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Step response

ñ With the term step response or indicial response we indicate the forced 
response of an LTI system to a step input of unitary amplitude.

ñ The study of the step response is of interest for two important reasons

ò in many practical control problem, the input signal is constant or slowly 
time variant

ò for system whose mathematical model is unknown, the experimental 
step response can be used to identify a linear approximation of the 
model  

ñ In this course we will focus on the qualitative step response of a linear 
system assuming that the transfer function 𝐺(𝑠) is known.

2



Prof. Francesco Montefusco Industrial Control System Security 2024/25

Step response: asymptotically stable systems

ñ When the system is asymptotically stable, the step response is characterized by 
"decaying" exponential functions and a constant value

ñ The "decaying" exponential functions determine the transient part of the 
response while the constant term is the steady-state value. 

ñ The concept of transient and steady-state can be generalized to different classes 
of inputs and initial conditions. 

3

u(t)=1(t)



Prof. Francesco Montefusco Industrial Control System Security 2024/25

Step response: qualitative parameters

ñ When the system is asymptotically stable, the qualitative behavior of the 
step response can be described by a set of qualitative parameters:

ñ Initial value  

ñ Final value (steady-state value)

ñ Parameters indicating how rapidly the transient evolves and  decays: rise-
time, peak time, settling time

ñ Parameters indicating the behavior of the response during the transient: 
overshoot, number of oscillations
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Initial value of the step response

ñ The initial value of the system response to a step signal of amplitude 𝑈!, i.e. 
𝑢 𝑡 = 𝑈!1 𝑡 in the Laplace domain can be evaluated with the aim of the 
initial value theorem

𝑦 0 = lim
"→$

𝑠𝑌 𝑠 =

= lim
"→$

𝑠𝐺 𝑠
𝑈!
𝑠
=

lim
"→$

𝐺 𝑠 𝑈! =0
0,
≠ 0

ñ Applying iteratively the initial value theorem it is possible to evaluate the 
derivatives of the step response for  𝒕 = 𝟎. 

ñ The difference between the number of poles and zeros of 𝐺 𝑠 indicates
the number of null derivatives of 𝑦 𝑡 in 𝑡 = 0
ò 𝑛 − 𝑚 = 1 → 𝑦 0 = 0 , 𝑦̇(0) ≠ 0

ò 𝑛 − 𝑚 = 2 → 𝑦 0 = 0 , 𝑦̇ 0 = 0 , 𝑦̈(0) ≠ 0
5

for proper systems, i.e. 𝑫 ≠ 𝟎 
for strictly proper systems, i.e 𝑫 = 𝟎 
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Initial value of the first derivative

ñ Indeed, if 𝑚 < 𝑛, 𝑦 0 = 0,

𝑦̇ 0 = lim
"→$

𝑠 = lim
"→$

𝑠(𝑠𝑌(𝑠) − 𝑦(0)) = lim
"→$

𝑠%𝐺(𝑠)
1
𝑠

= lim
"→$

𝑠𝐺 𝑠 = 0 0, 𝑚 < 𝑛 − 1
≠ 0, 𝑚 = 𝑛 − 1
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Final value of the step response

ñ The final value of the step response in the Laplace domain can be evaluated 
with the aim of the final value theorem (see the properties of the Laplace 
transform)

ñ The final value theorem can be applied only to asymptotically stable systems 
and  input signal converging to a constant value

ñ For asymptotically stable system, the value 𝑮𝟎 = 𝑮 𝟎  is also said Static 
Gain of the system.
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lim
𝒕→3

𝑦(𝑡) = lim
4→𝟎

𝑠𝑌 𝑠 =

= lim
4→𝟎

𝑠𝐺 𝑠
𝑈5
𝑠
=

= lim
4→𝟎

𝐺 𝑠 𝑈5 = 𝑮(𝟎)𝑈5
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Qualitative parameters for the transient
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Step response: qualitative parameters

ñ Rise time 𝒕𝒓 : amount of time required for the signal to go from  10% to 
90% of its final value

ñ Steady-state value 𝒚𝒔𝒔 : asymptotic output value (it is constant for the step 
response and correspond to the final value)

ñ Overshoot 𝒔: maximum excess of the output w.r.t. the final value (can be  
defined as a percentage of the final value). In a normalized  overshoot is 
given by the maximum of the normalized output minus one. 

ñ Peak time 𝒕𝒑 : time required for the step response to reach the overshoot

ñ Settling time 𝒕𝒔 : amount of time required for the step response to stay 
within 5% (𝒕𝒔 𝟓%) or 1% (𝒕𝒔 𝟏%) of its final value for all future times
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First order system without zeros

ñ An asymptotically stable first order system without zeros has a transfer function in the 
form 

𝐺 𝑠 =
𝑏

𝑠 − 𝑝 =
𝑏

−𝑝 𝑠
−𝑝 + 1

=
𝐺!

1 + 𝑠𝜏 ,

𝑝 < 0, 𝐺! = 𝐺 0 =
𝑏
−𝑝

, 𝜏 = −
1
𝑝

ñ The quantitative value of the response to  a step signal (𝑢 𝑡 = 𝑈!1 𝑡 ) can be 
evaluated by computing

 𝑌 𝑠 = 𝐺 𝑠 -!
" =

.-!
" "/0 = 1

" +
2
"/0

By computing A and B by substitution or by residual methods: 𝑨 = .-!
/0 = 𝐺!𝑈!; 𝑩 = −𝐀

By antitransformation
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𝑦 𝑡 = 𝐺5𝑈5 1 − 𝑒
678 1 𝑡 	
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First order system without zeros

Evolution of step resonse for first order system without zeros (𝐺! = 1 , 𝜏 = 1)    
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First order system without zeros: 
parameters for the qualitative response

ñ Initial value 𝑦 0 = 0, 𝑦̇ 0 = 𝑏𝑈! =
3!
4
𝑈!

ñ Final value 𝑙𝑖𝑚5→$ 𝑦 𝑡 = 𝐺!𝑈!

ñ Settling time 

ò 𝑡! "% = 3𝜏

ò 𝑡! $% = 4.6𝜏

ñ Rise time 𝑡6 ≅ 2.2𝜏
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Second order system with real poles and no 
zeros

ñ An asymptotically stable second order system without zeros has a transfer function 
in the form 

𝐺 𝑠 =
𝑏

𝑠% + 𝑎7𝑠 + 𝑎!
=

𝑏
𝑠 − 𝑝7 𝑠 − 𝑝%

𝐺 0 = 𝐺! =
𝑏
𝑎!
=

1
𝑝7𝑝%

, 𝑝7 < 0, 𝑝% < 0

ñ The quantitative value of the response to  a step signal (𝑢 𝑡 = 𝑈!1 𝑡 ) can be 
evaluated by computing

𝑌 𝑠 = 𝐺 𝑠
𝑈!
𝑠
=

𝑏
𝑠 − 𝑝7 𝑠 − 𝑝%

𝑈!
𝑠
=

=
𝐾7

𝑠 − 𝑝7
+

𝐾%
𝑠 − 𝑝%

+
𝐾8
𝑠
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𝐾9 = 𝑠 − 𝑝9 𝑌𝑓 𝑠 |":0"

ℒ MN
𝑦? 𝑡 = 𝐺5𝑈5 1 +

𝑝@
𝑝A − 𝑝@

𝑒B!7 −
𝑝A

𝑝A − 𝑝@
𝑒B"7 1(𝑡)
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Second order system with real poles and no 
zeros

ñ The quantitative value of the response to  a step signal (𝑢 𝑡 = 𝑈!1 𝑡 ) is 
described by

ñ In terms of time constants,

𝐺 𝑠 =
𝑏

𝑠 − 𝑝7 𝑠 − 𝑝%
=

𝑏	

(−𝑝7)
𝑠
−𝑝7

+ 1 (−𝑝%)
𝑠
−𝑝%

+ 1
=

=
𝐺!

1 + 𝑠𝜏7 1 + 𝑠𝜏%
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𝑝A = − 51 𝜏A𝑝@ = − 51 𝜏@

𝑦? 𝑡 = 𝐺5𝑈5 1 +
𝑝@

𝑝A − 𝑝@
𝑒B!7 −

𝑝A
𝑝A − 𝑝@

𝑒B"7 1(𝑡)

𝑦? 𝑡 = 𝐺5𝑈5 1 −
𝜏A

𝜏A − 𝜏@
𝑒6

7
8! +

𝜏@
𝜏A − 𝜏@

𝑒6
7
8" 1(𝑡)ℒ MN
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Second order system with real poles and no 
zeros

15

t [s]
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Second order system with real poles and no 
zeros: parameters for the qualitative response

ñ Initial value 𝑦 0 = 0 , 𝑦̇ 0 = 0

ñ Final value 𝑙𝑖𝑚5→$ 𝑦 𝑡 = 𝐺!𝑈!

ñ Settling time 

ò 𝑡! "% = 3𝜏&'(

ò 𝑡! $% = 4.6𝜏&'(

ñ Rise time 𝑡6 ≅ 2.2𝜏;<=
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Second order system with two poles real and 
coincident

ñ An asymptotically stable second order system with two poles real and 
coincident has a transfer function in the form 

𝐺 𝑠 =
𝑏

𝑠 − 𝑝 % , 𝑝 < 0
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𝑌 𝑠 =
𝑏	𝑈0

𝑠 − 𝑝 @𝑠
=

𝐾A
𝑠 − 𝑝

+
𝐾@

𝑠 − 𝑝 @ +
𝐾C
𝑠

𝑦? 𝑡 = 𝐺5𝑈5 1 − 𝑒6
7
8 −

𝑡
𝜏
𝑒6

7
8 1(𝑡)

𝐾1 =
𝑑 𝑠 − 𝑝 %𝑌> 𝑠

𝑑𝑠
|":0 =

𝑑
𝑑𝑠

𝑏𝑈!
𝑠

|":0 = −
𝑏𝑈!
𝑠%

|":0 = −
𝑏𝑈!
𝑝%

= −𝐺!𝑈!

ℒ MN

𝑡4 A% = 6.6𝜏
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Partial fraction decomposition for multiple poles

ñ Note, in the case of multiple poles (with multiplicity 𝑟9),

𝐹 𝑠 =
𝑁(𝑠)
𝑠 − 𝑝9 6"

ñ with
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𝐹 𝑠 =
𝑁(𝑠)
𝑠 − 𝑝E F#

==
GHA

F# 𝐾EG
𝑠 − 𝑝E F#6GIA

𝑓 𝑡 ==
GHA

F# 𝐾EG
𝒓E − 𝑙 !

𝒕𝒓𝒊6𝒍𝒆𝒑𝒊𝒕
ℒ MN

𝐹 𝑠 |4HB#
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Second order system with two poles real and 
coincident

19

𝝉 = 𝟏 𝐬
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Second order system with real poles and one
zero

ñ An asymptotically stable second order system with one zero and two real 
negative poles  has a transfer function in the form 

ñ The analytic expression of the response to step signal 𝑢 𝑡 = 𝑈!1(𝑡) is given by

20

=
𝐾A

𝑠 − 𝑝A
+

𝐾@
𝑠 − 𝑝@

+
𝐾C
𝑠

𝐺(𝑠) =
	𝑏(𝑠 − 𝑧)

𝑠 − 𝑝A 𝑠 − 𝑝@
= 𝐺5

1 + 𝜏𝑠
1 + 𝜏A𝑠 1 + 𝜏@𝑠

,

ℒ MN

𝑝7 = − T1 𝜏7
𝑝% = − T1 𝜏%

𝑦? 𝑡 = 𝐺5𝑈5 1 −
𝜏A − 𝜏
𝜏A − 𝜏@

𝑒6
7
8! +

𝜏@ − 𝜏
𝜏A − 𝜏@

𝑒6
7
8" 1(𝑡)

𝑧 = − T1 𝜏

𝐾9 = 𝑠 − 𝑝9 𝑌𝑓 𝑠 |":0"

𝐺! = − T𝑏𝑧 (𝑝7𝑝%)

𝑌 𝑠 = 𝐺 𝑠 𝑈 𝑠 =
	𝑏(𝑠 − 𝑧)

𝑠 − 𝑝A 𝑠 − 𝑝@
𝑈5
𝑠
=
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Second order system with real poles and one
zero

ñ The behavior of the step response depends on the position of the zero wrt 
the two poles.

ñ In the following slide 3 possible cases will be shown:

ò a) Positive zero

ò b) Negative zero in the vicinity of the origin of the complex plane

ò c) Negative zero with an absolute value greater than the absolute values 
of the two poles

ñ By exploiting the initial theorem value:

21

𝑦 0 = lim
4→3

𝑠𝑌 𝑠 = 𝐺 𝑠 = 0

𝑦̇ 0 = lim
4→3

𝑠@𝑌 𝑠 = 𝑠𝐺 𝑠 = 𝐺5𝑈5𝜏/(𝜏1 𝜏2)
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Second order system with real poles and one
zero
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𝜇 = 𝐺5𝑈5

𝜏1=2, 𝜏2=1

Undershoot, more pronounced by increasing the absolute 
value of 𝝉 (i.e., positive zero closer to origin)
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Second order system with real poles and one
zero
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Overshoot, more pronounced by increasing the value of  𝝉 
(i.e., negative zero closer to origin)

𝜇 = 𝐺5𝑈5

𝜏1=2, 𝜏2=1
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Second order system with real poles and one
zero
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𝜏 ≈ 𝜏1 > 𝜏2

𝑦 𝑡 ≈ 𝐺5𝑈5 1 − 𝑒6
7
8" 1(𝑡)

𝜇 = 𝐺5𝑈5
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Second order system with real poles and one
zero

25

𝜏2 <𝜏< 𝜏1

𝜏1=2
𝜏2=1

𝜇 = 𝐺5𝑈5

If 𝜏 ≈ 𝜏2, then 𝑦 𝑡 ≈ 𝐺5𝑈5 1 − 𝑒
6 %
&! 1(𝑡) 
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Second order system with real poles and one
zero
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𝜏1> 𝜏2> 𝜏

𝜏1=2 
𝜏2=1

𝜇 = 𝐺5𝑈5

By decreasing 𝜏, the response is similar to the one without zero 
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Second order system with real poles and one
zero

27

t [s]
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Second order system with real poles and one
zeros: parameters for the qualitative response

ñ Initial value  𝑦 0 = 0	 , 𝑦̇ 0 ≠ 0 

ñ Final value  𝑙𝑖𝑚5→$	𝑦 𝑡 = 𝐺!𝑈!

ñ Settling time 

ò 𝑡!	"% = 3𝜏&'(

ò 𝑡!	$% = 4.6𝜏&'(

ñ Rise time 𝑡6 ≅ 2.2𝜏;<=

The settling time and the rise time also depend on the location on the zero. See 
the book for details  (drift phenomenon)
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Second order system with complex 
conjugates poles and no zeros

Let us assume an asymptotically stable second order system with t.f.

𝐺 𝑠 =
𝑏

𝑠% + 𝑎7𝑠 + 𝑎!

In the case of complex poles, 𝑠% + 𝑎7𝑠 + 𝑎! = 0 ↔ 𝑝 = 𝛼 + 𝑗𝜔, 𝑝̅ = 𝛼 − 𝑗𝜔 
with 𝛼 < 0 (i.e. asymptotically stable system), 𝑊 𝑠 	can be rewritten by 

𝐺 𝑠 =
𝑏

𝑠 − 𝑝 (𝑠 − 𝑝̅)
=

𝑏
𝑠% − 2𝛼𝑠 + 𝛼% + 𝜔% 

=
𝑏

𝑠 − 𝛼 % + 𝜔% 

and the relative response to a step function 𝑢(𝑡) = 𝑈!1 𝑡  is described by

𝑌 𝑠 = 𝐺 𝑠
𝑈!
𝑠
=

𝑏
𝑠% − 2𝛼𝑠 + 𝛼% + 𝜔%

\
𝑈!
𝑠
=
𝐴
𝑠
+

𝐵𝑠 + 𝐶
𝑠% − 2𝛼𝑠 + 𝛼% + 𝜔%

𝑦 𝑡 = 𝐺!𝑈! 1 −
1

sin 𝜃
𝑒?5 sin 𝜔𝑡 + 𝜃 1 𝑡 ,

where 𝐺! =
.
<!
= .

|0|#
= .

?#AB#
, and 𝜃 = tan/7 −B

?
.

29
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Natural frequency and damping factor

𝛼 =-𝜁𝜔M,

𝜔 = 𝜔M 1 − 𝜁@

The natural frequency is defined by
𝜔M@ = 𝛼@ +𝜔@

and the damping factor

𝜁 = −
𝛼

𝛼@ +𝜔@

𝜔M cos 𝜃 = 𝜁𝜔M

𝜁 = cos 𝜃

(see also the pdf  file regarding Analysis of LTI 
systems in the time domain – reported in the next 
slide)
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ñ The natural frequency 𝝎𝒏 is the oscillation frequency of the pseudo-
periodic mode when 𝛼 = 0.

ñ For convergent pseudo-periodic modes, the damping coefficient zÎ(0,1] 
while for divergent pseudo-periodic modes zÎ[-1,0)

ñ For convergent pseudo-periodic modes, the damping coefficient 𝜻 relates 
the oscillations of the pseudo-periodic mode to the time before the 
evolution will extinguish. For ζ ≪ 1

𝜻 = −
𝜶
𝝎𝒏

≅ −
𝜶
𝝎
=

𝑻
𝟐𝝅𝝉

≪ 𝟏

where 𝑇 is the oscillation period. Indeed, the number of the oscillation 
before the mode will extinguish  increases when 𝜻 becomes small. 

31

𝟏
𝟐𝜻

≅
𝟑𝝉
𝑻

# of oscillations 
before the mode will 
extinguish

𝜻 =
𝑻

𝟐𝝅𝝉
≅

𝑻
𝟔𝝉

Natural frequency and damping factor
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Second order system with complex 
conjugates poles and no zeros

ñ The transfer function can also be rewritten in terms of 𝜁 and 𝜔D (0 < 𝜁 < 1 
for an asymptotic stable system)

𝐺 𝑠 =
𝑏

𝑠% − 2𝛼𝑠 + 𝛼% + 𝜔% 

=
𝐺!𝜔D%

𝑠% + 2𝜁𝜔D𝑠 + 𝜔D%	

=
𝐺!

𝑠%
𝜔D%

+ 2𝜁
𝜔D

𝑠 + 1

 with 𝐺! =
.

?#AB#
= .

B$#
, and the analytic expression of the step response, 

evaluated with the antitransform of ⁄𝐺(𝑠) 𝑠 , is given by (𝑘 = 𝐺!𝑈!)
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Second order system with complex 
conjugates poles and no zeros

ñ The behavior of the responce strongly depends of the value of x. In the 
following slide 3 possible cases will be shown:

ò x<<1 (x=0.1)

ò x=0.4

ò x ≅ 1 (x=0.9)
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Second order system with complex 
conjugates poles and no zeros

34

t [s]
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Second order system with complex conjugates 
poles and no zeros

ñ Initial value             𝑦 0 = 0	 , 𝑦̇ 0 = 0 

ñ Final value              𝑙𝑖𝑚5→$	𝑦 𝑡 = 𝐺!𝑈!

ñ Settling time             0
𝑡"E% ≅ ⁄3 𝜁𝜔D 𝜁 ≪ 1
𝑡"E% ≅ ⁄4.75 𝜔D 𝜁 ≅ 1

ñ Rise time                  0𝑡6 ≅
⁄1 𝜔D 𝜁 ≪ 1

𝑡6 ≅ ⁄3.4 𝜔D 𝜁 ≅ 1

ñ Overshoot 𝑠 = 𝑒

%&'

(%'#

ñ Peak time                 𝑡0 = ⁄𝜋 𝜔D 1 − 𝜁%

ñ Oscillation period 𝑇 = T2𝜋 𝜔D 1 − 𝜁%

ñ # of oscillations= 𝟏
𝟐𝜻
, 𝜻 ≪ 1 
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Overshoot

36
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Examples

ñ Plot the qualitative step response of the following systems
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Example: car suspension
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Simplified
model
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Example: mass-spring-damper system

39

𝑴𝒚̈ 𝒕 + 𝑩𝒚̇ 𝒕 + 𝑲𝒚 𝒕 =𝒖 𝒕

•  State space representation 
x1=s e x2=v=ds/dt

𝒙̇ =
𝒙̇𝟏
𝒙̇𝟐

=
𝟎 𝟏

−
𝑲
𝑴

−
𝑩
𝑴

𝒙𝟏
𝒙𝟐

+
𝟎
T𝟏 𝑴

𝒖,

y	= 𝟏 𝟎 𝒙𝟏
𝒙𝟐

𝒙𝟏
𝒙𝟐

=
𝒔
𝒔̇

• Input output representation

𝐺 𝑠 =
1
𝑀

𝑠@ + 𝐵
𝑀 𝑠 + 𝐾

𝑀
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In general a second order system…
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𝒚̈ 𝒕 + 𝒂𝟏𝒚̇ 𝒕 + 𝒂𝟎𝒚 𝒕 =𝒃𝒖 𝒕

•  State space representation 
x1=y e x2=𝒚̇=dy/dt

𝒙̇ =
𝒙̇𝟏
𝒙̇𝟐

= 𝟎 𝟏
−𝒂𝟎 −𝒂𝟏

𝒙𝟏
𝒙𝟐

+
𝟎
𝒃
𝒖,

y	= 𝟏 𝟎 𝒙𝟏
𝒙𝟐

𝒙𝟏
𝒙𝟐

=
𝒚
𝒚̇

• Input output representation

•  Transfer function

𝑮 𝒔 =
𝒃

𝒔𝟐 + 𝒂𝟏𝒔 + 𝒂𝟎
=

𝑏
𝑠 − 𝑝 (𝑠 − 𝑝̅) =

𝑮𝟎𝜔D%

𝑠% + 2𝜁𝜔D𝑠 + 𝜔D%	

𝑮𝟎=b/a0
𝑎,=|p|2=𝛼- + 𝜔- = 𝜔.-

=
𝑏

𝑠% − 2𝛼𝑠 + 𝛼% + 𝜔% 

𝒃
𝑠 − 𝑝A 𝑠 − 𝑝@

,

real poles

complex poles
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In general a second order system…

41

• Rewriting  the characteristic equation s2+a1	s+a0	=	0	in terms of ζ and 𝜔D,

𝑠% + 2𝜁𝜔D𝑠 + 𝜔D% = 0,
𝑎7 = 2𝜁𝜔D

𝑎! = 𝜔D% 𝜔M = 𝑎5

𝜁 =
𝑎A
2 𝑎5

Ø |ζ|<1 Þ complex conjugates poles  (0< ζ<1 underdamped 
system)

Ø |ζ|=1 Þ real multiple poles (ζ =1 critically damped system)

Ø |ζ|>1 Þ real and distinct  poles (ζ >1 overdamped system)

The geometric interpretation of  ζ is valid only for complex conjugates poles.

𝜻 < 𝟎 ⟹ unstable system



Prof. Francesco Montefusco Industrial Control System Security 2024/25

In general a second order system…
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Ø |ζ|>1,

Ø |ζ|=1,

𝑦 𝑡 = 𝑘 1 − 𝑒/5/4 −
𝑡
𝜏
𝑡𝑒/5/4 1(𝑡)

Ø |ζ|<1,

1 2/ /1 2

1 2 1 2

( ) 1 1( )t ty t k e e tt tt t
t t t t

- -æ ö
= - +ç ÷- -è ø

2

2 2

1( ) 1 cos 1 arctan 1( )
1 1

nt
ny t k e t txw xx w

x x
-

æ öæ öæ ö
ç ÷ç ÷= - - - ç ÷ç ÷ç ÷ç ÷- -è øè øè ø
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Problem 1.a

òCompute the analytic expression of the step response of the 
following LTI systems:

• 𝑮𝟏 𝒔 = 𝒔I𝟏𝟎 
𝒔𝟐I𝟔𝒔I𝟓

	;		𝑮𝟐 𝒔 = 𝒔I𝟐𝟎 
𝒔𝟐I𝒔I𝟏 ; 𝑮𝟑 𝒔 = 6𝟑(𝒔6𝟐)

(𝒔𝟐I𝟒𝒔I𝟑) ;

• 𝑮𝟒 𝒔 = 𝒔I𝟏𝟒 
𝒔𝟐I𝟏𝟎𝒔I𝟑𝟎

	;		𝑮𝟓 𝒔 = 𝒔I𝟐𝟒 
𝒔𝟐I𝟑𝒔I𝟒𝟓 ; 𝑮𝟔 𝒔 = 𝒔I𝟏𝟓 

𝒔𝟐I𝟗𝒔I𝟐𝟎 .

òPlot the step response for the different LTI systems



Prof. Francesco Montefusco                               Industrial Control System Security2024/2544

Problem 1.b

òCompute the analytic expression of the step response of the 
following LTI systems:

• 𝑮𝟏 𝒔 = 𝒔 
𝒔𝟐I𝟔𝒔I𝟓

; 𝑮𝟐 𝒔 = 𝒔 
𝒔𝟐I𝒔I𝟏

; 𝑮 𝒔 = 𝟐𝟎(𝒔I𝟎.𝟏)
(𝒔𝟐I𝟐𝟏𝒔I𝟐𝟎)

• 𝑮𝟒 𝒔 = 𝟏𝟎(𝒔I𝟑)
(𝒔I𝟏/𝟑)(𝒔I𝟗) ; 𝑮𝟓 𝒔 = 𝟏6𝟏𝟎𝒔

𝒔𝟐I𝟑𝒔I𝟐 ;

• 𝑮𝟔 𝑠 = 𝟏𝟎 𝟏𝟎𝒔I𝟏
𝒔𝟐I𝟏𝟎𝟏𝒔I𝟏𝟎𝟎

òPlot the step response for the different LTI systems
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Problem 2

òCompute the transfer function of the following LTI system:

𝑥̇ = 0 1
𝒂 −1 𝑥 + 0

1 𝑢 ,

𝑦 = 1 0 𝑥

òDiscuss the stability by varying a ∈ −∞,+∞ .

òCompute the free evolution for the LTI system with a = -1 and 
𝑥! =

1
1 .

òPlot the step response for the LTI system with a = -4.



Prof. Francesco Montefusco                               Industrial Control System Security2024/2546

Problem 3

ñ Given the LTI system defined by the following state-space 
representation, 

𝑥̇ = 0 1
−1/2 −1 𝑥 + 0

2 𝑢 ,

𝑦 = 1 0 𝑥

òCompute the transfer function.

òCompute the analytic expression of the step response. 

ñ Plot the step response of the following LTI system defined by the 
following transfer function

𝑮 𝒔 =
−𝟒 𝒔 − 𝟑
𝒔𝟐 + 𝟓𝒔 + 𝟒

.
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Problem 4

òDiscuss the stability of the following LTI systems:

1. 𝒙̇ = −𝟐 𝟏
𝟎 −𝟏 𝒙 + 𝟏

𝟏 𝒖 ;

2. 𝑮 𝒔 = 𝟒 𝒔A𝟏
𝒔𝟐 𝟓𝒔A𝟏

;

3. 𝑮 𝒔 = /𝟏𝟎
𝒔 𝒔𝟐A𝟑𝒔A𝟏

;

4. 𝒙̇ = −𝒌𝒙 + 𝒖
𝒚 = 𝒙

5. 𝑮 𝒔 = 𝒔/𝒌
𝟗𝒔𝟐A𝟐𝒔A𝟏

For the systems at 4. and 5. discuss the stability by varying k ∈
−∞,+∞


