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LTI systems in the time domain

ñ Linear time invariant (LTI) systems in the form 

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 ,  𝑥 𝑡! = 𝑥!	

 with 𝐴 ∈ 𝑅#×#, 	𝐵 ∈ 𝑅#×%, 	𝐶 ∈ 𝑅&×#, 	𝐷 ∈ 𝑅&×%, where 𝑥 𝑡  is the state 
vector, 𝑢 𝑡  is the input vector and 𝑦 𝑡  is the output vector of the system.
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Lagrange Formula

ñ Let us consider a Linear Time Invariant (LTI) system in the form

�̇� 𝑡 = 	𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ,	 𝑥 𝑡! = 𝑥!	
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 	 	 	(1)

The solution of the linear differential equation (1) defines the time 
evolution of the state variables and it is given by the Lagrange Formula

𝑥 𝑡 = 𝑒' ()(! 𝑥! + ∫(!
( 𝑒' ()* 𝐵	𝑢 𝜏 	𝑑𝜏,   𝑡 ≥ 𝑡!   (2)

ñ The time evolution of the outputs turns out to be 

      𝑦 𝑡 = 𝐶𝑒' ()(! 𝑥! + 𝐶 ∫(!
( 𝑒' ()* 𝐵	𝑢 𝜏 	𝑑𝜏 + 𝐷	𝑢(𝑡),   𝑡 ≥ 𝑡!  (3)
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Lagrange Formula

ñ Taking into account that 

𝑑
𝑑𝑡

7
+ (

, (

𝑓 𝑡, 𝜏 	𝑑𝜏 = 𝑓 𝑡, 𝑏 𝑡
𝑑𝑏 𝑡
𝑑𝑡

− 𝑓 𝑡, 𝑎 𝑡
𝑑𝑎 𝑡
𝑑𝑡

+ 7
+ (

, (
𝑑
𝑑𝑡
𝑓 𝑡, 𝜏 	𝑑𝜏

ñ Lagrange formula (2) can be easily verified by derivation (assuming 𝑡! = 0	)

�̇� 𝑡 =
𝑑
𝑑𝑡 𝑒'(𝑥! + 𝑒' ()( 𝐵𝑢 𝑡 + 7

!

(
𝑑
𝑑𝑡 𝑒

' ()* 𝐵	𝑢 𝜏 𝑑𝜏

= 𝐴𝑒'(𝑥! + 𝐵𝑢 𝑡 + 7
!

(

𝐴𝑒' ()* 𝐵𝑢 𝜏 𝑑𝜏

= 𝐴 𝑒'(𝑥! +7
!

(

𝑒' ()* 𝐵𝑢 𝜏 𝑑𝜏 + 𝐵𝑢 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
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Free and forced evolution of LTI systems

ñ The time evolution of the state and output variables can be conceptually 
divided in two parts, 

        𝑥 𝑡 = 𝑒' ()(! 𝑥! 	 + 	 ∫(!
( 𝑒' ()* 𝐵	𝑢 𝜏 	𝑑𝜏,   𝑡 ≥ 𝑡!        

 

      𝑦 𝑡 = 𝐶𝑒' ()(! 𝑥! + 𝐶 ∫(!
( 𝑒' ()* 𝐵	𝑢 𝜏 	𝑑𝜏 + 𝐷	𝑢(𝑡),   𝑡 ≥ 𝑡!                   

ñ The free evolution indicate the evolution of state and output vectors that 
would be obtained in the absence of input (𝑢(𝑡) = 0). 

ñ The forced evolution  indicate the evolution of state and output vectors that 
would be obtained in the presence of input and null initial conditions (𝑥! = 0)
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Free evolution, 𝑥! 𝑡 Forced evolution, 𝑥" 𝑡
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Free evolution: matrix A diagonalizable
ñ The free evolution of an LTI system  in the time domain is defined by the matrix 

exponential 𝑒'(.Generalizing the Taylor expansion of an exponential to the matrix 
case, we have 

𝑒- =>
./!

0
1
𝑖!𝑀

. = 𝐼# +𝑀 +
𝑀1

2! + ⋯

ñ In case the matrix 𝐴 has real and distinct eigenvalues, 𝜆., i=1,…,n, it is diagonalizable: 
it is possible to find a matrix TD, such that G𝑨=TD A TD

-1= diag{𝜆2, … , 𝜆#}. Then 
A=TD

-1G𝑨	TD and 𝑒'( turns out to be

Remark: 𝝀𝟏, 𝝀𝟐…𝝀𝒏 are the eigenvalues of the 𝑨 matrix, 𝑻𝑫 is the transformation 
(i.e., L𝒙 = 𝑻𝑫𝒙) that allows achieving a diagonal G𝑨 matrix.
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= 𝑇!"#diag '
$%&

'
𝜆#𝑡 $

𝑖! ,'
$%&

'
𝜆(𝑡 $

𝑖! ,⋯ ,'
$%&

'
𝜆)𝑡 $

𝑖!

= 𝑻𝑫"𝟏𝐝𝐢𝐚𝐠 𝒆𝝀𝟏𝒕, 𝒆𝝀𝟐𝒕… , 𝒆𝝀𝒏𝒕 𝑻𝑫.
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Free evolution: aperiodic and pseudo-
periodic modes

ñ The exponential terms,

𝒆𝝀𝒊𝒕	
are the modes of the system, named aperiodic modes

ñ In case of complex conjugate eigenvalues 𝝀𝒊 = 𝜶𝒊 + 𝒋𝝎𝒊 e Q𝝀𝒊 = 𝜶𝒊 − 𝒋𝝎𝒊,
the corresponding complex exponential function determines terms as 
follows:

     These latter modes are named pseudo-periodic modes.

7

𝒆𝜶𝒊𝒕 sin 𝝎𝒊𝒕	 , 𝒆𝜶𝒊𝒕 sin 𝝎𝒊𝒕	
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Free evolution: A is not diagonalizable

ñ In case of a non-diagonalizable A matrix (eigenvalues with multiplicity (𝜼) 
greater than one) we must resort to the Jordan form (see text for further 
information): the matrix G𝑨 has an almost diagonal structure, with the 
elements on the diagonal corresponding to the eigenvalues, with the 
addition of superdiagonal elements, Jordan miniblocks, which determine 
terms of the type

𝒕𝜼(𝟏𝒆𝝀𝒊𝒕, if 𝜆* ∈ ℝ,

or

𝒕𝜼(𝟏𝒆𝜶𝒊𝒕 sin 𝝎𝒊𝒕 + 𝝋𝒊  if 𝜆* ∈ 	ℂ

     where 𝜼 is an integer between 1 and the maximum size of the Jordan      
miniblocks associated with 𝜆..
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Summary: free evolution of LTI system

9

𝑥! 𝑡 = 𝑒+,𝑥-
𝑦! 𝑡 = 𝐶𝑒+,𝑥-

Ø 𝒆𝝀𝒊𝒕, in the case of  real and distinct eigenvalues; 

Ø 𝒆𝜶𝒊𝒕 sin 𝝎𝒊𝒕 + 𝝋𝒊 , in the case of  complex conjugate eigenvalues 
of  multiplicity one;

Ø 𝒕𝜼(𝟏𝒆𝝀𝒊𝒕, in the case of  real eigenvalues with multiplicity 𝜼	>1;

Ø 𝒕𝜼(𝟏𝒆𝜶𝒊𝒕 sin 𝝎𝒊𝒕 + 𝝋𝒊 in the case of  complex conjugate 
eigenvalues of  multiplicity 𝜼 >1.

• xl(t) ( and then yl(t)) is given by a combination of  terms as

• Analysis in the time domain
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Aperiodic evolution modes (1/3)

ñ An aperiodic mode is an evolution mode of a linear system related to a real 
eigenvalue of the matrix A of multiplicity 1. It can be written in the form 

         𝑒!!"

ñ Depending on the sign of the eigenvalue 𝜆., an aperiod evolution mode can be

ò convergent (𝜆. < 0) 

ò constant     (𝜆. = 0) 

ò divergent    (𝜆. > 0)

10
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Aperiodic evolution modes (2/3)

ò Convergent  aperiodic mode  

ò Constant  aperiodic mode  

ò Divergent aperiodic mode 

11

𝜆* < 0

𝜆* = 0

𝜆* > 0

t

t

t
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Aperiodic evolution modes (3/3)

ñ When the evolution mode is convergent it is possible to introduce a new 
parameter said time constant  of the mode defined as 

𝜏U = −
1
𝜆U

ñ The time constant gives us an information about the time needed before the 
convergent mode will be extinguished.

ñ It is straightforward to verify that 

ò After a time ̅𝑡 = 𝟑𝝉 the magnitude of the mode will be reduced to the 5% of 
the initial value

ò After a time Q𝑡 = 𝟒. 𝟔𝝉 the magnitude of the mode will be reduced to the 1% 
of the initial value
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Pseudo-periodic evolution modes (1/5)

13

ò Convergent  pseudo-periodic mode  

ò Constant  pseudo-periodic mode  

ò Divergent pseudo-periodic mode 

𝜶𝒊 = 0

𝜶𝒊 > 0

t

t

t

𝒆𝜶𝒊𝒕 𝜶𝒊 < 𝟎

𝒆𝜶𝒊𝒕

𝒆𝜶𝒊𝒕 sin 𝝎𝒊𝒕 + 𝝋𝒊
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Pseudo-periodic evolution modes (2/5)

ñ The pseudo-periodic mode is completely characterized by the pair of 
parameters (𝛼*, ω*) that represent the real part and the imaginary part 
of the complex conjugate eigenvalues.

ñ These parameters give direct information both on the exponential law 
that envelops the oscillation peaks (parameter 𝛼.) and on the angular 
frequency of the oscillations (parameter ω.).

ñ Frequently, instead of using these parameters, other pairs of parameters 
related to (𝛼., ω.) through simple relations are used, and that provide 
information more directly related to other characteristics of the 
response, especially in the case of convergent oscillatory motion.
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Pseudo-periodic evolution modes (3/5)

ñ For convergent pseudo-periodic mode,  the time constant  is defined as

𝜏* = − .
/"

 

ñ The parameter ω. is called the angular frequency of the system, while T, 
related to ω. by the relation T=2𝜋/ω., is called the oscillation period of the 
system.

ñ Sometimes, instead of the period T, the frequency f =1/T is specified.
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Evolution modes with distinct eigenvalues
(𝜼=1)

16

𝒆𝝀𝒕

𝒆𝜶𝒕𝒄𝒐𝒔 𝝎𝒕 + 𝝋
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Evolution modes with multiple eigenvalues
(𝜼=2)

17

𝒕𝒆𝝀𝒕

𝒕𝒆𝜶𝒕𝒄𝒐𝒔 𝝎𝒕 + 𝝋



Prof. Francesco Montefusco Automatic Control Systems 2024/2518

Natural frequency and damping factor

𝛼 =-𝜁𝜔0,

𝜔 = 𝜔0 1 − 𝜁1

The natural frequency is defined by
𝜔01 = 𝛼1 +𝜔1

and the damping factor

𝜁 = −
𝛼

𝛼1 +𝜔1

𝜔0 cos 𝜃 = 𝜁𝜔0

𝜁 = cos 𝜃

Other important parameters for pseudo-periodic mode  are  the natural 
frequency 𝜔0 and the damping coefficient 𝜁.



Prof. Francesco Montefusco Automatic Control Systems 2024/25

Pseudo-periodic evolution modes (5/5)

ñ The natural frequency 𝝎𝒏 is the oscillation frequency of the pseudo-
periodic mode when 𝛼 = 0.

ñ For convergent pseudo-periodic modes  the damping coefficient zÎ(0,1] 
while for divergent pseudo-periodic modes zÎ[-1,0)

ñ For convergent pseudo-periodic modes, the damping coefficient 𝜻 relates 
the oscillations of the pseudo-periodic mode to the time before the 
evolution will extinguish. For ζ ≪ 1

𝜻 = −
𝜶
𝝎𝒏

≅ −
𝜶
𝝎
=

𝑻
𝟐𝝅𝝉

≪ 𝟏

where 𝑇 is the oscillation period. Indeed, the number of the oscillation 
before the mode will extinguish  increases when 𝜻 becomes small. 

19

𝟏
𝟐𝜻

≅
𝟑𝝉
𝑻

# of oscillations 
before the mode will 
extinguish

𝜻 =
𝑻

𝟐𝝅𝝉
≅

𝑻
𝟔𝝉
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Forced response in the time domain

20

ñ Let us consider the forced response of an LTI system in the output   (𝑥! = 0)

      𝑦8 𝑡 = 𝐶 ∫!
( 𝑒' ()* 𝐵	𝑢 𝜏 	𝑑𝜏 + 𝐷	𝑢(𝑡),   𝑡 ≥ 𝑡!                   

ñ The evaluation of the forced response in the time domain is demanding due to 
the presence of the convolution product.

ñ Only in some particular case, such as the step response  𝒖 𝒕 = Q𝒖 ⋅ 𝟏(𝒕), it 
becomes straightforward

𝑦8 𝑡 = 𝐶7
!

(
𝑒' ()* 𝐵	i𝑢	𝑑𝜏 + 𝐷	i𝑢

= −𝐶𝐴)2𝑒' ()* 𝐵i𝑢 !
(
+ 𝐷	i𝑢

= 𝐶𝐴)2𝑒'(𝐵i𝑢 + [−𝐶𝐴)2𝐵 + 𝐷]	i𝑢

ñ In the other cases the forced response is evaluated in the Laplace domain

1

t

1(t)
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First-order LTI system

ñ For a first-oder LTI system in the form

�̇� 𝑡 = 𝑎𝑥 𝑡 + 𝑏𝑢 𝑡
𝑦 𝑡 = 𝑐𝑥 𝑡 + 𝑑𝑢 𝑡 ,  𝑥 𝑡! = 0 = 𝑥!	

the time evolution of the state variable in case of 𝒖 𝒕 = 8𝒖 ⋅ 𝟏(𝒕) is given

𝑥 𝑡 = 𝑒2,𝑥- +
.
2 𝑒

2,𝑏<𝑢 − .
2 𝑏<𝑢,   𝑡 ≥ 0

ñ The time evolution of the output turns out to be 

      𝑦 𝑡 = 𝑐𝑒./𝑥& + 𝑐
#
.
𝑒./𝑏C𝑢 − 𝑐 #

.
𝑏C𝑢 + 𝑑C𝑢,

= 𝑐𝑒./𝑥& − 𝑐
0
.
C𝑢 1 − 𝑒./ + 𝑑C𝑢

21

xl xf

yfyl
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Example of first order LTI system:

ñ For a first orer LTI, the time evolution of the output for 𝒖 𝒕 = Q𝒖 ⋅ 𝟏(𝒕)  is given by

     𝑦 𝑡 = 𝑐𝑒./𝑥& − 𝑐
0
.
C𝑢 1 − 𝑒./ + 𝑑C𝑢

𝒚𝒍 𝒕 = 𝑒(
#
$,𝑥- = 𝑒(

%
&𝑥-, with 𝝉 = − #

.
= 𝑺

𝒌
;

yfyl

𝒖 𝒕 = 𝒒𝒊(𝒕)
𝒚 𝒕 = 𝒉 𝒕 	

input:

output:

�̇� 𝒕 	= −
𝒌
𝑺
𝒙(𝒕) +

𝟏
𝑺
𝒖 𝒕

𝒚 𝒕 = 𝒙 𝒕

SS representation:
𝒙 𝒕 = 𝒉 𝒕 	state:

ñ In this case, 𝑎 = − 4
5
, 𝑏 = #

5
, 𝑐 = 1, 𝑑 = 0 ,

𝒚𝒇 𝒕 =
1
𝒌 C𝑢 1 − 𝑒"

4
7/

time 
constant

static
gain
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Example of second-order LTI system: mass-
spring-damper system

Problem:

For the mass-spring-damper system reported in figure, assuming  M=1Kg,
K=16 N/m, evaluate the evolution modes by varying B values [Ns/m] in
the interval 0 20 .

•  State space representation 
𝒙𝟏 = 𝒔, 𝒙𝟐 =

𝒅𝒔
𝒅𝒕
= �̇� = �̇�𝟏

�̇� =
�̇�𝟏
�̇�𝟐

=
𝟎 𝟏

−
𝑲
𝑴

−
𝑩
𝑴

𝒙𝟏
𝒙𝟐

+
𝟎
q𝟏 𝑴

𝒖,

𝒚 = 𝟏 𝟎
𝒙𝟏
𝒙𝟐



Prof. Francesco Montefusco Automatic Control Systems 2024/2524

Example of second-order LTI system: RLC circuit

Problem:

For the RLC circuit in series configuration, compute the input-output 
and state space representations.

Assuming  the capacity value C=1e-6 𝜇F, and the inductance value L=1e-3 
mH, compute the values of  R for which the system exhibits aperiodic and 
pseudo-periodic modes.

𝒖 𝒕 = 𝒗 𝒕 , y 𝒕 = 𝒗𝒄 𝒕

x1 𝒕 = 𝒗𝒄 𝒕 x2 𝒕 = 𝒊𝑳 𝒕
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𝑳𝑪�̈� 𝒕 + 𝑹𝑪�̇� 𝒕 + 𝒚 𝒕 = 𝒖 𝒕

𝒖 𝒕 = 𝒗 𝒕 , y 𝒕 = 𝒗𝒄 𝒕

Example of second-order LTI system: RLC circuit

x1 𝒕 = 𝒗𝒄 𝒕 x2 𝒕 = 𝒊𝑳 𝒕

�̇�𝟏 =
𝟏
𝑪
𝒙𝟐

�̇�𝟐 = −
𝟏
𝑳
𝒙𝟏 −

𝑹
𝑳
𝒙𝟐 +

𝟏
𝑳
𝒖

y= 𝒙𝟏

�̇� =
�̇�𝟏
�̇�𝟐

=
𝟎 q𝟏 𝑪

− q𝟏 𝑳 − q𝑹 𝑳
𝒙 +

𝟎
q𝟏 𝑳

𝒖

𝒚 = 𝟏 𝟎 𝒙 𝒙 =
𝒙𝟏
𝒙𝟐

State space representation:

Input-output representation:
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Appendix 1

INVERSE OF A MATRIX    𝑵×𝑵

26
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Inverse of a matrix

ñ Given a quadratic and invertible matrix 

     its inverse is defined as 

 

 where the cofactor is 

 and the minor (𝑖, 𝑗) is the determinant of the matrix obtained excluding the 
row 𝑖 and the column 𝑗.

27

( ) ( ) ( )( )A,i,jjiA ji minordet1,,cof +-=
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Inverse of a 2×2 matrix

ñ Given a matrix

 its inverse is

28

÷÷
ø

ö
çç
è

æ
=

dc
ba

A

÷÷
ø

ö
çç
è

æ
-

-
-

=-

ac
bd

bcad
A 11
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Inverse of a 3×3 matrix

ñ Given a matrix

 its inverse is

29
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Appendix 2

EIGENVALUES AND EIGENVECTORS
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Eigenvalues and eigenvectors

ñ Given a matrix 𝐴 ∈ 𝑅#×#, a scalar 𝛌 ∈ 𝑪 is said eigenvalue of the matrix 𝐴
if there exists a vector 𝒗 ∈ 𝑪𝒏, said eigenvector, such that

𝑨𝒗 = 𝝀𝒗

ñ Taking into account account that eigenvalues and eigenvectors of a matrix
verify the equation

(𝐴 − 𝜆𝐼)𝑣 = 0.

The eigenvalues can be found evaluating the roots of the characteristic 
polynomial 𝒑 𝝀 defined as

𝑝 𝜆 = 𝑑𝑒𝑡 𝐴 − 𝜆𝐼 .
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Examples

32

𝐴 = 0 −1
1 −2

𝒑 𝝀 = 𝝀𝟐 + 𝟐𝝀 + 𝟏𝒑 𝝀 = 𝝀𝟐 + 𝟑𝝀 − 𝟏0

𝝀𝟏 = 𝝀𝟐 = −𝟏

Eigenvalues

𝐴 = 1 2
3 −4

𝝀𝟏 =2,  𝝀𝟐 = −𝟓

Eigenvalues


