MODELLL STRUTTURALL
LMPOSITE PATTERN

INTENT

e (omposite is a structural design pattern that

efs you compose objects into tree structures
and then work with these structures as if they
were individual objects

PROBLEM

Using the Lomposite pattern makes sense only when the core model of your app can be represented as a tree

omplex //\
o For example, imagine that you have two types of objects: Products and Boxes. s @’?

o A Box can contain several Products as well as a number of smaller Boxes.

o These ittle Boxes can also hold some Products or even smaller Boxes, and so on. @ 3

* Say you decide to create an ordering system that uses these classes. Recemt
o (rders could contain simple products without any wrapping, as wel as boses &

stuffed with products..and other boxes. T @ @
How would you gefermine the ot price of such an orger? Q % @@

Phone Headphones Charger

SULUTION

o [he Lomposite pattern suggests that you work with Products and Boxes through a common interface which declares a method for calculating
the tofal price.
HOLD ON,

(|
/ HEY, WHAT' s
L L | YOUR PRICE?

WHAT'S
YOUR
PRICE?

o [he greatest benefit of this approach is that you don't need to care about the concrete classes of abjects that compose the tree. Jou don't need
to know whether an object is a simple product or a sophisticated box. fou can treat them all the same via the common interface

REAL-WORLD ANALOGY

* Armies of most countries are structured as
herarchies. An army consists of several divisions; a
division s a set of brigades, and a brigade consists of
platoons, which can be broken down into squads
rinally, a squad is a small group of real soldiers.
Urders are given at the top of the hierarchy and
passed down onto each level until every soldier
knows what needs to be done

2 VvV \
(o >
V V \

a8 8A
= = ~

An example of a military structure.

S RUCTURE

The Leaf is a basic element of a
tree that doesn’t have sub-
elements.

Usually, leaf components end
up doing most of the real work,
since they don’t have anyone to
delegate the work to.

Client

i

«interface»
Component

+ execute() |

Leaf Composite

- children: Component[]

+ execute() + add(c: Component)

+ remove(c: Component)
+ getChildren(): Component][]
+ execute()

Do some work.

Delegate all work to
child components.

PaEUDOVODE

* |n this example, the Composite pattern lets you
implement stacking of geometric shapes in ¢

graphical editor

The client code works with 3

Graphic

«interface» [«<——————— ImageEditor

| shapes through the single interface

common to all shape classes

+ move(x, Y)
+ draw()

XY

+ Dot(x, y)
+ move(x, Y)
+ draw()

A

CompoundGraphic

- children: Graphic[]

+ add(child: Graphic)

+ remove(child: Graphic)
+ move(x, y)

+ draw()

Circle

radius

+ Circle(x, y, radius)
+ draw()

The CompoundGraphic class is a

container tnat can comprise any
number of sub-shapes, including
other compound shapes

The geometric shapes editor example.

(ODE

// The component interface declares common operations for both

// The composite class represents complex components that may
// have children. Composite objects usually delegate the actual
// work to their children and then "sum up" the result.

class CompoundGraphic implements Graphic is

field children: array of Graphic // simple and complex objects of a composition.
interface Graphic is
// A composite object can add or remove other components method move(x, y)
// (both simple or complex) to or from its child list. method draw()
method add(child: Graphic) is
// Add a child to the array of children. // The leaf class represents end objects of a composition. A
// leaf object can't have any sub-objects. Usually, it's leaf
method remove(child: Graphic) is // objects that do the actual work, while composite objects only
// Remove a child from the array of children. // delegate to their sub-components.
class Dot implements Graphic is

method move(x, y) is field x, y

foreach (child in children) do
child.move(x, y) constructor Dot(x, y) { ... } // All component classes can extend other components.

) class Circle extends Dot is
method move(x, y) is

A composite executes its primary logic in a particular . "
i hmii ; Tt e s, R field radius

// way. It traverses recursively through all its children,
// collecting and summing up their results. Since the
// composite's children pass these calls to their own
// children and so forth, the whole object tree is traversed
// as a result. method draw() is
method draw() is

// 1. For each child component:

method draw() is
// Draw a dot at X and Y.

constructor Circle(x, y, radius) { ... |

// Draw a circle at X and Y with radius R.

// - Draw the component.

// - Update the bounding rectangle.

// 2. Draw a dashed rectangle using the bounding
// coordinates.

(ODE

// The client code works with all the components via their base
// interface. This way the client code can support simple leaf
// components as well as complex composites.
class ImageEditor is

field all: CompoundGraphic

method load() is
all = new CompoundGraphic()
all.add(new Dot(1, 2))
all.add(new Circle(5, 3, 10))
(s

// Combine selected components into one complex composite
// component.
method groupSelected(components: array of Graphic) is
group = new CompoundGraphic()
foreach (component in components) do
group.add(component)
all.remove(component)
all.add(group)
// All components will be drawn.
all.draw()

Use the Composite pattern when you have to implement a
tree-like object structure.

APPLICABILITY

Use the pattern when you want the client code to treat both
simple and complex elements uniformly

HOW 10 [MPLEMENT

1 Tree Structure: Represent the app's core model as a tree of simple elements and containers. Containers should hold both element
types
. Component Interface: Define an interface with methods applicable to both simple and complex components.

3. Leaf Class: Create classes for simple elements {leaves). Multiple leaf types are allowed.
4 Container Class: Create a container class with an array to store sub-elements, declared using the component interface type.
2. Delegation: Implement container methods to delegate most work to sub-elements.

6. Child Management: Add methods for adding and remaving child elements in the container

[Uptional Interface Methods: If child management is declared in the component interface, leat classes will have empty
implementations, enabling uniform tree manipulation at the cost of Interface degreqation Principle adherence

PRO & CONS

ou can work with complex tree structures more
conveniently: use polymorphism and recursion to
your advantage

Open/Liosed Frinciple You can introduce new
element types into the app without breaking the

existing code, which now works with the object tree

|t might be difficult to provide a common
interface for classes whose functionalty
ditfers too much. In certain scenarios, you'd
need o overgeneralize the component
interface, making it harder to comprehend.

MODELLL STRUTTURALL
DECURATOR PATTERN

INTENT draa

* Decorator is a structural design pattern that lets

you attach new behaviors o objects by placing
these objects inside special wrapper objects that

contain the behaviors,

PROBLEM ('1) * Imagine that you're working on a nlification library which lets other programs notity their users about
important events

Notification Library

Notifier Application

+ setNotifier(notifier) L
+ doSomething()

+ send(message)

notifier.send('Alert!")

A program could use the notifier class to send notifications about important events to a predefined set of emails.

PROBLEM (2)

o At some point, you realize that users of the library expect more than just email notifications. Many of them would like to

receive an oMy about critical issues. Jthers would like to be notified on Facebook and, of course, the corporate users would
love o get dlack notifications

Notifier

JAN

SMS Notifier Facebook Notifier Slack Notifier

LI L L (’mented as a notijier s subpclass

PROBLEM (3)

* Jou tried to address that problem by creating special subclasses which combined several notification methods within one class.
However, it quickly became apparent that this approach would bloat the code immensely, not only the library code but the client
code as well

l Notifier]
A
[[
| sMsNotifier ||[FacebookNotifier ||[[SlackNotifier |

S £ s

SMS + Slack SMS + Facebook + Slack

Notifier Notifier
SMS + Facebook | O ¥* SOy Facebook + Slack
Notifier Notifier

<t R

* Jou have to find some other way to structure notifications classes so that their number won't accidentally break some Guinness
record

SOLUTION (1)

xtending a dlass is the first thing that comes to mind when you need to alter an object's behavior. However, inheritance has

several serious caveats that you need to be aware of

1 Inheritance is static. You can' alter the behavior of an existing object at runtime. You can only replace the whole

object with another one that's created from a different subdlass.

/. Subclasses can have just one parent class. In most languages, inheritance doesn' let a class innerit behaviors of

multiple classes at the same time

SOLUTION (2)

e {Jsing Aqgregation or Composition instead of Inheritance. Both of the alternatives work almost the same way: one object

has a reference o another and delegates it some work, whereas with inheritance, the object itself is able to do that work
inheriting the benavior from its superclass

Inheritance Aggregation
Parent
l} Client [<>—=>>| Service

Child Child

SOLUTION)

o "Wrapper"is the alternative nickname for the Decorator pattern that clearly expresses the main idea
of the pattern. A wrapper is an object that can be linked with some target object. The wrapper
contains the same set of methods as the target and delegates to it all requests it receives. However,
the wrapper may alter the result by doing something either before or after it passes the request to
the target

o lihen does a simple wrapper become the real decorator

* | our notifications example, let's leave the simple email notification behavior inside the
base Notifier class, but turn all other notffication methods into decorators.

wrappee.send(message);

Notifier

+ send(message)

Ja\

7\

BaseDecorator

- wrappee: Notifier

+ BaseDecorator(notifier)
+ send(message)

JaN

SMS
Decorator

Facebook
Decorator

Slack
Decorator

+ send(message)

+ send(message)

+ send(message)

super::send(message);
sendSMS(message);

< 0

Various notification methods become decorators.

>

stack = new Notifier()
SOLUTION (4) if (facebookEnabled)
stack = new FacebookDecorator(stack)
if (slackEnabled)
stack = new SlackDecorator(stack)

* The dlient code would need to wrap a basic notifier object into a set of dpp sethenfienitacky

decorators that match the client’s preferences. The resulting objects will be
structured as a stack

Application

- notifier: Notifier

* The last decorator in the stack would be the object that the client actually
works with. Since all decorators implement the same interface as the base
notifier, the rest of the client code won't care whether it works with the

+ setNotifier(notifier)
+ doSomething()

\ I (. .
pure" notifier object or the decorated one. notifier.send(‘Alert!’)

// Email = Facebook — Slack

Apps might configure complex stacks of notification decorators.

REAL-WORLD ANALOGY

* Wearing clothes is an example of using decorators. When you're cold, you wrap yourself in a sweater. If you re stll cold

with a sweater, you can wear a jacket on top. If its raining, you can put on a raincoat. All of these qarments "extend” your
asic benavior but aren't part of you, and you can easly take off any piece of clothing whenever you don't need it

S RUCTURE

Client b = new ConcDecoratorl(a)
EE— ¢ = new ConcDecorator2(b)
The Component declares \ll EotEAY
the common interface for «interface» 4 PECOTtRls D CorRror > SomPOnHT
both wrappers and Component <
wrapped objects.
+ execute()

Concrete Base Decorator
Component
- wrappee: Component -
+ BaseDecorator(c: Component) wrappee = ¢
+ execute() + execute()
4& wrappee.execute()
Concrete [
Decorators
!

+ execute() o [- - | super:execute()

+ extra() extra()
(

PaEUDOCODE

* |n this example, the Decorator pattern lefs you compress

and encrypt senstive data independently from the code
that actually uses this data

Client

!

«interface»

DataSource
<
+ writeData(data)
+ readData()
G
FileDataSource DataSourceDecorator

- filename - wrappee: DataSource -
+ FileDataSource(filename) + DataSourceDecorator(s: DataSource)
+ writeData(data) + writeData(data)
+ readData() + readData()

A
| |

Encryption Compression
Decorator Decorator
+ writeData(data) + writeData(data)
+ readData() + readData()

The encryption and compression decorators example.

(ODE

// The component interface defines operations that can be
// altered by decorators.
interface DataSource is

method writeData(data)

method readDatal():data

// Concrete components provide default implementations for the

// operations. There might be several variations of these
// classes in a program.
class FileDataSource implements DataSource is

constructor FileDataSource(filename) { ... }

method writeData(data) is
// Write data to file.

method readData():data 1is
// Read data from file.

A
1/
/il
/1
/el
//

The base decorator class follows the same interface as the
other components. The primary purpose of this class is to
define the wrapping interface for all concrete decorators.
The default implementation of the wrapping code might include
a field for storing a wrapped component and the means to
initialize it.

class DataSourceDecorator implements DataSource is

protected field wrappee: DataSource

constructor DataSourceDecorator(source: DataSource) is
wrappee = source

// The base decorator simply delegates all work to the
// wrapped component. Extra behaviors can be added in
// concrete decorators.
method writeData(data) is

wrappee.writeData(data)

// Concrete decorators may call the parent implementation of
// the operation instead of calling the wrapped object
// directly. This approach simplifies extension of decorator
// classes.
method readData():data is

return wrappee.readData()

CODE

// Concrete decorators must call methods on the wrapped object,
// but may add something of their own to the result. Decorators
// can execute the added behavior either before or after the
// call to a wrapped object.
class EncryptionDecorator extends DataSourceDecorator is
method writeData(data) is
// 1. Encrypt passed data.
// 2. Pass encrypted data to the wrappee's writeData
// method.

method readData():data is
// 1. Get data from the wrappee's readData method.
// 2. Try to decrypt it if it's encrypted.
// 3. Return the result.

// You can wrap objects in several layers of decorators.
class CompressionDecorator extends DataSourceDecorator is
method writeData(data) is
// 1. Compress passed data.
// 2. Pass compressed data to the wrappee's writeData
// method.

method readData():data is
// 1. Get data from the wrappee's readData method.
// 2. Try to decompress it if it's compressed.
// 3. Return the result.

// Option 2. Client code that uses an external data source.

// SalaryManager objects neither know nor care about data

// storage specifics. They work with a pre-configured data

// source received from the app configurator.
class SalaryManager is
field source: DataSource

=)

constructor SalaryManager(source: DataSource) { ...

method load() is
return source.readDatal()

method save() is

source.writeData(salaryRecords)
// «..0ther useful methods...

// The app can assemble different stacks of decorators at

// runtime, depending on the configuration or environment.

class ApplicationConfigurator is
method configurationExample() is
source = new FileDataSource("salary.dat")
if (enabledEncryption)
source = new EncryptionDecorator(source)
if (enabledCompression)
source = new CompressionDecorator(source)

logger = new SalaryManager(source)

logger.load()

salary
W sor

(ODE

// Option 1. A simple example of a decorator assembly.
class Application is
method dumbUsageExample() is

source = new FileDataSource("somefile.dat")
source.writeData(salaryRecords)
// The target file has been written with plain data.

source = new CompressionDecorator(source)
source.writeData(salaryRecords)

// The target file has been written with compressed
// data.

source = new EncryptionDecorator(source)

// The source variable now contains this:

// Encryption > Compression > FileDataSource
source.writeData(salaryRecords)

// The file has been written with compressed and
// encrypted data.

APPLICABILITY

Use the Decorator pattern when you need to be able to assign extra behaviors to objects at runtime without breaking
the code that uses these objects

Use the pattern when it's awkward or not possible to extend an object’s behavior using inheritance.

HOW 10 [MPLEMENT

1 Domain Representation: Represent the domain as a primary component with optional layers.

/. Component Interface: Define common methods for both the component and layers.
3. Concrete Component: Implement the primary component with base benavior

. Base Decorator: (reate a decorator class with a component-typed field to wrap components or other decorators, delegating
work to the wrapped object

2. Loncrete Decorators: Extend the base decorator and add benavior before or after delegating to the wrapped object

b. Client Composition: Let the client create and compose decorators as needed.

PROS & CONS

v/ You can extend an object’s behavior
without making a new subclass.

v You can add or remove responsibilities
from an object at runtime.

v You can combine several behaviors by
wrapping an object into multiple
decorators.

v/ Single Responsibility Principle. You can
divide a monolithic class that
implements many possible variants of
behavior into several smaller classes.

X It's hard to remove a specific wrapper
from the wrappers stack.

X It's hard to implement a decorator in
such a way that its behavior doesn’t
depend on the order in the decorators
stack.

X The initial configuration code of layers
might look pretty ugly.

RELATIONS WITH OTHER PATTERNS

Adapter provides a completely different interface for accessing an existing object. On the other hand, with the Decorator pattern the interface either stays the same or
gets extended. In addition, Decorator supports recursive composition, which isn’t possible when you use Adapter.

With Adapter you access an existing object via different interface. With Proxy, the interface stays the same. With Decorator you access the object via an enhanced
interface.

Chain of Responsibility and Decorator have very similar class structures. Both patterns rely on recursive composition to pass the execution through a series of objects.
However, there are several crucial differences.

The CoR handlers can execute arbitrary operations independently of each other. They can also stop passing the request further at any point. On the other hand,
various Decorators can extend the object’s behavior while keeping it consistent with the base interface. In addition, decorators aren’t allowed to break the flow of the
request.

Composite and Decorator have similar structure diagrams since both rely on recursive composition to organize an open-ended number of objects.

A Decorator is like a Composite but only has one child component. There’s another significant difference: Decorator adds additional responsibilities to the wrapped object,
while Compositejust “sums up” its children’s results.

However, the patterns can also cooperate: you can use Decorator to extend the behavior of a specific object in the Composite tree.

Designs that make heavy use of Composite and Decorator can often benefit from using Prototype. Applying the pattern lets you clone complex structures instead of re-
constructing them from scratch.

Decorator lets you change the skin of an object, while Strateqy lets you change the guts.

Decorator and Proxy have similar structures, but very different intents. Both patterns are built on the composition principle, where one object is supposed to delegate
some of the work to another. The difference is that a Proxy usually manages the life cycle of its service object on its own, whereas the composition of Decorators is
always controlled by the client.

https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/chain-of-responsibility
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/composite
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/composite
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/prototype
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/proxy

MODELLL STRUTTURALL
FAGADE PATTERN

VASASASASA
AR,
R/ /

P

© =
_— o -=
— S
= ><
faB) © (5]
o =) [
© —— m
.
(@B))
[= o
[Ry o
L= -
o O <8}
[@5) —_— _
-] >
= = o
[©
o =
> = 5
T ﬁ m ~
S ==
O ()
v
E D S5 3
- 2 £ g
== T 5 .5
L (e, © O
I)

PROBLEM

* |magine that you must make your code work with a broad set of objects that belong to a sophisticated fibrary or

framework. rdinarily, you'd need to initialize all of those objects, keep track of dependencies, execute methods in the
correct order, and so on.

o s 3 result, the business logic of your classes would become tightly coupled to the implementation details of Jrd-party
classes, making it hard to comprehend and maintain,

SULUTION

o M facade is a class that provides a simple interface to a complex subsystem which contains lots of moving parts. A facade might
provide limited functionality in comparison to working with the subsystem directly. However, it includes only those features that

clients really care about:
* Having a facade is handy when you need to integrate your app with a sophisticated library that has dozens of features, but you

just need a tiny bt of its functionality

e |

e e

* For instance, an app that uploads short funny videos with cats to social media could potentially use 3

professional video conversion library. However, all that it really needs is a class with the single
method encodelfilename, format). After creating such a class and connecting it with the video conversion library,
vou'll have your first facade.

REAL-WORLD
ANALOGY

* lhen you call a shop to place a phone
order, an operator is your facade to ll
services and departments of the shop. Ihe
operator provides you with a simple voice
inferface to the ordering system, payment

gateways, and various delivery services

Placing orders by phone.

Warehouse || Payment
% Processing
Packaging |
| Suppliers
Delivery >

Taxes

S RUCTURE

Client

Facade

,’ \\ \ \‘ ,'
'I \ \ /
.\‘ Subsystd SUbsi ‘V 2
I, g L cld Subsystem
I s Subsystem class
class |
Subsystem [4
class
class
class

- linksToSubsystemObjects
- optionalAdditionalFacade

Additional
Facade

+ subsystemOperation()

+ anotherOperation()

(4 T

]
V4]
\

\

\
~
\

\
\

]

il T

-~

~

:

l

VideoConverter

Application —= ...
#PSEUDOCOD E + convertVideo(filename, format)

i
\' v
* Instead of making your code work with dozens of the framework
. 4 VideoFile
classes directly, you create a facade class which encapsulates that R S
functionality and hides it from the rest of the code.
o Ihis structure also helps you to minimize the effort of upgrading Sl
to future versions of the framework or replacing it with another OggCompression MPEG4
one. Codec CompressionCodec

* e only thing you'd need to change in your app would be the
implementation of the facade's methods

An example of isolating multiple dependencies within a single facade class.

(ODE

// We create a facade class to hide the framework's complexity
// behind a simple interface. It's a trade-off between

// These are some of the classes of a complex 3rd-party video // functionality and simplicity.
// conversion framework. We don't control that code, therefore class VideoConverter is
// can't simplify it. method convert(filename, format):File is
file = new VideoFile(filename)
class VideoFile sourceCodec = (new CodecFactory).extract(file)
1/t if (format == "mp4")
destinationCodec = new MPEG4CompressionCodec()
else

class 0ggCompressionCodec
T destinationCodec = new OggCompressionCodec!()

buffer = BitrateReader.read(filename, sourceCodec)
result = BitrateReader.convert(buffer, destinationCodec)
result = (new AudioMixer()).fix(result)

return new File(result)

class MPEG4CompressionCodec
I aoo

class CodecFactory

M So
// Application classes don't depend on a billion classes

class BitrateReader // provided by the complex framework. Also, if you decide to

W Goo // switch frameworks, you only need to rewrite the facade class.
class Application is

class AudioMixer method main() is

/] was convertor = new VideoConverter()

mp4 = convertor.convert("funny-cats-video.ogg", '"mp4")
mp4.save ()

APPLICABILITY

Use the Facade pattern when you need to have a limited but
straightforward interface to a complex subsystem.

Use the Facade when you want to structure a subsystem into layers.
Create facades to define entry points to each level of a subsystem.
You can reduce coupling between multiple subsystems by requiring
them to communicate only through facades

HOW 10 [MPLEMENT

1. Simplify Interface: Create a simpler interface to decouple client code from subsystem classes

/. Facade Class: Implement the interface in a new facade that redirects dlient calls to subsystern objects and manages the

subsystem's ifecycle i needed

3. bxclusive Access: Ensure all client communication with the subsystem qoes through the facade to shield clients from

subsystem changes.

4 Refine if Needed: 3plit the facade info smaller classes i it becomes too complex.

PROD & CONS

- Jou can isolate your code from the complexity A facade can become coupled to al

Lo ofgsubsystem classes of an app.

https://refactoring.guru/antipatterns/god-object

MODELLL STRUTTURALL
SRIDGE PATTERN

INTENT

* Bridge is a structural design pattern

that lets you sp
set of closely re
separate hierarc
implementation

1 a large class or @
ated classes into two

hies-abstraction and

~Wwhich can be

developed independently of

each other

PROBLEM

Abstraction? Implermentation”Sound scary! Stay calm and let's consider 4
simple example

* Sy you have a geometric Shape class with a pair of
subclasses: Circle and Square. Jou want to extend this class hierarchy to
incorporate colors, so you plan to create Red and Blue shape subclasses.
However, since you already have bwo subclasses, you'll need to create four
class combinations such as BlueCircle and RedSquare.

* Adding new shape types and colors to the hierarchy will grow it
exponentially

=)+ Q@ + V%%
Shape
I I I |
RedCircle RedSquare BlueCircle BlueSquare

Number of class combinations grows in geometric progression.

This problem occurs because we're trying to extend the shape classes in two independent dimensions: by form and by color. [hat's 4 very common issue with class inheritance

SULUTION

The Bridge pattern attempts to solve this problem by switching from inheritance to the
object composition. What this means is that you extract one of the dimensions into a
separate class hierarchy, so that the original classes will reference an object of the new
hierarchy, instead of having all of its state and behaviors within one class.

Shape

contains
<

>| Color

A

A

Circle

Square Red Blue

Q

3 W v

You can prevent the explosion of a class hierarchy by transforming it into several related hierarchies.

ABSTACTION AND IMPLEMENTATION

o Abstraction {also called inferface) is a high-level control layer for some entity

o [his fayer isn't supposed to do any real work on its own. It should delegate the work to the implementation layer (also

called platform)

17 1] 4 / /
o Note that we e not taking about inferfaces or abstract dlasses from your programming language [hese arent the same

L i
(] 7(/&

PROBLEM

benerally speaking, you can extend such an app in two independent directions

* Have several different Uls {for instance, tailored for reqular customers or admins).

o Support several different APls {for example, to be able to launch the app under Windows, Linux, and macld)
In a worst-case scenario, this app might look like a giant spaghetti bowl, where hundreds of conditionals connect different types of bUI with
various APls all over the code.

e Jou can bring order to this chaos by extracting the code related to specific interface-platform combinations into separate classes. However,
soon you'll discover that there are /s of these classes.

The class hierarchy will qrow exponentially because adding a new Gl or supporting a different APl require creating more and more classes

SULUTION

 Let’s try to solve this
issue with the Bridge
pattern. It suggests that

we divide the classes %, / “@
. . . GEg cwM
into two hierarchies: CHANGES

¢ AbStra Ctlon: the GU I Making even a simple change

l.ayer Of the a pp- thing very \(

* Implementation: the
operating systems’ APIs.

FRAMEWORK
=P8 o

0
Demo & o®
Z YOUR APP
0y \
2.0 30

One of the ways to structure a cross-platform application

he abstraction object controls the appearance of the app, delegating the actual work to the linked implementation object

o iferent implementations are interchangeable as long as they follow a common interface, enabling the same Gl to work under

Windows and Linux

o As a result, you can change the bUI classes without touching the API-related classes. Moreover, adding support for another

operating system only requires creating a subclass in the implementation hierarchy,

S RUCTURE

The Abstraction
provides high-level
control logic. It relies
on the implementation
object to do the actual
low-level work.

i.method1()

i.method2()
i.method3()

i.methodN()
i.methodM()

Client

\4

Abstraction

- i: Implementation

+ featurel()
+ feature2()

(optional)

Refined Abstraction

+ featureN()

abstraction.featurel()

Bridge

«interface»
Implementation

+ method1()
+ method2()
+ method3()

£

Concrete
Implementations

L

PaEUDOCODE

o [his example illustrates how

the Bridge pattern can help divide the
monolithic code of an app that manages
devices and their remote controls

The Device dlasses act as the
implementation, whereas the Remotes act

3s the abstraction.

if (device.isEnabled())
device.disable()
else
device.enable()

old = device.getChannel()
device.setChannel(old+1)

o

device.setVolume(0)

Client

L4

Remote

- device: Device

+ isEnabled
<>—> 0

-| + togglePower()

+ volumeDown()
+volumeUp()
+ channelDown()
+ channelUp()

i

remote.togglePower()
Bridge

«interface»
Device

+ enable()

+ disable()

+ getVolume()

+ setVolume(percent)
+ getChannel()

+ setChannel(channel)

AdvancedRemote

+ mute()

The original class hierarchy is divided into two parts: devices and remote controls.

(ODE

// A1l devices follow the same interface. // The "abstraction" defines the interface for the "control" // You can extend classes from the abstraction hierarchy
// part of the two class hierarchies. It maintains a reference // independently from device classes.
class Tv implements Device is // to an object of the "implementation" hierarchy and delegates class AdvancedRemoteControl extends RemoteControl is
Ve // all of the real work to this object. method mute() is
class RemoteControl is device.setVolume(0)
protected field device: Device
class Radio implements Device is constructor RemoteControl(device: Device) is
this.device = device // The "implementation" interface declares methods common to all
/] vee method togglePower() is // concrete implementation classes. It doesn't have to match the
if (device.isEnabled()) then // abstraction's interface. In fact, the two interfaces can be
device.disable() // entirely different. Typically the implementation interface
else // provides only primitive operations, while the abstraction
// Somewhere in client code. deviceyenable) // defines higher-level operations based on those primitives.
tv = new Tv() method volumeDown() is i"t”fa:ed"e"écebisd()
_ device.setVolume(device.getVolume() - 10) method isEnable
remote = new RemoteControl(tv) e method enable ()
remote.togglePower() device.setVolume(device.getVolume() + 10) method| disable ()

method getVolume()

method setVolume(percent)
method getChannel()

method setChannel(channel)

method channelDown() is

X) device.setChannel(device.getChannel() - 1)
radio = new Radio() method channelUp() is

remote = new AdvancedRemoteControl(radio) device.setChannel(device.getChannel() + 1)

APPLICABILITY

Use the Bridge pattern when you want to divide and organize a monolithic class that has several variants of some
functionality (for example, if the class can work with various database servers)

Use the pattern when you need to extend a class in several orthogonal (independent) dimensions

. Use the Bridge if you need to be able to switch implementations at runtime

HOW 10 [MPLEMENT

1 Identify Dimensions: Break classes into orthogonal concepts like abstraction/platform or interface/implementation

/. Base Abstraction: Define client-required operations in the base abstraction class

3. Implementation Interface: Declare platform-wide operations needed by the abstraction

4 Concrete Implementations: Create platform-specific classes adhering to the implementation interface.
2. Delegate Work: Add an implementation reference in the abstraction and delegate tasks to it

b. Refined Abstractions: Extend the base abstraction for different logic variants.

[Client Interaction: Pass the implementation to the abstraction's constructor, allowing the dlient to interact only with the abstraction

PRUS & CONS

<>

You can create platform-independent classes and apps.

The dlient code works with high-level abstractions. It isnt
exposed to the platform details

Open/Ulased Principle You can introduce new abstractions and
implementations independently from each other

Single Responsibilly Principle. You can focus on high-level logic
in the abstraction and on platform details in the implementation.

