
Prof. Francesco Montefusco Automatic Control Systems 2024/25

Course of 
“Automatic Control Systems”

2024/25

Harmonic response function

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences

Università degli studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it 

Team code: tz3jpwb



Prof. Francesco Montefusco Automatic Control Systems 2024/25

Transient and Steady-state

ñ Let us consider an asymptotically stable LTI system.

ñ Given an input signal 𝑢 𝑡  and an initial condition 𝑥(0), we define 

ò steady-state response 𝒚𝒔𝒔(𝒕),  the regular behavior of the total response  
y(𝑡) (if exist) after an infinite time from the application of the input.

ò transient response 𝒚𝒕(𝒕),  the difference between the total response of 
the system and the steady-state response 𝒚𝒕 𝒕 = 𝒚 𝒕 − 𝒚𝒔𝒔 𝒕 .
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Transient and Steady-state

ñ The steady-state response of asymptotically stable system is independent 
from the initial condition. 

ñ It depends on the particular input applied to the system
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Step response: Transient and Steady-state 

ñ The step response is characterized by "decaying" exponential functions related 
to the system evolution modes and a constant value

ñ The "decaying" exponential functions determine the transient part of the 
response while the constant term is the steady-state value. 
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Step response: Transient and Steady-state 

5
t [s]

ñ Different evolution modes determine different transient responses.
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Response at sinusoidal inputs of LTI systems
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Let assume a first 
order LTI system:
𝑦̇ 𝑡 + 2	𝑦 𝑡
= 𝑢 𝑡

Compute the response 
to the following signals:

• 𝑢# 𝑡 = sin 𝑡

• 𝑢$ 𝑡 = sin 5𝑡

𝑢! 𝑡

𝑢" 𝑡

𝑦" 𝑡

𝑦! 𝑡
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Response to sinusoidal inputs of LTI systems
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Total response of system 𝑊(𝑠) ⁄= 1 (𝑠$+𝑠 + 1) to the input 𝑢 𝑡 = sin 2𝑡 ⋅ 1 𝑡 .    
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Steady state response at sinusoidal inputs

ñ Let us consider an asymptotically stable LTI system with a transfer function 𝑊 𝑠  
subject to a sinusoidal input signal

ñ The evaluation of the steady state response of LTI system to sinusoidal inputs is very 
interest taking into account that any periodic signal, 𝑓 𝑡 = 𝑓 𝑡 + 𝑇 , with period T 
(𝜔% =

$&
'
), can be decomposed in the sum of a finite or infinite sinusoids  by means 

of the Fourier series, as   

ñ In this case, the frequency spectrum (i.e., the coefficients of the Fourier series) of the
signal is discrete (i.e., it is defined only a certain frequencies)

ñ An aperiodic signal can be analysed in the frequency domain by applying the Fourier
transform, defined as ℱ 𝜔 = ∫()

*)𝑓(𝑡)𝑒(+,- 𝑑𝑡. The spectrum becomes a
continuous function of 𝜔 (i.e. defined for all the frequency values).
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Steady state response at sinusoidal inputs

ñ It is possible to prove that the steady state response of an LTI system with 
transfer function 𝑊 𝑠  to a sinusoidal inputs 𝑢 𝑡 = U%sin(𝜔%𝑡 + 𝜙) can 
be written in the time domain as

where

ò |𝑊 𝑠 |./+,! is the magnitude of the Laplace transform of 𝑊 𝑠  
evaluated in 𝑠 = 𝑗𝜔%.

ò ∠𝑊 𝑠 |./+,! is the phase of the Laplace transform of 𝑊 𝑠  evaluated 
in 𝑠 = 𝑗𝜔%.
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The function 𝑊(𝑗𝜔)  is called 
harmonic response function of  the system.
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Filters

ñ The proposed result can be summarized as follows:

ò The magnitude of a sinusoidal input signal 𝑢 𝑡 = sin(𝜔%𝑡 + 𝜙) is 
amplified or reduced  by a linear system depending on the value of 
|𝑊 𝑠 |./+,! .

ò An input signal 𝑢 𝑡 = sin(𝜔%𝑡 + 𝜙) is phase shifted by a linear 
system depending on the value of  ∠𝑊 𝑠 |./+,! .

ñ In other terms, a linear system can be designed as a filter able to amplify 
without distortion a certain set of input signals Ω# and reduce or eliminate  
another signals.

ñ Possible structures of filters will be discussed in the following lessons.
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Let us consider input signal 
belonging to the class of  complex 
exponential functions:

• 𝑢 𝑡 = 𝑒.-, 𝑠 = 𝛼 + 𝑗𝜔

• 𝑒.- = 𝑒(1*+,) -
Recall that 

= 𝑒1- cos 𝜔𝑡 + 𝑗 sin 𝜔𝑡

Many signals may be written as 
a linear combination of  complex 
exponential functions.

LTI: 𝒚̇ 𝒕 + 𝟐	𝒚 𝒕 = 𝟑𝒖 𝒕

LTI system response to exponential inputs

After an initial transient, the 
LTI response is proportional to 
the input (i.e. exhibits the same 
form of  the input).
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𝑥̇ 𝑡 = 𝐴	𝑥 𝑡 + 𝐵𝑢 𝑡

𝑦 𝑡 = 𝐶	𝑥 𝑡 + 𝐷	𝑢 𝑡

𝑠𝑋 𝑠 − 𝑥% = 𝐴	𝑋(𝑠) + 𝐵𝑈(𝑠)

𝑌 𝑠 = 𝐶	𝑋(𝑠) + 𝐷𝑈(𝑠)

ℒ

• A SISO system of n-th order, t0=0, x(0)=x0:

𝑋 𝑠 = (𝑠𝐼 − 𝐴)(#	𝑥%+(𝑠𝐼 − 𝐴)(#𝐵	𝑈(𝑠)

𝑌 𝑠 = 𝐶(𝑠𝐼 − 𝐴)(#𝑥% + 𝐶(𝑠𝐼 − 𝐴)(#𝐵 + 𝐷 	𝑈(𝑠)

𝑊 𝑠 = 𝐶(𝑠𝐼 − 𝐴)(#𝐵 + 𝐷

Yf
Yl

• For exponential input: 

𝑢 𝑡 = 𝑒2-	, 𝑡 ≥ 0 𝑌3 𝑠 = 𝑾 𝑠 𝑈 𝑠 = 𝑊 𝑠
1

𝑠 − 𝜆 = ⋯+
𝑘

𝑠 − 𝜆

⋯+ 𝑘𝑒2-
ℒ(#

ℒ

LTI system response to exponential input
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• Initial condition x(0) that nullifies the evolution modes

𝑥 𝑡 = 𝑥(0)𝑒2-

𝑥̇ 𝑡 = 𝐴	𝑥 𝑡 + 𝐵𝑢 𝑡 𝜆𝑥(0)𝑒2- = 𝐴𝑥(0)𝑒2- + 𝐵𝑒2-

By using the state equation

𝜆𝐼 − 𝐴 𝑥 0 = 𝐵 𝑥 0 = 𝜆𝐼 − 𝐴 !"𝐵, if  𝜆 is not an eigenvalue of  A

𝑥 𝑡 = 𝑥(0)𝑒#$ = 𝜆𝐼 − 𝐴 !"𝐵𝑒#$ , 𝑡 > 0	
Then,

𝑦 𝑡 = 𝐶	𝑥 𝑡 + 𝐷	𝑢 𝑡 =𝐶 𝜆𝐼 − 𝐴 !"𝐵𝑒#$ + 𝐷𝑒#$ = 𝐶 𝜆𝐼 − 𝐴 !"𝐵 + 𝐷 𝑒#$= 𝑾(𝝀)𝑒#$ .

If  the system is asymptotically stable, 𝑦(𝑡) = 𝑾(𝝀)𝑒#$,

these functions represent the asymptotic movements of  the state and the 
output of  the system, for any initial condition x(0).

𝑥 𝑡 = 𝜆𝐼 − 𝐴 !"𝐵𝑒#$ ,

LTI system response to exponential input
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• Y𝑥 𝑡 = 𝑥(0)𝑒+,- = 𝑗𝜔𝐼 − 𝐴 (#𝐵𝑒+,-, 𝑡 > 0	

F𝐨𝐫	 Y𝑢 𝑡 = 𝑒+,-,

• Y𝑦 𝑡 = 𝐶	𝑥 𝑡 + 𝐷	𝑢 𝑡 = 𝐶 𝑗𝜔𝐼 − 𝐴 (#𝐵𝑒+,- + 𝐷𝑒+,-	
              = 𝐶 𝑗𝜔𝐼 − 𝐴 (#𝐵	 + 𝐷 𝑒+,- = 𝑊(𝑗𝜔)𝑒+,-

= 𝑊 𝑗𝜔 𝑒+456 𝑾 +, 𝑒+,- = 𝑾 𝑗𝜔 𝑒+ ,-*456 𝑾 +,

For a sinusoidal input, 

𝑢 𝑡 = sin(𝜔𝑡) , 𝑡 ≥ 0, 𝜔 = $8
9

,

we exploit the results achieved for an exponential input.

Indeed, sin 𝜔𝑡 = Im 𝑒%&$ . R𝐞𝐜𝐚𝐥𝐥	𝐭𝐡𝐚𝐭	𝑒+,- = cos 𝜔𝑡 + 𝑗 sin 𝜔𝑡 .

if  A  without eigenvalues in ±𝑗𝜔,

𝑥 0 = 𝑗𝜔𝐼 − 𝐴 !"𝐵, such that the movements of  the state and the output:

then there is an initial state

Recall that z= 𝑎 + 𝑖𝑏 = 𝑟 cos 𝜃 + 𝑖sin 𝜃 = 𝑟𝑒%' with 𝜃 = arg 𝑧 = tan!" (
)
+ 2𝑘𝜋 

LTI system response to sinusoidal input
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𝑾 𝑗𝜔% = 𝐶 𝑗𝜔%𝐼 − 𝐴 (#𝐵 + 𝐷,

𝑌 = |𝑊 𝑗𝜔% |𝑈,

Y𝑥 𝑡 = 𝑗𝜔𝐼 − 𝐴 (#𝐵𝑒+,-,	 Y𝑦 𝑡 = 𝑾 𝑗𝜔 𝑒+ ,-*456 𝑾 +, , 𝑡 > 0

These functions represent the asymptotic movements, for LTI asymptotically 
stable with d𝒖 𝒕 = 𝒆𝒋𝝎𝒕.

For 𝑢 𝑡 = sin(𝜔𝑡) = Im 𝑒+,- , then

𝑥 𝑡 = Im Y𝑥 𝑡 , 𝑦 𝑡 = Im Y𝑦 𝑡 = 𝑾 𝑗𝜔 sin 𝜔𝑡 + arg 𝑾 𝑗𝜔 , 𝑡 > 0

𝑢 𝑡 = 𝑈 sin 𝜔%𝑡 + 𝜑 , 𝑡 > 0,

𝑦 𝑡 = 𝑌 sin 𝜔%𝑡 + 𝜓 , 𝑡 > 0
there is an initial state such that the output is a sinusoidal signal: 

𝜓	 = 𝜑 + arg 𝑾 𝑗𝜔% .

with

where and

If  the system is a.s. y(t) (and  x(t)) represents the asymptotic movement of  the 
output (state). 

LTI system response to sinusoidal input

In general for 
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Harmonic response function 

ñ This result underlines the importance of the harmonic response function 
𝑊(𝑗𝜔) for the analysis of the forced response of LTI systems.

ñ In the following we present a method able to rapidly evaluate the magnitude 
and the phase 𝑊(𝑗𝜔) as a function of 𝜔: Bode diagrams 
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W(jw) general form

ñ Bode diagrams allows to extract the magnitude and the phase of 𝑊(𝑗𝜔) as 
a function of 𝜔

ñ Bode diagrams are a main tool for the closed loop control design

ñ For the closed loop control problems, we will be interested to analyze 
magnitude and the phase of transfer functions 𝑊(𝑠), also in case of stable 
and unstable systems

ñ In that cases, 𝑊 𝑠 |./+, will be not the harmonic function.  
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W(jw) general form

ñ Given an asymptotically stable LTI system,  the harmonic response function  
𝑊(𝑗𝜔)  is given by the ratio of polynomial with real and complex conjugate 
roots
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