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LTI systems in the time domain

A Linear time invariant (LTI) systems in the form

x(t) = Ax(t) + Bu(t) ~
y(t) = Cx(t) + Du(t)’ x(to) = xo

with A € R™", B € R™™, (C € RP*", D € RP*™ where x(t) is the state
vector, U(t) is the input vector and y(t) is the output vector of the system.
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Lagrange Formula

A Let us consider a Linear Time Invariant (LTI) system in the form

x(t) = Ax(t) + Bu(t), x(to) = x 1
y(t) = Cx(t) + Du(t) (1)

The solution of the linear differential equation (1) defines the #zme
evolution of the state variables and it is given by the Lagrange Formula

t

x(t) = eAlt=to)y, + 0

eAt-DB y(r)dr, t = t, )

A The time evolution of the outputs turns out to be

t

y(t) = CeAlt=to)x, 4 C o

eAt-DBy(r)dr+Du(t), t=ty, (3
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Lagrange Formula

A Taking into account that

b(t) b(t)

d db(t) da(t) d

- (j) f(t,7) dr=f(t,b(t))—dt — f(t,a(®)) C;t + (f) Ef(t,f) dr
a(t a(t

A Lagrange formula (2) can be easily verified by derivation (assuming tg = 0)

t
d d
x(t) = R (e4txy) + eAE=DBy(t) + IE [eA(t‘T)B u(r)]dr
0

t

= Aexy, + Bu(t) + JAeA(t_T)Bu(T)dT
0

t
= Alefx, + j eA=D By ()dt| + Bu(t) = Ax(t) + Bu(t)
0
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Free and forced evolution of LTI systems

A The time evolution of the state and output variables can be conceptually
divided in two parts,

x(t) = eAlt-tody, 4 t’; eAt-DB y(r) dr, t=t,

N\ J
| Y
Free evolution, x,(t) Forced evolution, xs(t)

(- N

y(t) = CeAlt=toyx, 4 C ti) eAt-DBy(t)dr+ D u(t), t=>t,

A The free evolution indicate the evolution of state and output vectors that
would be obtained in the absence of input (u(t) = 0).

A The forced evolution indicate the evolution of state and output vectors that
would be obtained in the presence of input and null initial conditions (xg = 0)
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Free evolution: matrix A diagonalizable

A The free evolution of an LTI system in the time domain is defined by the matrix
exponential e4t. Generalizing the Taylor expansion of an exponential to the matrix

case, we have
® 2

M 1 ; M
e = EM=1n+M+7+”’
=0
A In case the matrix A has real and distinct eigenvalues, 4;, 7=1,...,7, it is diagonalizable:
it is possible to find a matrix Tp, such that A=Tp A Tp1= diag{A4, ..., A }. Then

A=Ty'A Ty and e4t turns out to be
(00) (00} A

1 1"
e At =25(A ) =TD—125(A LT,

i=0 =0
(A1t) (A1) (A, t)"
— _1 1 XX
= Tp diag 2 il 2 T 2 il
i=0 (=0 =0

= Tp'diag{e’1!, e’2! ... eMtiT),.
Remark: A4, A, ... A, are the eigenvalues of the A matrix, T is the transformation

z.e., X = T pXx) that allows achieving a diagonal A matrix.
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Free evolution: aperiodic and pseudo-

periodic modes

A The exponential terms,

it

are the modes of the system, named aperiodic modes

A In case of complex conjugate eigenvalues A; = aj + jw; ¢ A; = a; — jw;,
the corresponding complex exponential function determines a term as
follows:

e%t sin(w;t + @;)

These latter modes are named pseudo-periodic modes.

Prof. Francesco Montefusco Industrial Control System Security 2024 /25



Free evolution: A is not diagonalizable

A In case of a non-diagonalizable A matrix (eigenvalues with multiplicity (1)
greater than one) we must resort to the Jordan form (see text for further
information): the matrix A has an almost diagonal structure, with the
elements on the diagonal corresponding to the eigenvalues, with the

addition of superdiagonal elements, Jordan miniblocks, which determine
terms of the type

th1-lekit if ). € R,
or
t"1le%t sin(w;t + @;) if 1; € C
where 1 1s an integer between 1 and the maximum size of the Jordan

miniblocks associated with A;.
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Summary: free evolution of LTI system

* Analysis in the time domain
x;(t) = edtx,
yi(t) = Ce’txy

* x1(?) (and then y,(?)) is given by a combination of terms as

> e’lit, in the case of real and distinct eigenvalues;

> e%ilsin(w;t + ¢;), in the case of complex conjugate eigenvalues
of multiplicity one;

> t11lehit in the case of real eigenvalues with multiplicity n >1;
> th-1evit sin(w;t + @;) in the case of complex conjugate

eigenvalues of multiplicity i >1.



Aperiodic evolution modes (1/3)

A An aperiodic mode is an evolution mode of a linear system related to a real
eigenvalue of the matrix A of multiplicity 1. It can be written in the form

e)lit

A Depending on the sign of the eigenvalue 4;, an aperiod evolution mode can be
+ convergent (4; < 0)
+ constant  (A; = 0)
+ divergent (4; > 0)
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Aperiodic evolution modes (2/3)

+ Convergent aperiodic mode

t
}li =0

+ Constant aperiodic mode
t

<+ Divergent aperiodic mode

gent ap A; >0

t
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Aperiodic evolution modes (3/3)

A When the evolution mode is convergent it is possible to introduce a new
parameter said fzme constant of the mode defined as

A 'The time constant gives us an information about the time needed before the
convergent mode will be extinguished.

A Tt is straightforward to verify that

+ After a time t = 3T the magnitude of the mode will be reduced to the 5% of
the 1nitial value

+ After a time t = 4. 6T the magnitude of the mode will be reduced to the 1%
of the initial value
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Pseudo-periodic evolution modes (1/5)

e%lsin(w;t + @;) \“‘\\\e“it a; <0
+ Convergent pseudo-periodic mode \ T
ARy
a; = 0
<+ Constant pseudo-periodic mode /\ /\ /
______________ NV
a; > O _____________
+ Divergent pseudo-periodic mode /\ ———————
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Pseudo-periodic evolution modes (2/5)

A 'The pseudo-periodic mode is completely characterized by the pair of

parameters (&}, ;) that represent the real part and the imaginary part
of the complex conjugate eigenvalues.

A These parameters give direct information both on the exponential law
that envelops the oscillation peaks (parameter ;) and on the angular
frequency of the oscillations (parameter wy).

A Frequently, instead of using these parameters, other pairs of parameters
related to (a;, w;) through simple relations are used, and that provide
information more directly related to other characteristics of the
response, especially in the case of convergent oscillatory motion.
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Pseudo-periodic evolution modes (3/5)

A The parameter @wj is called the angular frequency of the system, while T,

related to w; by the relation T=27m/ wj, is called the oscillation period of the
system.

A Sometimes, instead of the period T, the frequency f=1/T is specified.
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Evolution modes with distinct eigenvalues
(n=1)

e*cos(wt + @) © ,
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Evolution modes with multiple eigenvalues
(n=2)

te“‘cos(wt + @)
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Natural frequency and damping factor

Other important parameters for pseudo-periodic mode are the natural
frequency wy and the damping coefficient ¢.

The natural frequency is defined by

w,* = a® + w? a =-(w,,
and the damping factor »
a

(= —— _ W = Wy 1 — {7
Va? + w?
} Im w,, cos 8 = {wy,
[~
‘].(U”/\/l _.éz

|

0 Re ( =cosf
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Pseudo-periodic evolution modes (5/5)

A The natural frequency , is the oscillation frequency of the pseudo-
periodic mode when a = 0.

A For convergent pseudo-periodic modes the damping coefficient {<(0,1]
while for divergent pseudo-periodic modes (e/-1,0)

A For convergent pseudo-periodic modes, the damping coefficient ¢ relates
the oscillations of the pseudo-periodic mode to the time before the

evolution will extinguish. For { < 1
a a T

= ==-—=—xK1
¢ Wy, w 27T

where T is the oscillation period. Indeed, the number of the oscillation
before the mode will extinguish increases when ¢ becomes small.

T T 1 3¢ # of oscillations
¢ = = mm) — = — before the mode will
émt 6T 2¢ T extinguish
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Forced response in the time domain

A Let us consider the forced response of an LTI system in the output (xg = 0)
yr(t) =C fot eAtDBy(t)dr + D u(t), t=t,

A The evaluation of the forced response in the time domain is demanding due to
the presence of the convolution product.

A Only in some particular case, such as the step response u(t) = u - 1(t), it
becomes straightforward

1

‘ 1(9)

yr (£) = Cf eAt-DB L dr+ D7
0

v

— [_CA-leA(t‘T)Bﬁ]g +D1u
= CA 'e4Bti + [-CA™'B + D] @

A In the other cases the forced response is evaluated in the Laplace domain
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First-order LTI system

A For a first-oder LTI system in the form

x(t) = ax(t) + bu(t)

y(t) = cx(t) + du(t)’ x(to = 0) = xg

the tZme evolution of the state variable in case of u(t) = u - 1(t) is given
xl xf

1 1,
x(t) = e%xy + Ee“tbu —=bi, t>0

A The time evolution of the output turns out to be

() = cex, + c~e®bii — c~ bii + di,
y 0 a a

=ce%x, — cgﬂ(l — e + du
*
Vi Vs
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Example of first order LTI system:

input: u(t) = q;(t)
X
— output: Y (t) = h(t)
state: x(t) = h(t)
e SS representation:
o qu(t) k 1
] femre % g 4 ——— x(t)=— Ex(t) + g“(t)

y(t) = x(t)

A For a first orer LTI, the tzme evolution of the output for u(t) = u - 1(t) s given by

y(t) = cetxy — cgﬂ(l —e®) +du

T

1yl time static
A - = — - = —
In this case, a = b ,c=1,d=0, constant & 8210
yi(t) = 3_5 Xo = e_;xo;WlthT_ — ys(t) @u(l—e s
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Example of second-order LTI system: mass-

spring-damper system

B N * State space representation
u(t)=f(1) . _ds . .
; Wt)=s(1) X1 =5X=53=5=%

o M : _ (2) _ (-Of—q _1%> (2) + (JM) u,

: - y=a o))

Problem:

For the mass-spring-damper system reported in figure, assuming M=1Kg,
K=16 N/m, evaluate the evolution modes by varying B values [Ns/m] in
the interval [0 20].
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V(1) v, (1) u(t) =v(t), y) =wv.(t)

V(1) Ve(t) | ——
x;(8) =vc(t)  x,(t) =ir(t)

Problem:

For the RLC circuit in series configuration, compute the input-output
and state space representations.

Assuming the capacity value C=1e-6 UL, and the inductance value L=1e-3
mH, compute the values of R for which the system exhibits aperiodic and

pseudo-periodic modes.
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Appendix 1

INVERSE OF A MATRIX NXN
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Inverse of a matrix

its inverse is defined as

g cof(A,r11) ... cof(A ;) g

/ -1 —
A det(A)

cof(A,r;1) ... cof(A, x;;)

where the cofactor is
cof(4,i, j)=(~1)"/ det(minor(A4,i,))

and the minor (i, J) is the determinant of the matrix obtained excluding the
row [ and the column j.
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A Given a matrix

1ts inverse 1S
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1ts inverse 1S

det(A)

A A
Ay Agp
Ay Az
A2 A
Azy Asg
+ An A
Az Asg
A A
Az Ag

A1‘2 All’) \
Agy  Agg
All Al."»
Agy Agg
All Al?
Ay A/
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Appendix 2

EIGENVALUES AND EIGENVECTORS

Prof. Francesco Montefusco Industrial Control System Security 2024 /25



Eigenvalues and eigenvectors

A Given a matrix A € R™™ a scalar A € C is said ezgenvalue of the matrix A
if there exists a vector v € C™, said ezgenvector, such that

Av = Av

A Taking into account account that eigenvalues and eigenvectors of a matrix
verify the equation

(A—ADv = 0.

The eigenvalues can be found evaluating the roots of the characteristic

polynomial p(A) defined as
p(1) = det(A — Al).

Prof. Francesco Montefusco Industrial Control System Security 2024 /25



A= G —24)

p(2) =212 + 31— 10

Eigenvalues

Al =2, /12 = -5

=1 o)

p() =2%2+22+1

Eigenvalues

/11=12=—1
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