Corso di Architettura dei Sistemi a
Microprocessore

Introduzione al Pipelining

4

§ ‘FITNESS

siIoN Tol T NETw

Luigi Coppolino

dip ammentorl The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

ingegneria http://www.fitnesslab.eu/

Contact info

Prof. Luigi Coppolino
luigi.coppolino@uniparthenope.it

Universita degli Studi di Napoli "Parthenope”
Dipartimento di Ingegneria

Centro Direzionale di Napoli, Isola C4
V Piano lato SUD - Stanza n. 512

Tel: +39-081-5476702
Fax: +39-081-5476777

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

References

» Textbook: Chapter 6

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

'A, http://www.fitnesslab.eu/

Chapter Outline

» Pipelining: overlapped instruction execution
» Hazards that limit pipelined performance gain
» Hardware/software implications of pipelining
» Influence of pipelining on instruction sets

» Pipelining in superscalar processors

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Basic Concept of Pipelining

» Circuit technology and hardware arrangement influence the
speed of execution for programs

» All computer units benefit from faster circuits

» Pipelining involves arranging the hardware to perform multiple
operations simultaneously

» Similar to assembly line where product moves through stations
that perform specific tasks

» Same total time for each item, but overlapped

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Pipelining in a Computer

» Focus on pipelining of instruction execution

» Multistage datapath consists of: Fetch, Decode, Compute,
Memory, Write

» Instructions fetched & executed one at a time with only one
stage active in any cycle

» With pipelining, multiple stages are active simultaneously for
different instructions

» Still 5 cycles to execute, but rate is 1 per cycle

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Clock cycle I 2 3 4 5 6 7

I I Fetch | Decode I Compute | Memory I Write |

J

Ly I Fetch | Decode | Compute | Memory | Write |

Lo | Fetch | Decode | Compute | Memory | Write |
®

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Pipeline Organization

| :
» Use program counter (PC) to fetch s N
instructions N
» A new instruction enters pipeline N e P
every cycle] RAﬁ N ﬁ |

» Carry along instruction-specific 1

» Use interstage buffers to hold this B

Immediate value
1

information as instructions flow
through the different stages \ o 7/
I

information \n n/
» These buffers incorporate RA, RB, RN —

RM

RY, RZ, IR, and PC-Temp registers

» The buffers also hold control signal

settings o s

1
0 1
MuxY

The Fault and Intrusion Tolerant NEtworked Syst _¥Y__
http://www.fitnesslal .

tage 5

Instruction

fetch
|
Interstage buffer B1
¥
Register Instruction
file B decode
|
Interstage buffer B2
[
Compute
| |
Interstage buffer B3
|
Memory
access
|
Interstage buffer B4

Datapath operands
and results

Source/destination
register identifiers
and other information

bt bl I SRS

Control signals

for different stages) Group

15
ST

Pipelining Issues

» Consider two successive instructions |;and |,

» Assume that the destination register of |, matches one of the
source registers of |,

» Result of | is written to destination in cycle 5
» But |, reads old value of register in cycle 3

» Due to pipelining, ;,; computation is incorrect
» So stall (delay) I, until |, writes the new value
» Condition requiring this stall is a data hazard

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Data Dependencies

» Now consider the specific instructions
Add R2, R3, #100
Subtract R9, R2, #30

» Destination R2 of Add is a source for Subtract

» There is a data dependency between them because R2
carries data from Add to Subtract

» On non-pipelined datapath, result is available
in R2 because Add completes before Subtract

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Stalling the Pipeline

» With pipelined execution, old value is still in register R2 when
Subtract is in Decode stage

» So stall Subtract for 3 cycles in Decode stage
» New value of R2 is then available in cycle 6

— [Ime

Clock cycle 1 2 3 - S 6 7 8 9

add R2rspioo [FfDfc]M]w
Subtract R9, R2. #30 Fyo e fmfw

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Details for Stalling the Pipeline

» Control circuitry must recognize dependency while Subtract is
being decoded in cycle 3

» Interstage buffers carry register identifiers for source(s) and
destination of instructions

» In cycle 3, compare destination identifier in Compute stage
against source(s) in Decode

» R2 matches, so Subtract kept in Decode
while Add allowed to continue normally

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Details for Stalling the Pipeline

» Stall the Subtract instruction for 3 cycles by keeping contents of
interstage buffer B1

» What happens after Add leaves Compute?

» Control signals are set in cycles 3 to 5 to create an implicit NOP
(No-operation) in Compute

» NOP control signals in interstage buffer B2 create a cycle of idle
time in each later stage

» The idle time from each NOP is called a bubble

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Operand Forwarding

» Operand forwarding handles dependencies without the penalty
of stalling the pipeline

» For the preceding sequence of instructions, new value for R2 is
available at end of cycle 3

» Forward value to where it is needed in cycle 4

O Introduce multiplexers before ALU inputs to use contents of

register RZ as forwarded value
—» Time

Clock cycle 1 2 3 4 5 6

add R2R3.#100 | E |l o c| M| w|

Subtract RO, R2. #30

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Details for Operand Forwarding

» Introduce multiplexers before ALU inputs to use contents of
register RZ as forwarded value

» Control circuitry now recognizes dependency in cycle 4 when
Subtract is in Compute stage

» Interstage buffers still carry register identifiers

» Compare destination of Add in Memory stage with source(s) of
Subtract in Compute stage

» Set multiplexer control based on comparison

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

C
Register
file
A B
| RA | RB

— Immediate value

Y Y I

'
Vo 7 Vo 7

3 r

mA N InB
ALU
Out
Y
RZ |

I - - - Jp
http://www.fitnesslab.eu/

Software Handling of Dependencies

» Compiler can generate & analyze instructions
» Data dependencies are evident from registers

» Compiler puts three explicit NOP instructions between
instructions having a dependency

» Delay ensures new value available in register but causes total
execution time to increase

» Compiler can optimize by moving instructions into NOP slots (if
data dependencies permit)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

— Time
Clock cycle 1 2 3 + 5 6 7 8 9

Add R2, R3,#100 Dl c|™m]|w
i KA

=
D
Subtract R9, R2, #30 BEEREERE2

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Memory Delays

» Memory delays can also cause pipeline stalls

» A cache memory holds instructions and data from the main
memory, but is faster to access

» With a cache, typical access time is one cycle

» But a cache miss requires accessing slower main memory with a
much longer delay

> In pipeline, memory delay for one instruction causes subsequent
instructions to be delayed

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

— Time
Clock cycle 1 2 3 4 5 6 7 8 9

I;; Load R2,(R3) | F | D - M | W% |
I I R RN K
L2 D clm|w

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Memory Delays

» Even with a cache hit, a Load instruction may cause a short delay
due to a data dependency

» One-cycle stall required for correct value to be forwarded to
instruction needing that value

» Optimize with useful instruction to fill delay

Clock cycle 1 2 3 4 5 6 7

Load R2, (R3)

Subtract R9, R2, #30

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Branch Delays

» ldeal pipelining: fetch each new instruction while previous
instruction is being decoded

» Branch instructions alter execution sequence, but they must be
processed to know the effect

» Any delay for determining branch outcome leads to an increase
in total execution time

» Techniques to mitigate this effect are desired
» Understand branch behavior to find solutions

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Unconditional Branches

» Consider instructions |;, 1, , |, in sequence

J+1 7
» |;is an unconditional branch with target I,

» The Compute stage determines the target address using offset
and PC+4 value

> In pipeline, target I, is known for ;in cycle 4, but instructions |
l,, fetched in cycles 2 & 3

» Target |, should have followed | immediately, so discard |
and incur two-cycle penalty

+1 7

J+1 7 j+2

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Clock cycle

L;: Branch to I

-+

Liyo

— [ime
| 2 3 4 5 6 7 8

- h‘

Branch penalty

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Reducing the Branch Penalty

» In pipeline, adder for PC is used every cycle, so it cannot
calculate the branch target address

» So introduce a second adder just for branches

» Place this second adder in the Decode stage to enable earlier
determination of target address

» For previous example, now only .., is fetched
» Only one instruction needs to be discarded
» The branch penalty is reduced to one cycle

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

— Jime
Clock cycle 1 2 3 4 5 6 7

ysnenoy, | F A0]
b I B
! HEICEIES

‘

Branch penalty

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Conditional Branches

» Consider a conditional branch instruction:
Branch_if [R5]=[R6] LOOP

» Requires not only target address calculation, but also requires
comparison for condition

» Option 1) ALU performs (Execute stage) the comparison
» Option 2) Target address now calculated in Decode stage

O To maintain one-cycle penalty, we introduce a comparator
just for branches in Decode stage

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

The Branch Delay Slot

» Let both branch decision and target address be determined in
Decode stage of pipeline

» Instruction immediately following a branch is always fetched,
regardless of branch decision

» That next instruction is discarded with penalty, except when
conditional branch is not taken

» The location immediately following the branch is called the
branch delay slot

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

The Branch Delay Slot

» Instead of conditionally discarding instruction in delay slot,
always let it complete execution

» Let compiler find an instruction before branch to move into slot,
if data dependencies permit

» Called delayed branching due to reordering
» If useful instruction put in slot, penalty is zero

» If not possible, insert explicit NOP in delay slot for one-cycle
penalty, whether or not taken

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Add R7,R8, R9
Branch_if [R3]=0 TARGET

Ij+1

TARGET: Iy

(a) Original sequence of instructions containing
a conditional branch instruction

Branch_if [R3]=0 TARGET
Add R7, R8, R9

Ij+1

TARGET: 1,

(b) Placing the Add instruction in the branch delay
~ slotwhere itis always executed

http://www.fitnesslab.eu/

Branch Prediction

» A branch is decided in Decode stage (cycle 2) while following
instruction is always fetched

» Following instruction may require discarding (or with delayed
branching, it may be a NOP)

» Instead of discarding the following instruction, can we anticipate
the actual next instruction?

» Two aims: (a) predict the branch decision
(b) use prediction earlier in cycle 1

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Static Branch Prediction

» Simplest approach: assume branch not taken
» Penalty if prediction disproved during Decode
» If branches are random, accuracy is 50%

» But a branch at end of a loop is usually taken
» So for backward branch, always predict taken
» Use target address as soon as it is available

» Expect higher accuracy for this special case, but what about
accuracy for other branches?

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Dynamic Branch Prediction

» ldea: track branch decisions during execution for dynamic
prediction to improve accuracy

» Simplest approach: use most recent outcome for likely taken (LT)
or likely not-taken (LNT)

» For branch at end of loop, we mispredict in last pass, and in first
pass if loop is re-entered

» Avoid misprediction for loop re-entry with four states (ST, LT,
LNT, SNT) for strongly/likely

» Must be wrong twice to change prediction

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Branch taken (BT)

Branch not taken (BNT)
(a) A 2-state algorithm

BT
BNT LNT
4 BNT
BNT BT
BT
Y
LT BT
BNT

(b) A 4-state algorithm

http://www.fitnesslab.eu/

up

Branch Target Buffer

» Prediction only provides a presumed decision
» Decode stage computes target in cycle 2
» But we need target (and prediction) in cycle 1

» Branch target buffer stores target address and history from last
execution of each branch

» In cycle 1, use branch instruction address to look up target and
use history for prediction

» Fetch in cycle 2 using prediction; if mispredict detected during
Decode, correct it in cycle 3

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Superscalar Operation

» Introduce multiple execution units to enable multiple instruction
issue for > 1 instr./cycle

» This organization is for a superscalar processor

» An elaborate fetch unit brings 2+ instructions into an instruction
gueue in every cycle

» A dispatch unit takes 2+ instructions from the head of queue in
every cycle, decodes them, sends them to appropriate execution
units

» A completion unit writes results to registers

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Fetch

unit l
<o Instruction queue
Arithmetic
unit
Dispatch .
pe Write
unit
results
Load/Store
unit
@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

4l rnes\p http://www.fitnesslab.eu/

Superscalar Operation

» Minimum superscalar arrangement consists of a Load/Store unit
and an arithmetic unit

» Because of Index mode address calculation, Load/Store unit has
a two-stage pipeline

» Arithmetic unit usually has one stage
» For two execution units, how many operands?
» Up to 4 inputs, so register file has 4 read ports

» Up to 2 results, so also need 2 write ports
(and methods to prevent write to same reg.)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Clock cycle 1
Add R2,R3,#100
Load RS, 16(R6)
Subtract R7, R8, R9

Store R10, 24(R11)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Branches and Data Dependencies

» With no branches or data dependencies, interleave arithmetic &
memory instructions to obtain maximum throughput (2 per
cycle)

» But branches do occur and must be handled

» Branches processed entirely by fetch unit to determine which
instructions enter queue

» Fetch unit uses prediction for all branches

» Necessary because decisions may need values produced by other
instructions in progress

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Branches and Data Dependencies

» Speculative execution: results of instructions not committed until
prediction is confirmed

» Requires extra hardware to track speculation and to recover in
the event of misprediction

» For data dependencies between instructions, the execution units
have reservation stations

O They buffer register identifiers and operands for dispatched
Instructions awaiting execution

» Broadcast results for stations to capture & use

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Out-of-Order Execution

» With instructions buffered at execution units, should execution
reflect original sequencing?

» If two instructions have no dependencies, there are no actual
ordering constraints

» This enables out-of-order execution, ...

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

— Time—

)
N

Clock cycle I 2

Add R2,R3, #100

I Tfthe fnemory

access requires
more then 1
cycle, the Load
finishes after the
following
subtract

Load RS, 16(R6)

Subtract R7, R8, R9

Flpfcyw
Store R10, 24(R11) n

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Out-of-Order Execution

» With instructions buffered at execution units, should execution
reflect original sequencing?

» If two instructions have no dependencies, there are no actual
ordering constraints

» This enables out-of-order execution, but then leads to imprecise
exceptions in program state

O for example the load can generate an error while accessing a
non aligned word but the subtract has already changed the
value of R7

» For precise exceptions, must commit results strictly in original
order with extra hardware

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
_ http://www.fitnesslab.eu/

Load instructions, predictions, and
forward to the execution unit

Reservation

Reservation

Station (Stazione Station (Stazione
di prenotazione di prenotazione

Integer

Floatin
g Point

Reservation
XX W Station (Stazione
di prenotazione

ReOrder

Buffer (buffer
di riordino)

Commitment Unit

\\

Stores Instructions
and operands until all
needed operands are
ready... then sends the

instruction to the
execution unit

Results are send to
the Reservation
Stations where they
are needed and to the
Reorder Buffer

The Fault and Intrusion Tolerant N

The CU delivers results,

according to the instructions
order, by making their results

permanent. Results are

reordered by using a specific

buffer

up

http://www.fitnesslab.eu/

Execution Completion

» To commit results in original program order, superscalar
processors can use 2 techniques

» Register renaming uses temporary registers to hold new data
before it is safe for final update

O Can be less than the real registers (and allowed upon
requested)

» Reorder buffer in commitment unit is where dispatched
instructions placed in strict order

» Update the actual destination register only for instruction at
head of queue in reorder buffer

» Ensures instructions retired in original order

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Dispatch Operation

» Dispatch of instruction proceeds only when all needed resources
available (temp. register, space in reservation station & reorder

buffer)

» If instruction has some but not all resources, should a
subsequent instruction proceed?

O E.g. the LOAD execution unit is full, can the Subtract be send
for execution?

» Decisions must avoid deadlock conditions
(two instructions need each other’s resources)

» More complex, so easier to use original order, particularly with
more than 2 execution units

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Pipelining in CISC Processors

» Load/Store architecture simplifies pipelining; influenced
development of RISC processors

» CISC processors introduce complications from instructions with
multiple memory operands and side effects (autoincrement,
cond. codes)

O More words for a single instruction, Valiable length
instructions,

» But existing CISC architectures later pipelined (with more effort)
after development of RISC

» Examples: Freescale ColdFire and Intel 1A-32

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Intel 17 Pipeline (

128 Entry
Inst. TLB
(4-way)

Instruction
Fetch
Hardware

32KB Inst. Cache (4-way associative)

16Byte Pre-Decode + Macro-Op
Fusion, Fetch Buffer

18 Entry Instruction Queue

Complex

Macro-Op

‘ Decoder

Simple
Macro-Op
Decoder

Simple
Macro-Op
Decoder

Simple

Decoder

28 Entry Micro-Op Loop Stream Detect Buffer

Macro-Op

Cache

‘ Macro-Op Handling |

Macro-Op Decode
and Loop Stream
Detect

Execution Engine
including Out of
Order Hardware

New or Improved
For Nehalem

Hao i A
D
-,
2 & Reorder B e
b Reservatio atio
i £
£ i
A
D
i A
Store
]
=18 0]) = =18
B (4-wa e (8-wa
. aMB A ore ared anc : ore Arbite a eg E and
ache (16-way associative O DOWE ere

Concluding Remarks

» Pipelining overlaps activity for 1 instr./cycle
» Combine it with multiple instruction issue
in superscalar processors for >1 instr./cycle

» Potential performance gains depend on:
O instruction set characteristics
O design of pipeline hardware

O ability of compiler to optimize code

» Interaction of these aspects is a key factor

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

