
Modelli strutturali:
composite pattern

intent

• Composite is a structural design pattern that
lets you compose objects into tree structures
and then work with these structures as if they
were individual objects.

problem

Using the Composite pattern makes sense only when the core model of your app can be represented as a tree.

• For example, imagine that you have two types of objects: Products and Boxes.
• A Box can contain several Products as well as a number of smaller Boxes.
• These little Boxes can also hold some Products or even smaller Boxes, and so on.
• Say you decide to create an ordering system that uses these classes.
• Orders could contain simple products without any wrapping, as well as boxes

stuffed with products...and other boxes.

How would you determine the total price of such an order?

solution

• The Composite pattern suggests that you work with Products and Boxes through a common interface which declares a method for calculating
the total price.

• The greatest benefit of this approach is that you don’t need to care about the concrete classes of objects that compose the tree. You don’t need
to know whether an object is a simple product or a sophisticated box. You can treat them all the same via the common interface.

Real-World Analogy

• Armies of most countries are structured as
hierarchies. An army consists of several divisions; a
division is a set of brigades, and a brigade consists of
platoons, which can be broken down into squads.
Finally, a squad is a small group of real soldiers.
Orders are given at the top of the hierarchy and
passed down onto each level until every soldier
knows what needs to be done.

structure

#pseudocode

• In this example, the Composite pattern lets you
implement stacking of geometric shapes in a
graphical editor.

The CompoundGraphic class is a
container that can comprise any
number of sub-shapes, including
other compound shapes

The client code works with all shapes through the single interface
common to all shape classes.

code

code

applicability

Use the Composite pattern when you have to implement a
tree-like object structure.

Use the pattern when you want the client code to treat both
simple and complex elements uniformly.

How to implement

1. Tree Structure: Represent the app's core model as a tree of simple elements and containers. Containers should hold both element
types.

2. Component Interface: Define an interface with methods applicable to both simple and complex components.

3. Leaf Class: Create classes for simple elements (leaves). Multiple leaf types are allowed.

4. Container Class: Create a container class with an array to store sub-elements, declared using the component interface type.

5. Delegation: Implement container methods to delegate most work to sub-elements.

6. Child Management: Add methods for adding and removing child elements in the container.

7. Optional Interface Methods: If child management is declared in the component interface, leaf classes will have empty
implementations, enabling uniform tree manipulation at the cost of Interface Segregation Principle adherence.

Pros & cons

ou can work with complex tree structures more
conveniently: use polymorphism and recursion to
your advantage.

Open/Closed Principle. You can introduce new
element types into the app without breaking the
existing code, which now works with the object tree.

It might be difficult to provide a common
interface for classes whose functionality
differs too much. In certain scenarios, you’d
need to overgeneralize the component
interface, making it harder to comprehend.

Modelli strutturali:
decorator pattern

intent

• Decorator is a structural design pattern that lets
you attach new behaviors to objects by placing
these objects inside special wrapper objects that
contain the behaviors.

Problem (1) • Imagine that you’re working on a notification library which lets other programs notify their users about
important events.

Problem (2)

• At some point, you realize that users of the library expect more than just email notifications. Many of them would like to
receive an SMS about critical issues. Others would like to be notified on Facebook and, of course, the corporate users would
love to get Slack notifications.

Problem (3)

• You tried to address that problem by creating special subclasses which combined several notification methods within one class.
However, it quickly became apparent that this approach would bloat the code immensely, not only the library code but the client
code as well.

• You have to find some other way to structure notifications classes so that their number won’t accidentally break some Guinness
record

Solution (1)

Extending a class is the first thing that comes to mind when you need to alter an object’s behavior. However, inheritance has
several serious caveats that you need to be aware of.

1. Inheritance is static. You can’t alter the behavior of an existing object at runtime. You can only replace the whole
object with another one that’s created from a different subclass.

2. Subclasses can have just one parent class. In most languages, inheritance doesn’t let a class inherit behaviors of
multiple classes at the same time.

Solution (2)

• Using Aggregation or Composition instead of Inheritance. Both of the alternatives work almost the same way: one object
has a reference to another and delegates it some work, whereas with inheritance, the object itself is able to do that work,
inheriting the behavior from its superclass.

Solution (3)
• “Wrapper” is the alternative nickname for the Decorator pattern that clearly expresses the main idea

of the pattern. A wrapper is an object that can be linked with some target object. The wrapper
contains the same set of methods as the target and delegates to it all requests it receives. However,
the wrapper may alter the result by doing something either before or after it passes the request to
the target.

• When does a simple wrapper become the real decorator?

• In our notifications example, let’s leave the simple email notification behavior inside the
base Notifier class, but turn all other notification methods into decorators.

Solution (4)

• The client code would need to wrap a basic notifier object into a set of
decorators that match the client’s preferences. The resulting objects will be
structured as a stack.

• The last decorator in the stack would be the object that the client actually
works with. Since all decorators implement the same interface as the base
notifier, the rest of the client code won’t care whether it works with the
“pure” notifier object or the decorated one.

Real-World Analogy

• Wearing clothes is an example of using decorators. When you’re cold, you wrap yourself in a sweater. If you’re still cold
with a sweater, you can wear a jacket on top. If it’s raining, you can put on a raincoat. All of these garments “extend” your
basic behavior but aren’t part of you, and you can easily take off any piece of clothing whenever you don’t need it.

structure

#pseudocode

• In this example, the Decorator pattern lets you compress
and encrypt sensitive data independently from the code
that actually uses this data.

code

code

code

applicability

Use the Decorator pattern when you need to be able to assign extra behaviors to objects at runtime without breaking
the code that uses these objects.

Use the pattern when it’s awkward or not possible to extend an object’s behavior using inheritance.

How to implement

1. Domain Representation: Represent the domain as a primary component with optional layers.

2. Component Interface: Define common methods for both the component and layers.

3. Concrete Component: Implement the primary component with base behavior.

4. Base Decorator: Create a decorator class with a component-typed field to wrap components or other decorators, delegating
work to the wrapped object.

5. Concrete Decorators: Extend the base decorator and add behavior before or after delegating to the wrapped object.

6. Client Composition: Let the client create and compose decorators as needed.

PROs & CONS

Relations with Other Patterns
• Adapter provides a completely different interface for accessing an existing object. On the other hand, with the Decorator pattern the interface either stays the same or

gets extended. In addition, Decorator supports recursive composition, which isn’t possible when you use Adapter.

• With Adapter you access an existing object via different interface. With Proxy, the interface stays the same. With Decorator you access the object via an enhanced
interface.

• Chain of Responsibility and Decorator have very similar class structures. Both patterns rely on recursive composition to pass the execution through a series of objects.
However, there are several crucial differences.

• The CoR handlers can execute arbitrary operations independently of each other. They can also stop passing the request further at any point. On the other hand,
various Decorators can extend the object’s behavior while keeping it consistent with the base interface. In addition, decorators aren’t allowed to break the flow of the
request.

• Composite and Decorator have similar structure diagrams since both rely on recursive composition to organize an open-ended number of objects.

• A Decorator is like a Composite but only has one child component. There’s another significant difference: Decorator adds additional responsibilities to the wrapped object,
while Compositejust “sums up” its children’s results.

• However, the patterns can also cooperate: you can use Decorator to extend the behavior of a specific object in the Composite tree.

• Designs that make heavy use of Composite and Decorator can often benefit from using Prototype. Applying the pattern lets you clone complex structures instead of re-
constructing them from scratch.

• Decorator lets you change the skin of an object, while Strategy lets you change the guts.

• Decorator and Proxy have similar structures, but very different intents. Both patterns are built on the composition principle, where one object is supposed to delegate
some of the work to another. The difference is that a Proxy usually manages the life cycle of its service object on its own, whereas the composition of Decorators is
always controlled by the client.

https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/chain-of-responsibility
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/composite
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/composite
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/prototype
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/proxy

Modelli strutturali:
facade pattern

intent

• Facade is a structural design pattern that
provides a simplified interface to a library,
a framework, or any other complex set
of classes.

Problem

• Imagine that you must make your code work with a broad set of objects that belong to a sophisticated library or
framework. Ordinarily, you’d need to initialize all of those objects, keep track of dependencies, execute methods in the
correct order, and so on.

• As a result, the business logic of your classes would become tightly coupled to the implementation details of 3rd-party
classes, making it hard to comprehend and maintain.

solution

• For instance, an app that uploads short funny videos with cats to social media could potentially use a
professional video conversion library. However, all that it really needs is a class with the single
method encode(filename, format). After creating such a class and connecting it with the video conversion library,
you’ll have your first facade.

• A facade is a class that provides a simple interface to a complex subsystem which contains lots of moving parts. A facade might
provide limited functionality in comparison to working with the subsystem directly. However, it includes only those features that
clients really care about.

• Having a facade is handy when you need to integrate your app with a sophisticated library that has dozens of features, but you
just need a tiny bit of its functionality.

Real-world
analogy

• When you call a shop to place a phone
order, an operator is your facade to all
services and departments of the shop. The
operator provides you with a simple voice
interface to the ordering system, payment
gateways, and various delivery services.

structure

#pseudocode

• Instead of making your code work with dozens of the framework
classes directly, you create a facade class which encapsulates that
functionality and hides it from the rest of the code.

• This structure also helps you to minimize the effort of upgrading
to future versions of the framework or replacing it with another
one.

• The only thing you’d need to change in your app would be the
implementation of the facade’s methods.

code

applicability

Use the Facade pattern when you need to have a limited but
straightforward interface to a complex subsystem.

Use the Facade when you want to structure a subsystem into layers.
Create facades to define entry points to each level of a subsystem.
You can reduce coupling between multiple subsystems by requiring
them to communicate only through facades.

How to implement

1. Simplify Interface: Create a simpler interface to decouple client code from subsystem classes.

2. Facade Class: Implement the interface in a new facade that redirects client calls to subsystem objects and manages the
subsystem’s lifecycle if needed.

3. Exclusive Access: Ensure all client communication with the subsystem goes through the facade to shield clients from
subsystem changes.

4. Refine if Needed: Split the facade into smaller classes if it becomes too complex.

Prod & cons

You can isolate your code from the complexity
of a subsystem.

A facade can become a god objectcoupled to all
classes of an app.

https://refactoring.guru/antipatterns/god-object

Modelli strutturali:
Bridge pattern

intent

• Bridge is a structural design pattern
that lets you split a large class or a
set of closely related classes into two
separate hierarchies—abstraction and
implementation—which can be
developed independently of
each other.

Problem

Abstraction? Implementation? Sound scary? Stay calm and let’s consider a
simple example.

• Say you have a geometric Shape class with a pair of
subclasses: Circle and Square. You want to extend this class hierarchy to
incorporate colors, so you plan to create Red and Blue shape subclasses.
However, since you already have two subclasses, you’ll need to create four
class combinations such as BlueCircle and RedSquare.

• Adding new shape types and colors to the hierarchy will grow it
exponentially.

This problem occurs because we’re trying to extend the shape classes in two independent dimensions: by form and by color. That’s a very common issue with class inheritance.

solution
• The Bridge pattern attempts to solve this problem by switching from inheritance to the

object composition. What this means is that you extract one of the dimensions into a
separate class hierarchy, so that the original classes will reference an object of the new
hierarchy, instead of having all of its state and behaviors within one class.

Abstaction and implementation

• Abstraction (also called interface) is a high-level control layer for some entity.

• This layer isn’t supposed to do any real work on its own. It should delegate the work to the implementation layer (also
called platform).

• Note that we’re not talking about interfaces or abstract classes from your programming language. These aren’t the same
things.

PRoblem

Generally speaking, you can extend such an app in two independent directions:
• Have several different GUIs (for instance, tailored for regular customers or admins).
• Support several different APIs (for example, to be able to launch the app under Windows, Linux, and macOS).

In a worst-case scenario, this app might look like a giant spaghetti bowl, where hundreds of conditionals connect different types of GUI with
various APIs all over the code.

• You can bring order to this chaos by extracting the code related to specific interface-platform combinations into separate classes. However,
soon you’ll discover that there are lots of these classes.

The class hierarchy will grow exponentially because adding a new GUI or supporting a different API require creating more and more classes.

solution

• Let’s try to solve this
issue with the Bridge
pattern. It suggests that
we divide the classes
into two hierarchies:

• Abstraction: the GUI
layer of the app.

• Implementation: the
operating systems’ APIs.

solution

The abstraction object controls the appearance of the app, delegating the actual work to the linked implementation object.

• Different implementations are interchangeable as long as they follow a common interface, enabling the same GUI to work under
Windows and Linux.

• As a result, you can change the GUI classes without touching the API-related classes. Moreover, adding support for another
operating system only requires creating a subclass in the implementation hierarchy.

structure

#pseudocode

• This example illustrates how
the Bridge pattern can help divide the
monolithic code of an app that manages
devices and their remote controls.
The Device classes act as the
implementation, whereas the Remotes act
as the abstraction.

code

applicability
Use the Bridge pattern when you want to divide and organize a monolithic class that has several variants of some
functionality (for example, if the class can work with various database servers).

Use the pattern when you need to extend a class in several orthogonal (independent) dimensions.

Use the Bridge if you need to be able to switch implementations at runtime.

How to implement

1. Identify Dimensions: Break classes into orthogonal concepts like abstraction/platform or interface/implementation.

2. Base Abstraction: Define client-required operations in the base abstraction class.

3. Implementation Interface: Declare platform-wide operations needed by the abstraction.

4. Concrete Implementations: Create platform-specific classes adhering to the implementation interface.

5. Delegate Work: Add an implementation reference in the abstraction and delegate tasks to it.

6. Refined Abstractions: Extend the base abstraction for different logic variants.

7. Client Interaction: Pass the implementation to the abstraction’s constructor, allowing the client to interact only with the abstraction.

Pros & Cons

You can create platform-independent classes and apps.

The client code works with high-level abstractions. It isn’t
exposed to the platform details.

Open/Closed Principle. You can introduce new abstractions and
implementations independently from each other.

Single Responsibility Principle. You can focus on high-level logic
in the abstraction and on platform details in the implementation.

You might make the code more complicated by
applying the pattern to a highly cohesive class.

