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Laplace transform definition

A The Laplace transform of a function f{#) is defined as

or L(f(t)) .
f(O) > F(s)=L(f(0) = | f()e "t

where t € R is a real variable, while s = @ + jw € C is a complex variable.

A Vice versa, given a function F(S) in the Laplace domain, the original function in
the time domain can be obtained using the Laplace anti-transformation

1 o+ jw

F(s)— f(t)=lim — IF(S)eStdS
a%»w:2ﬁg

o—jw

A The Laplace transform is a bilateral only if the function f(t) is null for t < 0
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Laplace transform main properties (1/2)

A Linearity

L (af (1) + bg(t)) =aF'(s)+bG(s)

A Translation in the Laplace domain
L(e”f())=F(s—a)

A Translation in the time domain

L(f(t-T))=F(s)e™’
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A Time domain integration

L@ f(r)drj _ EF(S)

A Time domain convolution

L(f(t)*g(t))=F(s)G(s)

Prof. Francesco Montefusco Automatic Control Svstems 2024 /25



Additional properties useful in control theory

A Initial value theovem

f(O)=lim__ sF(s)

A Final value theorem

lim_ f(¢)=lim_ sF(s)

A Indtial value theorem of the derivate of the function

L(t) = limst(S)—Sf(O)

dt |_, e

=
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Selected Laplace transforms

A In the system theory, we will mainly use the Laplace transform for the
evaluation of the forced response of L'TT systems to selected sets of input :

<+ Polynomial inputs u(t) =t"1(t)

<+ Sinusoidal inputs u(t) = sin(wt) 1(t)
u(t) = cos(wt)1(t)
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Selected Laplace transforms

-~

par(z) |

sca(r) ram(?) |
| ; 1

i 0.5
0 t 0 1 ¢ 0
a) b) c)
mp (1) imp(7) A
| /e
r
0 ) 0 £ I

Prof. Francesco Montefusco Automatic Control Svs



Selected Laplace transforms: polynomial

signals

A In otrder to evaluate the Laplace transform of polynomial signals, let us firstly
consider the Laplace transform of the impulse

+ Impulse (1) ——> L(0(t)) =1 (from the Laplace transform definition)

A Then, using the tzme domain integration property, we have

+Step 1) —— L(1(2)) 1
S

4 Ramp  t-1(2) L(t-1(2)) = iz
S

|
<+ Polinomial function t"-1(t) L(t ! -1(2)) = ’:

S+1
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Selected Laplace transforms: sinusoidal

signals

A The Laplace transform of sinusoidal functions

+ Sine  sin(wt)1(t) L(SiIl(C()f)' l(t)) = g2 fa)z
+ Cosine cos(wt)1(t) L(cos(wt)-1(¢)) = %
S 0,

A Finally, in the control theory the following transformations are of intetrest for the
definition of the Laplace domain of the evolution modes of LTT systems

L(e“1(1)) = —

s—a
L (e“t cos(wt)- l(t)) = _Sa_)f: ~
L(e“tsen (ot)- l(t)) = s— 03)2 e
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Example: Laplace transform of a window signal

u()=1()-1(t-1)

1(») 1(t-T)

A W 4
H
=\
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Example: Laplace transform of a window signal

A The Laplace transform of a window signal can be evaluated from the
Laplace transforms of two steps.

Lu@))=L(()-1(r-T))
= L(1(t))- L~ 7))
1 e 1-e

A) S \)
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Solution of first order linear differential

equation

Let us consider a first order differential equation, linear with constant coefficients,
y(6) + agy(t) = bou(t), y(te) = yo
By applying Laplace trasform, assuming a step input signal, «(£)=U,l(#), with
amplitude U,
L(y(t) + agy(t)) = L(boUp1(t))

Y(s) = L(y(®))

L(bUy1(t)) = bOSUO
= sY(s) — yo +ap¥(s) = bO—UO‘ Y(s) = boUo
Yo o S B s(s + ap)
Yfree onrced
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Solution of first order linear differential

equation

Yfree (t) = e_aotyol(t)

bUy A B

Y, S) = =—+
forcea(S) s(s+ag) s s+ag

Compute A and B by equating: Or by residual method:
A(s+ ag) + Bs
Yeorced(S) = L A= (s— O)onrced(s)lszO
/ s(s+ ap)
(A+ B)s + Aa, = lseo = _
— S + (04 (0 4)
s(s + agp)

bOUO
A= B=(s— (—ao))yf(s)lsz—ao

A+B =0 Ao
boU boU
:{Aa() =bU0 # _bOUO = 0 O|S:_a0 - — 0 O_

B =
aq S (04
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Solution of first order linear differential
equation

Then,

boUo

Ao

y(t) = Yfree(t) + onrced(t) = (e_aot:VO + (1 — e~ %t ) 1(1)
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Laplace Transform and Transfer function

A The analysis of LTI system is simplified by using Laplace transform.

A By exploiting the important property of the Laplace transform of the detivative of a
signal f(t) (with zero initial conditions, i.e. f(0) = 0)

L(f®)=sFes),

A Given the differential equation of a linear system, it is possible to find the transfer
function, G (), of that system, defined by
Y(s)
G(s) = ——
(s) =7 &)
A Then for a LTI system of first order described by
r y(t) + agy(t) = bou(t), y(0) = yo =0
sY(s) + agY(s) = byU(s)
Y(s)(s + ag) = boU(s)
Y(s) b
U(s) s+ag

G(s) =
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Laplace Transform and Transfer function

A Then, for a LTT system of second order described by
y(t) + a1y(t) + agy(t) = bou(t),y(0) =0,y(0) =0

L
s2Y(s) + aysY(s) + apY(s) = boU(s)
Y(s)(s? + ays + ag) = byU(s)
Y(s) _ bo

G(s) = —
(s) U(s) s?+4+a;s+ag

A Therefore, given the transfer function G(S) and the input u(t) with transfer
function U(s), the output is the product

Y(s) = G(s)U(s)

A Using Laplace transforms, the output Y(s) can be expanded into its elementary
terms (ie., the sum of well-known transforms of selected/common
signals/functions) by partial fraction expansion: therefore, it is possible to rewrite
Y (s) as a sum of terms for which is known the anti-transformation; the total time
function y(t) is given by the sum of these anti-transformation terms.
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Laplace Transform and Transfer function

A Using Laplace transforms, the output Y (S) can be expanded into its elementary terms
(i.e., the sum of well-known transforms of selected/common signals/functions) by
partial fraction expansion: therefore, it is possible to rewrite Y(s) as a sum of terms
for which is known the anti-transformation; the total time function y(t) is given by
the sum of these anti-transformation terms.

Y(s)= Yi(s)+ Yo(s)+--
-1 -1

r-1 L l L l

y®) = @+  y(t) + -
Y; as,
A1 r-1
Yi(s) ==y =A4-1(); Vi) = ——— i) = A4-e¥1(D)
Yi(s) = G oc§v2+a)2 = y;(t) = e* sin(wt) 1(t)
S—a L1
Yi(s) = > y;i(t) = e* cos(wt) 1(t)
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Evaluation of an LTI system response

A Tet us consider a Linear Time Invariant (IL'TT) system in the state space form
x(t) = Ax(t) + Bu(t), x(ty) = xg (1.2)
y(t) = Cx(t) + Du(t) (1.b)

A The Evaluation of an LTT system response in a transformed domain is convenient

HARD -

EASY EASY

only if

EASY
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LTI systems in the Laplace domain

A Tet us indicate with X(s),U(s) and Y(S) the Laplace transforms of the
signals x(t), u(t) and y(t).

Transforming both the sides of the equation (1a),

L(x(t)) = L(Ax(t) + Bu(t))

using the time domain dertvation property of the Laplace transform, a linear
system in the Laplace domain can be written has

sX(s)—x,=AX(s)+BU(s)
we have

(S] — A)X(S) =x, +BU(s)

and

X(s) = (sl —A)txyg+ (sI —A)~1BU(s)

The matrix function ®(s) = (sI — A) ™ Lis called Transition matrix, then

X(s) = d(s)xy + P(s)BU(s)
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Recall: Inverse of a matrix

its inverse is defined as

T

] cof(A,r11) ... cof(A ;)

~ det(A)

A1 : : :
cof(A,r;1) ... cof(A, x;;)

where the cofactor is
cof(4,i, j)=(~1)"/ det(minor(A4,i,))

and the minor (i, J) is the determinant of the matrix obtained excluding the
row [ and the column j.
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A Given a matrix

1ts inverse 1S
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1ts inverse 1S

det(A)

An A A
Ag]_ A')') A23
An Az A
A2 A
Azy Asg
n An A
Az Asg
A A
Az Ag
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Transition matrix

e For the Transition matrix ®(s) = (s — A)_l
o Fach element is a rational function in s variable:

» denominator of degree n given by det(sl — A) = py(s),

whose roots are the eigenvalues of A.

» numerator of element (i,j) corresponds to the algebraic
complement of element (j,1) which by construction is a
degree at most #-1

‘ D;:(s) = w N(s) of degree at most n-1
4 - D(s) D(s) of degree N,
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LTI systems in the Laplace domain

A Transforming both the sides of the equation (1b), we have
Lly(®)) = L(Cx(t) + Du(t)) & Y(s) = CX(s) + DU(s)

A and by substituting the previous equation, X(s) = ®(s)xg + P(s)BU(s)
Y(s) = CP(s)xy + CP(s)BU(s) + DU(s)
Y(s) = CP(s)xg + (CP(s)B + D)U(s)

A The matrix function G(s) =CP(s)B+D =C(sl —A)" 1B is called
transfer function, therefore

Y(s) = COP(s)xg + G(s)U(s)

A For Single Input Single Output (SISO) systems the transfer function G (s)

is a scalar function;

A For Multiple Input Multiple Output (MIMO) systems the transfer
function G(s) is a matrix whose element G(s);j will connect the output i
with the input j.



Transfer function

* For the Transfer function G(S) = CCD(S)B + D = C(SI — A)_lB + D

N(s) N(s) of degree at most n-1
¢ . S — — g
Y (s) D(s) D(s) of degree n,

G(S) is a rational function in s variable:

Am ST +am_q ST 1+-+a, s+ag
b, s"+a,,_1 s 1+---+b; s+b,

G(s) =

» Since the multiplication on the left of @(s) by C and the one on the
right by B correspond to a linear combination of d(S) elements, all
with the same denominator, i.e. det(sl] — A), then all the elements of
CP(s)B are rational functions in s with a denominator polynomial
of degree 7 and a numerator of degreem < n — 1:

» If D=0, m < n, the system is said strictly proper.

» If D# 0, m = n, the system is said proper.
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x=(_22

y = (0.5

G(s)=

_(1)'5) x + (
0.5)x

!

s+2

s”+2s+3

() ()
y=(-15 —-1.25)x+u
G(s) = s°+ s

s’ +4s5+5
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Transfer function

A Given a transfer function

N(G) aps™+a,_1s™t+-+a;s+ag
D(s) b,s"+a,_4S"14+--+b;s+bg

G(s) =

A The roots of the N(S) are said geros.
A The roots of the D(S) are said poles.

A The polynomial D(s) is defined as D(s) = det(sI — A) , hence
<+ D(s) coincides with the characteristic polynomial of the system

<+ the poles coincide with the eigenvalues of the system except for
possible pole-zero cancellation
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LTI systems in the Laplace domain

Then, for a LTI system, by Laplace transform the state equation:
L(x(t)) = L(Ax(t) + Bu(t)), x(ty) = x, =)
) sX(s)—x,=AX(s)+BU(s) mm) (S]—A)X(S) =x, +BU(s)

X(s)=(sI - A)_1 Xy + (s — A)_1 BU(s)
I X(s)= x, +D(s)BU(s)
Transition matrix

By Laplace transform the output equation: L(y(t)) = L(Cx(t) + Du(t))
Y(s)=CX(s)+DU(s)
- =CD(s)x, + CDO(s)BU(s)+ DU(s)

= CO(s)x, ((CO(5)B+ DYU(s)
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Laplace antitransform

A For SISO systems the free evolution in the Laplace domain is given by the
ratio of polynomial functions

Yiree (s) = CP(s)x

A This is also true for the forced evolution in case we restrict our attention to
the case of polynomial and sinusoidal inputs

onrced(s) = G(s)U(s)

A Tt is convenient to antitransform Y (s) by reducing the ratio of high degree
polynomial functions to the sum of selected signals transform such as

L(e"” cos(a)t) - l(t)) = (s —Sa_)2a+ e L(e‘”sen (a)t) - l(t)) = (S B a)2 g
ot 1
L(e”1(1)) = E
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Laplace antitransform

A Different methods can be used to reduce the ratio of high degree polynomial
functions to the sum polynomial functions of degree one or two, such as zke
residual method (see the book for details).

Residual method for veal and distinct eigenvalues
(see the book for the other cases)

N(@) _ _ N@)

F($) =36 = a0

p; # pjfor L #j

A In case of real and distinct eigenvalues, F(S) can be also written as

no A
F(s) = 2 l
i=1S — Pi

where A = lim (s — p)F(s). Hence
S—Pk
f@®) = A; e’
=1
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LTI system, first order, strictly proper (d=0)

onsider a first order differential equation, linear with constant coefficients,
y(t) + agy(t) = bou(t), y(to) = o

that can be described by LTI system as
x(t) = ax(t) + bu(t), x(ty) = xq

y(t) = x(t)
Note that b = by, a = —ag, X9 = Yo

By Laplace transform
Y(s) = X(s) = ®(s)xo + G(s)U(s),
Where

d(s) = 5,6(5) = d(s)b = p—

Then, Y(S)see
X
Y (S) \ Y(S ) forced
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LTI system, first order, strictly proper: free

and force responses
1

-1 S —
L T Ta

Yo _t
D yree(t) = ey 1(t) = e Ty 1(t)

S—da

Yfree (s) =

t) = Uyl(t
u(t) = Up1(t) bU, 1 B

onrced(s) = (s — a) =3 + s _ g
Compute A and B by imposing Or by residual method:
the equality :
v B A(s—a) + Bs A=(s— O)onrced(s)lszO
forced(S) = s(s — ) B bU, - bﬂ
(A + B)s — Aa _S—alszo_—a'

— bU
s(s—a) L)

A+B =0
—Aa=bU0

— B = (s — Y (5)ls=a
) bl _ Do, _bUp

. s |s=a a
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LTI system, first order, strictly proper: free

and force responses

b, 4 B 2o 2D
0 —a a
Y, S) = = — 4 = —+
rorcea(s) ss—a) s s—a s s-—a
By denoting with G =_£a,1' = —% GoUy GoUy
onrced(S) = s s_g

t

L -1
‘ yforced(t) = GOUO(1 — 6_%)1@),

Then,

Y(t) = Yfree(t) + yforced(t) = (e_%J’O + GOUO(1 _ e_%) ) 1(t)
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LTI system, first order, strictly proper: free

response
yoe ' o
x(t) = ax(t) + bu(t) Vo
y(t) = x(t)
x(to) = x9
u(t) =0
_t
:Vfree(t) — € 1Y
5%}'c
1 : ‘ "
¢ 37 46T t
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LTI system, first order, strictly proper: step

response

yit) A
x(t) = ax(t) + bu(t) G, U,
y(t) = x(t) 0.956, U, _—1

x(ty) =0

u(t) = Uyl(t)
Vstep(®) = GoUo(1 — e D1(D),

3r 46T {
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LTI system, first order, strictly proper: step
response
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LTI system, first order, strictly proper: parameters

for the qualitative step response

A Initial value y(0) = 0
A Final value lim;_o y(t) = GyU,

A Settling time
+ tS 50 — 3T

+ tS 1% — 4.67

A Rise time t, = 2.21
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Example: mass-spring-damper system

* Input output representation

ut)=f)  My(t) + By(t) + Ky(t)=u(t)
¥(t)=s(1)

* State space representation
x,=s e x,—v=ds/dt

: -0

()= B)(E) (i) )

y=a o3)
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In general a second order system...as a

mass-spring-damper system

* Input output representation

y(t) + ary(t) + agy(t)=bu(t)

* State space representation X1 y
x;=y e x,=y=dy/dt 1 ( ) - ( )

()-8 )
y=(@1 0) (xz) 1

* Transition matrix * Transfer function
(s + a4 1) b
—ay S G(s) =
D(s) = () s2+ ays + ag

s+ aqs + ag

Y(s) = CP(s)xg+ G(s)U(s)



In general a second order system...

mass-spring-damper system

Y(s) = CP(s)xg+ G(s)U(s) Xo = (22)
—~ ~—
Y (S) free Y(S) forcea

(s + aqp)xqo + x20

- V(S)free = s2+aqs+ ay

b U,
s?+a;s+ayg s

Ug
U(s) = <’ Y(S)step =
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Characteristic equation ...

* The characteristic equation, s? + a{s + ag = 0, determines the evolution modes

Three cases:
» real and distinct poles
» real multiple poles

» complex conjugates poles

Prof. Francesco Montefusco
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Laplace Transform and Transfer function

» Real and distinct poles, terms as
1
S—a
corresponding to a real pole/real eigenvalue of the dynamic matrix

» Real multiple poles, a term as
1

(s —a)?

corresponding to a real multiple pole/eigenvalue of the dynamic

matrix
» Complex conjugates poles, terms as
w S—«&

or
(s—a)?+w? (s—a)?+w?

corresponding to a pair of complex conjugate poles/eigenvalues a + j@
of the dynamic matrix
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Laplace antitransform: example 1

CASE 1: real and distinct eigenvalues/poles
s—10 s —10
s24+75s+10 (s+2)(s+5)

Yeree (s) = CP(s)xg =

A Appling the residual method we have
Aq Az

Y, —
ree )=t G515
with
A, = li +2)Y, — im 2719
1 _5—1>I—nz (s )free(S) —S_l)r_nz st 5
_ - s—10
42 = sEI—nS (5 + 5)¥pree(s) = Sl_1>r_ns s+2 >
Hence

Viree(t) = (—4e™ %t 4+ 5e7°) - 1(1)
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Laplace antitransform: example 2

CASE 2: real multiple eigenvalues/poles

18
S24+65+9

U(s) with u(t) = 1(t)

Yrorced (s) =G(s)U(s) =

A This function can be written as the sum of three terms
18 A A A
= L 3 :
s(s+ 3) s (s+3) (s+3)

onrced (s) =

A The residual method can be applied to evaluate A and Az, while 4, can be
evaluated by substitution

Ay = sh—>nol sYrorcea(s) = 2 Az = lir% (s +3)* Yeorcea(s) = —6

S——

while A, = —2.
Hence, Yeorcea(t) = (2 —2e73t — 6te™35) - 1(t)
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Partial fraction decomposition for multiple poles

N(s) N Ki
F(s) = —
— ) =G —por Zl G = pyre T
A with 1 d¢1

s (6 — 1)l dst1 (8 = pi)" F($)|s=p,

ri Kl
‘ f(t) = 2 (r _l l)l tri_lepit
=1 ' '
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Laplace antitransform: example 2

...CASE 2: real multiple eigenvalues/poles

For
18 A A A
_ 4 2 3
s(s+3)2 s (s+3) (s+3)2

onrced (s) =

A, can be computed through residual method by

d d
A; = sll—>n3 ds (s + 3)2onrced(s) = ds (s + 3)2onrced(5)|s=—3=

d 18 18

- = ——- |y = =2
ds s |s—3 52 |S—3
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Laplace antitransform: example 3

CASE 3: complex conjugate eigenvalues/poles
s+ 3
(s? +4s+13)

Yeree (s) = CP(s)xg =

A 'This function can be written as the sum of two terms
s+ 3 s+2—-—2+3

(s2+45+4+9) ((s+2)2+32)

Yfree (s) =

S+2 1 3-1
(s+2)2+432 = 3(s+2)2+32

A Hence, Yfree (s) =

Viree(t) = (e‘Zt cos(3t) + %e‘z’fsin(%)) - 1(t)

Veree(t) = e (cos(3t) + %sin(St)) - 1(t)
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A A linear system is said stable if no evolution mode is divergent (only
convergent and constant evolution modes).

A Tt happens if all the eigenvalues of the matrix A (pole of G(S)) have a
negative or null real part and the eigenvalues with null real part have
multiplicity 1.

A In a stable system
< the free evolution doesn’t tend to infinity

<+ the free evolution doesn’t converge to Zero if the constant evolution
mode is excited
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Asymptotic stability

A A linear system is said asymptotically stable if all evolution modes are
convergent.

A Tt happens if all the eigenvalues of the matrix A (pole of G (s) have negative
real part

A In an asymptotically stable system

<+ the free evolution converges to ero
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A A linear system is said unstable if there is a divergent evolution mode.

A Tt happens if an eigenvalues of the matrix A (pole of G(S) have a real part
positive or an eigenvalue (pole) with null real part with multiplicity >1.

A In an unstable system

< the free evolution tends to infinity
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Stability analysis - Example 1

X = X+ U

y=|1 O]x

A In order to evaluate the eigenvalues of the matrix 4, we can calculate the
roots of the characteristic polynomial

A In Matlab, itis possible to use the command ezg(A)

A In this example we have p; = p, = —1.

A This system is asymptotically stable because it has all eigenvalues with
negative real part




Stability analysis - Example 2

A Let us consider the LTI system

S [o 17 [o
X = X+ u
-1 2] |1

y::l O]x

A In this example we have p; = p, = 1.

A The system is unstable because it has two eigenvalues with positive real part
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Stability analysis - Example 3

X = X+ u
_O —1 1

y = :1 O]x

A In this example we havep; =0, p, = —1.

A The system is stable because it has

A a null eigenvalue

A an eigenvalue with negative real part
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Stability analysis - Example 4

A Let us consider the transfer function of an LTT system

s+1
s*(s+5)

G(s) =

A This system is unstable because it has two null poles.
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Routh-Hurwitz criterion

A Routh-Hurwitz criterion is used to study the sign of the real patt of a
polynomial roots.

A Tt is particularly useful in case of high order polynomials ot polynomials
with uncertain parameters where the evaluation of the roots can be difficult.

A Routh-Hurwitz criterion is of interest to study the stability of LTT systems
both in the state-space form and in the Laplace domain

bs"+b s"'+.. . +b
LV _ “m m—1 0
(S)_ n n—1

where the poles of W (s) coincide with the eigenvalues of the matrix A
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Necessary condition

A Let us consider a polynomial

D(s)=as"+a, s"" +...+a,
and without loss of generality let us assume that
+a, >0
+ag#0

A Stodola criterion (Necessary condition):

A necessary condition for the roots of the polynomial D(s) to have negative real
parts is that

sign(ay) = sign(aq) = --- = sign(a,).

This condition is also sufficient for polynomials of degreen = 1 ,n = 2.
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Routh table

A Let us consider the polynomial

D(s)=as"+a, s"" +...+a,

A The Routh table is defined as follows

1 a a 9
n an an_z an_4 cee bn_2 = ——det " &
an—l an—l an—3
n-l1| a,; a,; a,; cor
a a
n n—4
n-2 b n-2 b n-4 b n-6
an—l an—S
n-3 | ¢,; C,s e
n—1 n-3
n—2 n—4
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Routh table: Example

A Routh table, n + 1 rows and the last row has 1 element different from
Zero.

A Tet us define the Routh table of the function

fls)=s*+25> +3s +55+10

4 1 3 10
3 2 5 0
2 0.5 10 0
1 -35 0 0
0 10 0 0
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Routh criterion

n-1
n-2
n-3

A The roots of the polynomial D(S) have all negative real parts iff the
elements of the first column of the Routh table are all positive.

A Each sign variation of the element of the first column of the Routh
table correspond to a root of D(S) with a positive real part.
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Routh criterion: example

A Let us consider the polynomial
fls)=s*+25" +3s +55+10

A The Routh table of f(s) is

‘|7 i 10 0 Roots of f(s)
s 50 0 0.544 +j1.60
2 (o5 1000’ _______________________ 0.544 -j1.60
135, 000 | -L54+jL06
0ol10 0 o0 o [ 154+ 1.06
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Routh Criterion: uncertain parameters

A Let us consider a transfer function W (s) of an L'TT system where the poles
of W (s) depends on un uncertain parameter p,
s+1

w(s)=
) 25° +5ps* +(3+ p)s+1

A From the Routh table we have that

3 2 3+p 5p>0

2 5p 1 ‘ {5p2+15p—2>0

1 |5p*+15p—2 0 1
Sp

p>0
0 1 0 p<-3.13A p>0.128 ‘P >0.128
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Routh criterion: Singular Cases

A In the design of the Routh table two singular cases can be found
a) The first term of a row ts null

b) All the terms of a row are null

A In these cases, some mathematical manipulations of the Routh table
can be adopted. However, it 1s not of interest for this course.
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