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Laplace transform definition

ñ The Laplace transform of a function f(t) is defined as

where 𝑡 ∈ 𝑅	is a real variable, while 𝑠 = 𝛼 + 𝑗𝜔 ∈ 𝐶 is a complex variable.

ñ Vice versa, given a function 𝐹 𝑠  in the Laplace domain, the original function in 
the time domain can be obtained using the Laplace anti-transformation

ñ The Laplace transform is a bilateral only if the function f(t) is null for  𝒕 < 𝟎

3

0

( ) ( ) ( ( )) ( ) stf t F s L f t f t e dt
+¥

-® = = ò

( ) ( )ò
+

-
¥®

=®
ws

ws
w p

j

j

stdsesF
j

tfsF
2
1lim)(

or ℒ(𝑓(𝑡))



Prof. Francesco Montefusco Industrial Control System Security  2024/25

Laplace transform main properties (1/2)

ñ Linearity 

ñ Translation in the Laplace domain

ñ Translation in the time domain 
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Laplace transform main properties (2/2)

ñ Time domain derivation 

ñ Time domain integration

ñ Time domain convolution 
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Additional properties useful in control theory

ñ Initial value theorem

ñ Final value theorem

ñ Initial value theorem of the derivate of the function
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Selected Laplace transforms

ñ In the system theory, we will mainly use the Laplace transform for the 
evaluation of the forced response of LTI systems to selected sets of input :

ò Polynomial inputs  𝒖 𝒕 = 𝒕𝒏𝟏 𝒕

ò Sinusoidal inputs  𝒖 𝒕 = 𝒔𝒊𝒏 𝝎𝒕 𝟏 𝒕 	
𝒖 𝒕 = 𝒄𝒐𝒔 𝝎𝒕 𝟏 𝒕

7
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Selected Laplace transforms
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Selected Laplace transforms: polynomial 
signals

ñ In order to evaluate the Laplace transform of polynomial signals, let us firstly 
consider the Laplace transform of the impulse 

ò Impulse d(t)      (from the Laplace transform definition)

ñ Then, using the time domain integration  property, we have 

ò Step      1(t)

ò Ramp     t×1(t)

ò Polinomial function    𝒕𝒏×1(t)
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Selected Laplace transforms: sinusoidal
signals

ñ The Laplace transform of sinusoidal functions

ò Sine      𝒔𝒊𝒏 𝝎𝒕 𝟏(𝒕)

ò Cosine     𝒄𝒐𝒔 𝝎𝒕 𝟏(𝒕)

ñ Finally, in the control theory the following transformations are of interest for the 
definition of the Laplace domain of the evolution modes of LTI systems
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Example: Laplace transform of a window signal  
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Example: Laplace transform of a window signal 

ñ The Laplace transform of a window signal can be evaluated from the 
Laplace transforms of  two steps.
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Solution of first order linear differential
equation

𝐿 𝑦̇ 𝑡 + 𝑎!𝑦 𝑡 = 𝐿(𝑏!𝑈!1 𝑡 )

Let us consider a first order differential equation, linear with constant coefficients,

𝑦̇ 𝑡 + 𝑎"𝑦(𝑡) = 𝑏"𝑢 𝑡 , 𝑦 𝑡" = 𝑦"	

By applying Laplace trasform, assuming a step input signal, u(t)=U01(t), with
amplitude U0

𝑠𝑌 𝑠 − 𝑦! + 𝑎!𝑌(𝑠) =
𝑏!𝑈!
𝑠

𝑌 𝑠 = 𝐿(𝑦 𝑡 )

𝐿(𝑏𝑈"1 𝑡 ) =
𝑏"𝑈"
𝑠

𝑌 𝑠 =
𝑦!

𝑠 + 𝑎!
+

𝑏!𝑈!
𝑠(𝑠 + 𝑎!)

𝑌free 𝑌forced
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Solution of first order linear differential
equation

𝑌"#$$(𝑠) =
𝑦!

𝑠 + 𝑎!
𝑦"#$$ 𝑡 = 𝑒%𝒂𝟎𝒕𝑦!1 𝑡 	

𝑌"(#)$* 𝑠 =
𝑏!𝑈!

𝑠(𝑠 + 𝑎!)
=
𝐴
𝑠
+

𝐵
𝑠 + 𝑎!

ℒ CD

𝐴 = 𝑠 − 0 𝑌"(#)$* 𝑠 |+,!

=
𝑏!𝑈!
𝑠 + 𝑎!

|+,! =
𝑏!𝑈!
𝑎!

.

𝐵 = 𝑠 − (−𝑎!) 𝑌" 𝑠 |+,%-"
=
𝑏!𝑈!
𝑠

|+,%-" = −
𝑏!𝑈!
𝑎!

.

𝑌"𝒐𝒓𝒄𝒆𝒅 𝑠 =
𝐴 𝑠 + 𝑎! + 𝐵𝑠
𝑠 𝑠 + 𝑎!

=
𝐴 + 𝐵 𝑠 + 𝐴𝑎!
𝑠 𝑠 + 𝑎!

9𝐴 + 𝐵 = 0
𝐴𝑎! = 𝑏𝑈!

𝑨 =
𝑏!𝑈!
𝑎!

𝑩 = −
𝑏!𝑈!
𝑎!

Compute A and B by substitution: Or by residual method:
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Solution of first order linear differential
equation

𝑌"(#)$* 𝑠 =
𝑏!𝑈!

𝑠(𝑠 + 𝑎!)
=
𝐴
𝑠
+

𝐵
𝑠 + 𝑎!

=

𝑏!𝑈!
𝑎!
𝑠

+
−𝑏𝑈!𝑎!
𝑠 + 𝑎!

𝑦"(#)$* 𝑡 =
𝑏!𝑈!
𝑎!

1 𝑡 −
𝑏!𝑈!
𝑎!

𝑒%𝒂𝟎𝒕1 𝑡 =
𝑏!𝑈!
𝑎!

1 − 𝑒%𝒂𝟎𝒕 1(𝑡)
ℒ CD

𝑦 𝑡 = 𝑦"#$$ 𝑡 + 𝑦"(#)$* 𝑡 = 𝑒%𝒂𝟎𝒕𝑦! +
𝑏!𝑈!
𝑎!

1 − 𝑒%𝒂𝟎𝒕 1(𝑡)

Then,
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Laplace Transform and Transfer function

ñ The analysis of LTI system is simplified by using Laplace transform.

ñ By exploiting the important property of the Laplace transform of the derivative of a 
signal 𝑓 𝑡  (with zero initial conditions, i.e. 𝑓 0 = 0) 

ℒ ̇𝑓 𝑡 = 𝑠𝐹 𝑠 ,

ñ Given the differential equation of a linear system, it is possible to find the transfer 
function, 𝐺(𝑠), of that system, defined by 

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠)

ñ Then for a LTI system of first order described by
𝑦̇ 𝑡 + 𝑎"𝑦 𝑡 = 𝑏"𝑢 𝑡 , 𝑦 0 = 𝑦" = 0

𝑠𝑌 𝑠 + 𝑎"𝑌 𝑠 = 𝑏"𝑈 𝑠
𝑌 𝑠 𝑠 + 𝑎" = 𝑏"𝑈 𝑠

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠)

=
𝑏"

𝑠 + 𝑎"

ℒ
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Laplace Transform and Transfer function

ñ Then, for a LTI system of second order described by
𝑦̈ 𝑡 + 𝑎$𝑦̇ 𝑡 + 𝑎"𝑦 𝑡 = 𝑏"𝑢 𝑡 , 𝑦 0 = 0, 𝑦̇ 0 = 0

𝑠%𝑌(𝑠) + 𝑎$𝑠𝑌 𝑠 + 𝑎"𝑌 𝑠 = 𝑏"𝑈 𝑠
𝑌 𝑠 𝑠% + 𝑎$𝑠 + 𝑎" = 𝑏"𝑈 𝑠

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) =

𝑏"
𝑠% + 𝑎$𝑠 + 𝑎"

ñ Therefore, given the transfer function 𝐺(𝑠) and the input 𝑢(𝑡) with transfer 
function 𝑈(𝑠), the output is the product

𝑌 𝑠 = 𝐺 𝑠 𝑈(𝑠)

ñ Using Laplace transforms, the output 𝑌 𝑠  can be expanded into its elementary 
terms (i.e., the sum of well-known transforms of selected/common 
signals/functions) by partial fraction expansion: therefore, it is possible to rewrite 
𝑌 𝑠  as a sum of terms for which is known the anti-transformation; the total time 
function 𝑦(𝑡) is given by the sum of these anti-transformation terms. 

ℒ
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ñ Using Laplace transforms, the output 𝑌 𝑠  can be expanded into its elementary terms 
(i.e., the sum of well-known transforms of selected/common signals/functions) by 
partial fraction expansion: therefore, it is possible to rewrite 𝑌 𝑠  as a sum of terms 
for which is known the anti-transformation; the total time function 𝑦(𝑡) is given by 
the sum of these anti-transformation terms. 

𝑌 𝑠 = 𝑌$ 𝑠 + 𝑌% 𝑠 + ⋯

𝑦 𝑡 = 𝑦$ 𝑡 + 𝑦% 𝑡 + ⋯

𝑌& as, 

𝑌& 𝑠 =
𝐴
𝑠
ℒ!"

𝑦& 𝑡 = 𝐴 M 1 𝑡 ; 𝑌& 𝑠 =
𝐴

𝑠 − 𝛼
ℒ!"

𝑦& 𝑡 = 𝐴 M 𝑒()1 𝑡

𝑌& 𝑠 = *
(,-.)#0*#

ℒ!"
𝑦& 𝑡 = 𝑒() sin 𝜔𝑡 1 𝑡

𝑌& 𝑠 =
𝑠 − α

(s − α)%+𝜔%
ℒ!"

𝑦& 𝑡 = 𝑒() cos 𝜔𝑡 1(𝑡)

ℒ%𝟏
ℒ%𝟏 ℒ%𝟏

Laplace Transform and Transfer function
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Evaluation of an LTI system response

ñ Let us consider a Linear Time Invariant (LTI) system in the state space form

𝑥̇ 𝑡 = 	𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ,	 𝑥 𝑡" = 𝑥"	 	 (1.a)

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡      (1.b)

ñ The Evaluation of an LTI system response in a transformed domain is convenient 
only if

19
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LTI systems in the Laplace domain

ñ Let us indicate with 𝑿 𝒔 ,𝑼 𝒔  and 𝒀 𝒔  the Laplace transforms of the 
signals 𝒙 𝒕 , 𝒖(𝒕) and 𝒚(𝒕). 

Transforming both the sides of the equation (1a), 

𝐿 𝑥̇(𝑡) = 𝐿 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

using the time domain derivation property of  the Laplace transform,  a linear 
system in the Laplace domain can be written has

we have

and

  𝑋 𝑠 = 𝑠𝐼 − 𝐴 %4𝑥! + 𝑠𝐼 − 𝐴 %4𝐵𝑈 𝑠

The matrix function Φ 𝑠 = 𝑠𝐼 − 𝐴 -$is called Transition matrix, then

𝑋 𝑠 = Φ 𝑠 𝑥! +Φ 𝑠 𝐵𝑈 𝑠
20
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Recall: Inverse of a matrix

ñ Given a quadratic and invertible matrix 

     its inverse is defined as 

 

 where the cofactor is 

 and the minor (𝑖, 𝑗) is the determinant of the matrix obtained excluding the 
row 𝑖 and the column 𝑗.

21
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Inverse of a 2×2 matrix

ñ Given a matrix

 its inverse is
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Inverse of a 3×3 matrix

ñ Given a matrix

 its inverse is

23
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Transition matrix

• For the Transition matrix Φ 𝑠 = 𝑠𝐼 − 𝐴 %4

o Each element is a rational function in s variable:

Ø denominator of degree n given by 𝐝𝐞𝐭 𝒔𝑰 − 𝑨 = 𝒑𝑨 𝒔 , 
whose roots are the eigenvalues of A.

Ø numerator of element (i,j) corresponds to the algebraic 
complement of element (j,i) which by construction is a 
degree at most n-1

24

𝜱𝒊𝒋 𝒔 =
𝑵(𝒔)
𝑫(𝒔)

𝑵(𝒔) of  degree at most n-1
𝑫(𝒔) of  degree n,
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LTI systems in the Laplace domain

ñ Transforming both the sides of the equation (1b), we have 

𝐿 𝑦(𝑡) = 𝐿 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 	⇔ 𝑌 𝑠 = 𝐶𝑋 𝑠 + 𝐷𝑈(𝑠)

ñ and by substituting the previous equation, 𝑋 𝑠 = Φ 𝑠 𝑥" +Φ 𝑠 𝐵𝑈 𝑠
𝑌 𝑠 = 𝐶Φ 𝑠 𝑥" + 𝐶Φ 𝑠 𝐵𝑈 𝑠 + 𝐷𝑈(𝑠)
𝑌 𝑠 = 𝐶Φ 𝑠 𝑥" + 𝐶Φ 𝑠 𝐵 + 𝐷 𝑈(𝑠)

ñ The matrix function 𝐺 𝑠 = 𝐶Φ 𝑠 𝐵 + 𝐷 = 𝐶 𝑠𝐼 − 𝐴 -$𝐵 is called 
transfer function, therefore

   𝑌 𝑠 = 𝐶Φ 𝑠 𝑥" + 𝐺(𝑠)𝑈(𝑠)

ñ For Single Input Single Output (SISO) systems the transfer function 𝐺 𝑠  
is a scalar function; 

ñ For Multiple Input Multiple Output  (MIMO) systems the transfer 
function 𝐺 𝑠 is a matrix whose element 𝐺 𝑠 &1 will connect the output 𝑖 
with the input 𝑗.

25
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Transfer function

• For the Transfer function 𝑮 𝒔 = 𝑪Φ 𝑠 𝐵 + 𝐷 = 𝐶 𝑠𝐼 − 𝐴 %4𝐵 + 𝐷

 𝜱𝒊𝒋 𝒔 = 𝑵(𝒔)
𝑫(𝒔)

𝑮 𝒔 is a rational function in s variable:

𝐺 𝑠 = -# +#=-#$% +#$%=⋯=-% +=-"
?& +&=-&$% +&$%=⋯=?% +=?"

Ø Since the multiplication on the left of Φ(𝑠) by C and the one on the 
right by B correspond to a linear combination of Φ(𝑠) elements, all 
with the same denominator, i.e. det 𝑠𝐼 − 𝐴 , then all the elements of 
𝑪Φ 𝑠 𝐵 are rational functions in s with a denominator polynomial 
of degree n and a numerator of degree 𝒎 ≤ 𝑛 − 1: 

Ø If D=0, 𝒎 < 𝒏, the system is said strictly proper.

Ø If D≠ 𝟎, 𝒎 = 𝒏, the system is said proper.

26

𝑵(𝒔) of  degree at most n-1
𝑫(𝒔) of  degree n,
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Transfer function calculation: examples

27
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Transfer function

ñ Given a transfer function  

𝐺 𝑠 =
𝑁(𝑠)
𝐷(𝑠)

=
𝑎2 𝑠2 + 𝑎2-$ 𝑠2-$ +⋯+ 𝑎$ 𝑠 + 𝑎"
𝑏3 𝑠3 + 𝑎3-$ 𝑠3-$ +⋯+ 𝑏$ 𝑠 + 𝑏"

ñ The roots of the N(s) are said zeros.

ñ The roots of the D(s) are said poles.

ñ The polynomial D(s) is defined as  𝐷 𝑠 = det(𝑠𝐼 − 𝐴) , hence 

ò D(s) coincides with the characteristic polynomial of the system

ò  the poles coincide with the eigenvalues of the system except for 
possible pole-zero cancellation

28
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LTI systems in the Laplace domain

29

𝐿 𝑥̇(𝑡) = 𝐿 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ,	 𝑥 𝑡! = 𝑥!	

0( ) ( ) ( )sX s x AX s BU s- = + ( ) 0( ) ( )sI A X s x BU s- = +

( ) ( )1 1
0( ) ( )X s sI A x sI A BU s- -= - + -

0( ) ( ) ( ) ( )X s s x s BU s=F +F

( )
0

0

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

Y s CX s DU s
C s x C s BU s DU s
C s x C s B D U s

= +
= F + F +

= F + F +

Transition matrix

G(s): transfer function

𝑳 𝒚(𝒕) = 𝑳 𝑪𝒙 𝒕 + 𝑫𝒖 𝒕

Then, for a LTI system, by Laplace transform the state equation:

By Laplace transform the output equation:

𝒀 𝒔 = 𝑪𝚽 𝒔 𝒙𝟎
+ 𝑮 𝒔 𝑼(𝒔)

𝒀𝒇𝒓𝒆𝒆 𝒔

𝒀𝒇𝒐𝒓𝒄𝒆𝒅 𝒔
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Laplace antitransform

ñ For SISO systems the free evolution in the Laplace domain is given by the 
ratio of polynomial functions

𝑌4566 𝑠 = 𝐶Φ 𝑠 𝑥"

ñ This is also true for the forced evolution in case we restrict our attention to 
the case of polynomial and sinusoidal inputs

𝑌475869 𝑠 = 𝐺 𝑠 𝑈 𝑠

ñ It is convenient to antitransform 𝑌 𝑠  by reducing the ratio of high degree 
polynomial functions to the sum of selected signals transform such as

30
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LTI system, first order, strictly proper (d=0)
Consider a first order differential equation, linear with constant coefficients,

𝑦̇ 𝑡 + 𝑎"𝑦(𝑡) = 𝑏"𝑢 𝑡 , 𝑦 𝑡" = 𝑦"	

that can be described by LTI system as
𝑥̇ 𝑡 = 𝑎𝑥 𝑡 + 𝑏𝑢 𝑡 ,	 𝑥 𝑡" = 𝑥"	

      𝑦 𝑡 = 𝑥 𝑡

Note that 𝑏 = 𝑏", 𝑎 = −𝑎", 𝑥"	 = 𝑦"	

By Laplace transform
𝑌 𝑠 = 𝑋 𝑠 = Φ 𝑠 𝑥" + 𝐺 𝑠 𝑈 𝑠 ,

Where

Φ 𝑠 =
1

𝑠 − 𝑎 , 𝐺 𝑠 = Φ 𝑠 𝑏 =
𝑏

𝑠 − 𝑎
Then, 

𝑌 𝑠 =
𝑦"
𝑠 − 𝑎

+
𝑏

𝑠 − 𝑎
𝑈(𝑠)

31

𝒀 𝒔 free

𝒀 𝒔 forced
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LTI system, first order, strictly proper: free 
and force responses

𝑌"#$$(𝑠) =
𝑦!
𝑠 − 𝑎 𝑦"#$$ 𝑡 = 𝑒𝒂𝒕𝑦!1 𝑡 = 𝑒%

B
C𝑦!1 𝑡

𝑌"(#)$* 𝑠 =
𝑏𝑈!

𝑠(𝑠 − 𝑎)
=
𝐴
𝑠
+

𝐵
𝑠 − 𝑎

ℒ CD

𝐴 = 𝑠 − 0 𝑌"(#)$* 𝑠 |+,!

=
𝑏𝑈!
𝑠 − 𝑎

|+,! =
𝑏𝑈!
−𝑎

.

𝐵 = 𝑠 − 𝑎 𝑌" 𝑠 |+,-

=
𝑏𝑈!
𝑠
|+,- =

𝑏𝑈!
𝑎
.

𝑌"𝒐𝒓𝒄𝒆𝒅 𝑠 =
𝐴 𝑠 − 𝑎 + 𝐵𝑠
𝑠 𝑠 − 𝑎

=
𝐴 + 𝐵 𝑠 − 𝐴𝑎
𝑠 𝑠 − 𝑎

9 𝐴 + 𝐵 = 0
−𝐴𝑎 = 𝑏𝑈!

𝑨 =
𝑏𝑈!
−𝑎

𝑩 =
𝑏𝑈!
𝑎

Compute A and B by substitution: Or by residual method:

𝜏 = −
1
𝑎

𝑢 𝑡 = 𝑈"1(𝑡)
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𝑌"(#)$* 𝑠 =
𝑏𝑈!

𝑠(𝑠 − 𝑎)
=
𝐴
𝑠
+

𝐵
𝑠 − 𝑎

=
𝑏𝑈!
−𝑎
𝑠

+
𝑏𝑈!
𝑎

𝑠 − 𝑎

𝑦"(#)$* 𝑡 = 𝐺!𝑈! 1 − 𝑒
%BC 1 𝑡 ,

ℒ CD

𝑦 𝑡 = 𝑦"#$$ 𝑡 + 𝑦"(#)$* 𝑡 = 𝑒%
B
C𝑦! + 𝐺!𝑈! 1 − 𝑒

%BC 1(𝑡)

Then,

LTI system, first order, strictly proper: free 
and force responses

By denoting with 𝐺" =
:
-;
, 𝜏 = − $

; 𝑌"(#)$* 𝑠 =
𝐺!𝑈!
𝑠

−
𝐺!𝑈!
𝑠 − 𝑎
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LTI system, first order, strictly proper: free 
response

𝑥̇ 𝑡 = 𝑎𝑥 𝑡 + 𝑏𝑢 𝑡
𝑦 𝑡 = 𝑥 𝑡
𝑥 𝑡! = 𝒙𝟎

𝑦"#$$ 𝑡 = 𝑒%
B
C𝑦!

𝑢 𝑡 = 𝟎
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LTI system, first order, strictly proper: step 
response

𝑮" 	=
𝑏
−𝑎

, 𝜏 = −
1
𝑎

𝑦<)6= 𝑡 = 𝑮"𝑈" 1 − 𝑒
-)> 1 𝑡 ,

𝑥̇ 𝑡 = 𝑎𝑥 𝑡 + 𝑏𝑢 𝑡
𝑦 𝑡 = 𝑥 𝑡
𝑥 𝑡! = 𝟎

𝑮!𝑈!
𝟎. 𝟗𝟓𝑮!𝑈!

𝑢 𝑡 = 𝑈"1(𝑡)
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Response to a step input  for a first order, strictly proper system (𝑮" 	= 1 , 𝜏 = 1)    

36

t [s]

LTI system, first order, strictly proper: step 
response
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ñ Initial value 𝑦 0 = 0

ñ Final value 𝑙𝑖𝑚)→@ 𝑦 𝑡 = 𝐺"𝑈"

ñ Settling time 

ò 𝑡# $% = 3𝜏

ò 𝑡# &% = 4.6𝜏

ñ Rise time 𝑡5 ≅ 2.2𝜏

37

LTI system, first order, strictly proper: parameters
for the qualitative step response
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Example: mass-spring-damper system

38

𝑴𝒚̈ 𝒕 + 𝑩𝒚̇ 𝒕 + 𝑲𝒚 𝒕 =𝒖 𝒕

•  State space representation 
x1=s e x2=v=ds/dt

𝒙̇ =
𝒙̇𝟏
𝒙̇𝟐

=
𝟎 𝟏

−
𝑲
𝑴

−
𝑩
𝑴

𝒙𝟏
𝒙𝟐

+
𝟎
w𝟏 𝑴

𝒖,

y	= 𝟏 𝟎 𝒙𝟏
𝒙𝟐

𝒙𝟏
𝒙𝟐

=
𝒔
𝒔̇

• Input output representation
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In general a second order system…as a 
mass-spring-damper system

39

𝒚̈ 𝒕 + 𝒂𝟏𝒚̇ 𝒕 + 𝒂𝟎𝒚 𝒕 =𝒃𝒖 𝒕

•  State space representation 
x1=y e x2=𝒚̇=dy/dt

𝒙̇ =
𝒙̇𝟏
𝒙̇𝟐

= 𝟎 𝟏
−𝒂𝟎 −𝒂𝟏

𝒙𝟏
𝒙𝟐

+
𝟎
𝒃
𝒖,

y	= 𝟏 𝟎 𝒙𝟏
𝒙𝟐

𝒙𝟏
𝒙𝟐

=
𝒚
𝒚̇

• Input output representation

•  Transfer function

𝑮 𝒔 =
𝒃

𝒔𝟐 + 𝒂𝟏𝒔 + 𝒂𝟎

•  Transition matrix

𝜱 𝒔 =

𝒔 + 𝒂𝟏 𝟏
−𝒂𝟎 𝒔

𝒔𝟐 + 𝒂𝟏𝒔 + 𝒂𝟎

𝒀 𝒔 = 𝑪𝚽 𝒔 𝒙𝟎 + 𝑮 𝒔 𝑼(𝒔)
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In general a second order system… as a 
mass-spring-damper system

40

𝒀 𝒔 = 𝑪𝚽 𝒔 𝒙𝟎 + 𝑮 𝒔 𝑼(𝒔)

𝒀 𝒔 free 𝒀 𝒔 forced

𝑌(𝑠)𝒇𝒓𝒆𝒆 =
𝒔 + 𝒂𝟏 𝒙𝟏𝟎 + 𝒙𝟐𝟎
𝒔𝟐 + 𝒂𝟏𝒔 + 𝒂𝟎

𝒙𝟎 =
𝒙𝟏𝟎
𝒙𝟐𝟎

𝑌(𝑠)𝒔𝒕𝒆𝒑 =
𝒃

𝒔𝟐 + 𝒂𝟏𝒔 + 𝒂𝟎
M
𝑼𝟎
𝒔

𝑼 𝒔 =
𝑼𝟎
𝒔
,
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Characteristic equation …

41

• The characteristic equation, 𝒔𝟐 + 𝒂𝟏𝒔 + 𝒂𝟎 = 𝟎, determines the evolution modes

Three cases:

Ø real and distinct poles 

Ø real multiple poles

Ø complex conjugates poles
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Laplace Transform and Transfer function

Ø Real and distinct  poles, terms as 
1

𝑠 − 𝑎
corresponding to a real pole/real eigenvalue of  the dynamic matrix

Ø Real multiple poles, a term as
1

(𝑠 − 𝑎)T

   corresponding to a real multiple pole/eigenvalue of  the dynamic  
matrix
Ø Complex conjugates poles, terms as

U
(+%V)'=U'  or  +%V

(+%V)'=U'

corresponding to a pair of  complex conjugate poles/eigenvalues α ± 
jw of  the dynamic matrix
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Laplace antitransform: example 1

CASE 1: real and distinct eigenvalues/poles

𝑌4566 𝑠 = 𝐶Φ 𝑠 𝑥" =
𝑠 − 10

𝑠% + 7𝑠 + 10
=

𝑠 − 10
(𝑠 + 2)(𝑠 + 5)

ñ Appling the residual method we have

𝑌4566 𝑠 =
𝐴$

(𝑠 + 2) +
𝐴%

(𝑠 + 5)

with

𝐴$ = lim
<→-%

𝑠 + 2 𝑌4566 𝑠 = lim
<→-%

𝑠 − 10
𝑠 + 5

= −4

𝐴% = lim
<→-5

𝑠 + 5 𝑌4566 𝑠 = lim
<→-K

𝑠 − 10
𝑠 + 2

= 5

Hence

𝑦4566 𝑡 = −4𝑒-%) + 5𝑒-K) ⋅ 1(𝑡)
43
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Laplace antitransform: example 2
CASE 2: real multiple eigenvalues/poles

𝑌475869 𝑠 = 𝐺 𝑠 𝑈(𝑠) = $L
<#0M<0N

𝑈(𝑠)             with 𝑢 𝑡 = 1(𝑡)

ñ This function can be written as the sum of three terms

𝑌475869 𝑠 =
18

𝑠 𝑠 + 3 % =
𝐴$
𝑠 +

𝐴%
(𝑠 + 3) +

𝐴O
𝑠 + 3 %

ñ The residual method can be applied to evaluate 𝐴$ and 𝐴O, while 𝐴% can be 
evaluated by substitution

𝐴$ = lim
<→" 𝑠𝑌475869 𝑠 = 2	 𝐴O = lim

<→-3
𝑠 + 3 %	𝑌475869 𝑠 = −6

while 𝐴% = −2.	

Hence,   𝑦475869 𝑡 = 2 − 2𝑒-O) − 6𝑡𝑒-O) ⋅ 1(𝑡)

44
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Laplace antitransform: example 3

CASE 3: complex conjugate eigenvalues/poles

𝑌4566 𝑠 = 𝐶Φ 𝑠 𝑥" =
𝑠 + 3

(𝑠% + 4𝑠 + 13)

ñ This function can be written as the sum of two terms

𝑌4566 𝑠 =
𝑠 + 3

(𝑠% + 4𝑠 + 4 + 9) =
𝑠 + 2 − 2 + 3
( 𝑠 + 2 % + 3%) =

ñ Hence, 𝑌"#$$ 𝑠 = +=T
+=T '=W'

+ 4
W

WX4
+=T '=W'

𝑦4566 𝑡 = 𝑒-%) cos 3𝑡 +
1
3
𝑒-%)sin(3𝑡) ⋅ 1(𝑡)

𝑦4566 𝑡 = 𝑒-%) cos 3𝑡 +
1
3
sin(3𝑡) ⋅ 1(𝑡)

45



Stability

ñ A linear system is said stable if no evolution mode is divergent (only 
convergent and constant evolution modes).

ñ It happens if all the eigenvalues of the matrix A (pole of 𝐺(s)) have a 
negative or null real part and the eigenvalues with null real part have 
multiplicity 1.

ñ In a stable system

ò the free evolution doesn’t tend to infinity 

ò the free evolution doesn’t converge to zero if the constant evolution 
mode is excited
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ñ A linear system is said asymptotically stable if all evolution modes are 
convergent.

ñ It happens if all the eigenvalues of the matrix A (pole of 𝐺(𝑠) have negative 
real part

ñ In an asymptotically stable system

ò the free evolution converges to zero
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Asymptotic stability



ñ A linear system is said unstable if there is a divergent evolution mode.

ñ It happens if an eigenvalues of the matrix A (pole of 𝐺(𝑠) have a real part 
positive or an eigenvalue (pole) with null real part with multiplicity >1.

ñ In an unstable system

ò the free evolution tends to infinity
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Unstability



Example 1

ñ Let us consider the LTI system

[ ]

0 1 0
1 2 1

1 0

x x u

y x

é ù é ù
= +ê ú ê ú- -ë û ë û
=



ñ In order to evaluate the eigenvalues of the matrix 𝐴, we can calculate the 
roots of the characteristic polynomial 

ñ In Matlab,  it is possible to use the command  eig(A) 
ñ In this example we have 𝑝$ = 𝑝% = −1.
ñ This system is asymptotically stable because it has all eigenvalues with 

negative real part
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Example 2

ñ Let us consider the LTI system

[ ]

0 1 0
1 2 1

1 0

x x u

y x

é ù é ù
= +ê ú ê ú-ë û ë û
=



ñ In this example we have 𝑝$ = 𝑝% = 1.

ñ The system is unstable because it has two eigenvalues with positive real part

Prof. Francesco Montefusco                                                                                                   Industrial Control System Security 2024/2550



Example 3

ñ Let us consider the LTI system

[ ]

0 1 0
0 1 1

1 0

x x u

y x

é ù é ù
= +ê ú ê ú-ë û ë û
=



ñ In this example we have 𝑝$ = 0 , 𝑝% = −1.

ñ The system is stable because it has 
ñ a null eigenvalue 
ñ an eigenvalue with negative real part
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Example 4

ñ Let us consider the transfer function of an LTI system

2
1( )

( 5)
sW s

s s
+

=
+

ñ This system is unstable because it has two null poles.
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