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Chapter Outline

» Pipelining: overlapped instruction execution
» Hazards that limit pipelined performance gain
» Hardware/software implications of pipelining
» Influence of pipelining on instruction sets

» Pipelining in superscalar processors
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Basic Concept of Pipelining

» Circuit technology and hardware arrangement influence the
speed of execution for programs

» All computer units benefit from faster circuits

» Pipelining involves arranging the hardware to perform multiple
operations simultaneously

» Similar to assembly line where product moves through stations
that perform specific tasks

» Same total time for each item, but overlapped
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Pipelining in a Computer

» Focus on pipelining of instruction execution

» Multistage datapath consists of: Fetch, Decode, Compute,
Memory, Write

» Instructions fetched & executed one at a time with only one
stage active in any cycle

» With pipelining, multiple stages are active simultaneously for
different instructions

» Still 5 cycles to execute, but rate is 1 per cycle
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Pipeline Organization
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Pipelining Issues

» Consider two successive instructions |;and |,

» Assume that the destination register of |, matches one of the
source registers of |,

» Result of | is written to destination in cycle 5
» But |, reads old value of register in cycle 3

» Due to pipelining, ;,; computation is incorrect
» So stall (delay) I, until |, writes the new value
» Condition requiring this stall is a data hazard
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Data Dependencies

» Now consider the specific instructions
Add R2, R3, #100
Subtract R9, R2, #30

» Destination R2 of Add is a source for Subtract

» There is a data dependency between them because R2
carries data from Add to Subtract

» On non-pipelined datapath, result is available
in R2 because Add completes before Subtract
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Stalling the Pipeline

» With pipelined execution, old value is still in register R2 when
Subtract is in Decode stage

» So stall Subtract for 3 cycles in Decode stage
» New value of R2 is then available in cycle 6

— [Ime

Clock cycle 1 2 3 - S 6 7 8 9

add R2rspioo [ FfDfc]M]w
Subtract R9, R2. #30 Fyo e fmfw
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Details for Stalling the Pipeline

» Control circuitry must recognize dependency while Subtract is
being decoded in cycle 3

» Interstage buffers carry register identifiers for source(s) and
destination of instructions

» In cycle 3, compare destination identifier in Compute stage
against source(s) in Decode

» R2 matches, so Subtract kept in Decode
while Add allowed to continue normally
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Details for Stalling the Pipeline

» Stall the Subtract instruction for 3 cycles by keeping contents of
interstage buffer B1

» What happens after Add leaves Compute?

» Control signals are set in cycles 3 to 5 to create an implicit NOP
(No-operation) in Compute

» NOP control signals in interstage buffer B2 create a cycle of idle
time in each later stage

» The idle time from each NOP is called a bubble
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Operand Forwarding

» Operand forwarding handles dependencies without the penalty
of stalling the pipeline

» For the preceding sequence of instructions, new value for R2 is
available at end of cycle 3

» Forward value to where it is needed in cycle 4

O Introduce multiplexers before ALU inputs to use contents of

register RZ as forwarded value
—» Time

Clock cycle 1 2 3 4 5 6

add R2R3.#100 | E |l o c| M| w|

Subtract RO, R2. #30
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Details for Operand Forwarding

» Introduce multiplexers before ALU inputs to use contents of
register RZ as forwarded value

» Control circuitry now recognizes dependency in cycle 4 when
Subtract is in Compute stage

» Interstage buffers still carry register identifiers

» Compare destination of Add in Memory stage with source(s) of
Subtract in Compute stage

» Set multiplexer control based on comparison
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Software Handling of Dependencies

» Compiler can generate & analyze instructions
» Data dependencies are evident from registers

» Compiler puts three explicit NOP instructions between
instructions having a dependency

» Delay ensures new value available in register but causes total
execution time to increase

» Compiler can optimize by moving instructions into NOP slots (if
data dependencies permit)
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Memory Delays

» Memory delays can also cause pipeline stalls

» A cache memory holds instructions and data from the main
memory, but is faster to access

» With a cache, typical access time is one cycle

» But a cache miss requires accessing slower main memory with a
much longer delay

> In pipeline, memory delay for one instruction causes subsequent
instructions to be delayed
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Memory Delays

» Even with a cache hit, a Load instruction may cause a short delay
due to a data dependency

» One-cycle stall required for correct value to be forwarded to
instruction needing that value

» Optimize with useful instruction to fill delay

Clock cycle 1 2 3 4 5 6 7

Load R2, (R3)

Subtract R9, R2, #30
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Branch Delays

» ldeal pipelining: fetch each new instruction while previous
instruction is being decoded

» Branch instructions alter execution sequence, but they must be
processed to know the effect

» Any delay for determining branch outcome leads to an increase
in total execution time

» Techniques to mitigate this effect are desired
» Understand branch behavior to find solutions
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Unconditional Branches

» Consider instructions |;, 1, , |, in sequence

J+1 7
» |;is an unconditional branch with target I,

» The Compute stage determines the target address using offset
and PC+4 value

> In pipeline, target I, is known for ;in cycle 4, but instructions |
l,, fetched in cycles 2 & 3

» Target |, should have followed | immediately, so discard |
and incur two-cycle penalty

+1 7

J+1 7 j+2
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Reducing the Branch Penalty

» In pipeline, adder for PC is used every cycle, so it cannot
calculate the branch target address

» So introduce a second adder just for branches

» Place this second adder in the Decode stage to enable earlier
determination of target address

» For previous example, now only .., is fetched
» Only one instruction needs to be discarded
» The branch penalty is reduced to one cycle
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Conditional Branches

» Consider a conditional branch instruction:
Branch_if [R5]=[R6] LOOP

» Requires not only target address calculation, but also requires
comparison for condition

» Option 1) ALU performs (Execute stage) the comparison
» Option 2) Target address now calculated in Decode stage

O To maintain one-cycle penalty, we introduce a comparator
just for branches in Decode stage
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The Branch Delay Slot

» Let both branch decision and target address be determined in
Decode stage of pipeline

» Instruction immediately following a branch is always fetched,
regardless of branch decision

» That next instruction is discarded with penalty, except when
conditional branch is not taken

» The location immediately following the branch is called the
branch delay slot

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/




The Branch Delay Slot

» Instead of conditionally discarding instruction in delay slot,
always let it complete execution

» Let compiler find an instruction before branch to move into slot,
if data dependencies permit

» Called delayed branching due to reordering
» If useful instruction put in slot, penalty is zero

» If not possible, insert explicit NOP in delay slot for one-cycle
penalty, whether or not taken
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Add R7,R8, R9
Branch_if [R3]=0 TARGET

Ij+1

TARGET: Iy

(a) Original sequence of instructions containing
a conditional branch instruction

Branch_if [R3]=0 TARGET
Add R7, R8, R9

Ij+1

TARGET: 1,

(b) Placing the Add instruction in the branch delay
~ slotwhere itis always executed
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Branch Prediction

» A branch is decided in Decode stage (cycle 2) while following
instruction is always fetched

» Following instruction may require discarding (or with delayed
branching, it may be a NOP)

» Instead of discarding the following instruction, can we anticipate
the actual next instruction?

» Two aims: (a) predict the branch decision
(b) use prediction earlier in cycle 1
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Static Branch Prediction

» Simplest approach: assume branch not taken
» Penalty if prediction disproved during Decode
» If branches are random, accuracy is 50%

» But a branch at end of a loop is usually taken
» So for backward branch, always predict taken
» Use target address as soon as it is available

» Expect higher accuracy for this special case, but what about
accuracy for other branches?
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Dynamic Branch Prediction

» ldea: track branch decisions during execution for dynamic
prediction to improve accuracy

» Simplest approach: use most recent outcome for likely taken (LT)
or likely not-taken (LNT)

» For branch at end of loop, we mispredict in last pass, and in first
pass if loop is re-entered

» Avoid misprediction for loop re-entry with four states (ST, LT,
LNT, SNT) for strongly/likely

» Must be wrong twice to change prediction
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Branch taken (BT)

Branch not taken (BNT)
(a) A 2-state algorithm

BT
BNT LNT
4 BNT
BNT BT
BT
Y
LT BT
BNT

(b) A 4-state algorithm
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Branch Target Buffer

» Prediction only provides a presumed decision
» Decode stage computes target in cycle 2
» But we need target (and prediction) in cycle 1

» Branch target buffer stores target address and history from last
execution of each branch

» In cycle 1, use branch instruction address to look up target and
use history for prediction

» Fetch in cycle 2 using prediction; if mispredict detected during
Decode, correct it in cycle 3

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/




Superscalar Operation

» Introduce multiple execution units to enable multiple instruction
issue for > 1 instr./cycle

» This organization is for a superscalar processor

» An elaborate fetch unit brings 2+ instructions into an instruction
gueue in every cycle

» A dispatch unit takes 2+ instructions from the head of queue in
every cycle, decodes them, sends them to appropriate execution
units

» A completion unit writes results to registers
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Superscalar Operation

» Minimum superscalar arrangement consists of a Load/Store unit
and an arithmetic unit

» Because of Index mode address calculation, Load/Store unit has
a two-stage pipeline

» Arithmetic unit usually has one stage
» For two execution units, how many operands?
» Up to 4 inputs, so register file has 4 read ports

» Up to 2 results, so also need 2 write ports
(and methods to prevent write to same reg.)
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Clock cycle 1
Add R2,R3,#100
Load RS, 16(R6)
Subtract R7, R8, R9

Store R10, 24(R11)
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Branches and Data Dependencies

» With no branches or data dependencies, interleave arithmetic &
memory instructions to obtain maximum throughput (2 per
cycle)

» But branches do occur and must be handled

» Branches processed entirely by fetch unit to determine which
instructions enter queue

» Fetch unit uses prediction for all branches

» Necessary because decisions may need values produced by other
instructions in progress
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Branches and Data Dependencies

» Speculative execution: results of instructions not committed until
prediction is confirmed

» Requires extra hardware to track speculation and to recover in
the event of misprediction

» For data dependencies between instructions, the execution units
have reservation stations

O They buffer register identifiers and operands for dispatched
Instructions awaiting execution

» Broadcast results for stations to capture & use
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Out-of-Order Execution

» With instructions buffered at execution units, should execution
reflect original sequencing?

» If two instructions have no dependencies, there are no actual
ordering constraints

» This enables out-of-order execution, ...
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Out-of-Order Execution

» With instructions buffered at execution units, should execution
reflect original sequencing?

» If two instructions have no dependencies, there are no actual
ordering constraints

» This enables out-of-order execution, but then leads to imprecise
exceptions in program state

O for example the load can generate an error while accessing a
non aligned word but the subtract has already changed the
value of R7

» For precise exceptions, must commit results strictly in original
order with extra hardware
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Execution Completion

» To commit results in original program order, superscalar
processors can use 2 techniques

» Register renaming uses temporary registers to hold new data
before it is safe for final update

O Can be less than the real registers (and allowed upon
requested)

» Reorder buffer in commitment unit is where dispatched
instructions placed in strict order

» Update the actual destination register only for instruction at
head of queue in reorder buffer

» Ensures instructions retired in original order
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Dispatch Operation

» Dispatch of instruction proceeds only when all needed resources
available (temp. register, space in reservation station & reorder

buffer)

» If instruction has some but not all resources, should a
subsequent instruction proceed?

O E.g. the LOAD execution unit is full, can the Subtract be send
for execution?

» Decisions must avoid deadlock conditions
(two instructions need each other’s resources)

» More complex, so easier to use original order, particularly with
more than 2 execution units
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Pipelining in CISC Processors

» Load/Store architecture simplifies pipelining; influenced
development of RISC processors

» CISC processors introduce complications from instructions with
multiple memory operands and side effects (autoincrement,
cond. codes)

O More words for a single instruction, Valiable length
instructions,

» But existing CISC architectures later pipelined (with more effort)
after development of RISC

» Examples: Freescale ColdFire and Intel 1A-32
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Concluding Remarks

» Pipelining overlaps activity for 1 instr./cycle
» Combine it with multiple instruction issue
in superscalar processors for >1 instr./cycle

» Potential performance gains depend on:
O instruction set characteristics
O design of pipeline hardware

O ability of compiler to optimize code

» Interaction of these aspects is a key factor
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