoding for the MOVE instruction
	Addressing Mode encoding
	Register Direct Addressing
	Register Direct Addressing
	Register Direct Addressing
	Immediate Addressing
	ImmediateAddressing - Encoding
	Absolute Addressing (or Direct Addressing)
	Absolute Addressing - Codifica
	Example for basic modes
	Assembled code
	Address Register Indirect Addressing
	Address Register Indirect Addressing - Encoding
	Auto-increment
	Auto-decrement
	Example
	Indexed
	Indexed Short Addressing - Codifica
	Based Addressing
	Based Addressing - Codifica
	Based Indexed
	Relative Addressing
	Relative Indexed Addressing
	Processor Structure
	Diapositiva numero 96
	Instructions and Sequencing
	RISC and CISC Instruction Sets
	RISC Instruction Sets
	RISC Instruction Sets
	RISC Instruction Sets
	RISC Instruction Sets
	A Program in the Memory
	Diapositiva numero 104
	Instruction Execution/Sequencing
	Details of Instruction Execution
	Branching
	Diapositiva numero 108
	Branching
	Branching
	Generating Memory Addresses
	Assembly Language
	Assembler Directives
	Diapositiva numero 114
	Diapositiva numero 115
	Program Assembly & Execution
	Number Notation
	Logic Instructions
	Shift and Rotate Instructions
	Diapositiva numero 120
	Diapositiva numero 121
	Example Program: Digit Packing
	Diapositiva numero 123
	Multiplication and Division
	32-bit Immediate Values
	CISC Instruction Sets
	CISC Instruction Sets
	Additional Addressing Modes
	Condition Codes
	Branches using Condition Codes
	Sum of the Elements in an Array
	RISC and CISC Styles
	RISC and CISC Styles
	ArM Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Diapositiva numero 153
	Diapositiva numero 154
	Program
	Sum the Elements in an Array
	Assembly language
	Diapositiva numero 158
	Assembly language
	Pseudoinstructions
	Pseudoinstructions
	Pseudoinstructions
	Pseudoinstructions
	Esempio di programma ARM
	Assembly ARM
	Conditional Execution
	Assembly ARM with conditioned instructions
	Conditional Vs Non Conditional
	Condition Code Suffixes
	COLDFIRE INSTRUCTIONS
	Instructions
	MOVE Instruction
	Diapositiva numero 173
	Arithmetic Instructions
	Diapositiva numero 175
	Multiplication and Division
	Diapositiva numero 177
	Branch and Jump Instructions
	Diapositiva numero 179
	Diapositiva numero 180
	Diapositiva numero 181
	Diapositiva numero 182
	Logic and Shift Instructions
	Diapositiva numero 184
	Diapositiva numero 185
	Diapositiva numero 186
	Stacks
	Processor Stack
	Subroutines
	Subroutines
	Subroutine Linkage
	Diapositiva numero 192
	Subroutine Nesting and the Stack
	Parameter Passing
	The Stack Frame
	Diapositiva numero 196
	ARM SUBROUTINES AND STACK
	Instructions
	Example
	Stack
	Implementing stacks with LDM and STM
	Stack usage: examples
	Stacking registers for nested subroutines
	Coldfire SUBROUTINES AND STACK
	Subroutine Linkage
	Diapositiva numero 206
	Pila
	Passaggio Parametri su Stack
	Link and allocate
	Parametri in stack – div916.a68 - 1/2
	Parametri in stack – div916.a68 - 2/2
	Parametri in stack – Esecuzione
	Ritorno – Esecuzione
	Ritorno - Schema
	Ritorno – Mappa della memoria
	Evoluzione dello stack - div916.a68
	Example Programs
	Diapositiva numero 218
	Diapositiva numero 219
	Diapositiva numero 220
	Example Programs
	Diapositiva numero 222
	Diapositiva numero 223
	Concluding Remarks

