

Università degli studi di Napoli Parthenope Corso di laurea in Economia e Commercio

POLITICA ECONOMICA Prof. Enrico Marchetti a.a 2024 - 2025

ESERCITAZIONE 1

Domande di prova sulle prime tre lezioni

- 1. Dai dati ISTAT si constata che il PIL Italiano del 2013 è stato pari a 1618 miliardi di Euro (€mld), mentre i consumi delle famiglie sono stati pari a 978 €mld, gli investimenti (comprese le variazioni delle scorte) a 289 €mld, la spesa pubblica totale a 314 €mld. In base al conto risorse-impieghi della Contabilità Nazionale, a quanto era pari il saldo della Bilancia Commerciale (o esportazioni nette) NX? Se il valore delle importazioni nel 2013 è stato pari a 425 €mld, a quanto ammontavano le esportazioni?
- 2. Si consideri la seguente tavola input-output dei conti settoriali, nell'ipotesi che nell'economia vi siano solo due settori di produzione, A e B:

```
settore A: 200 (da B) 200 .... 500 settore B: 500 (da A) 600 .... 1200
```

A quanto ammonta il PIL? Come si nota, mancano i valori dei profitti realizzati nei due settori; a quanto ammontano i profitti nel settore A e in quello B?

3. Secondo l'ISTAT nel 2007 il PIL era pari a 1565 €mld, mentre la stima per l'ammortamento complessivo è valutata in 242 €mld. In base ad un'altra tabella ISTAT, inoltre, le imposte <u>indirette</u> ammontavano a 231 €mld, e i redditi netti dall'estero erano pari a −19 €mld. Se il reddito complessivo da lavoro dipendente del 2007 - sempre secondo l'ISTAT - era pari a 632 €mld, a quanto risultavano pari in quell'anno i redditi <u>non da lavoro</u>?

ESERCIZIO 1

DATI:

- $ightharpoonup Y = K^{\alpha}L^{1-\alpha} \text{ con } \alpha = 0, 4;$
- ▶ offerta di fattori produttivi: $\bar{K} = 243$; $\bar{L} = 32$.

- 1. Dimostrare che la funzione di produzione è a rendimenti costanti di scala e calcolare il valore del prodotto reale.
- 2. Calcolare le produttività marginali dei fattori di produzione, usando i valori \bar{K} e \bar{L} .

ESERCIZIO 2 (\rightarrow n.10 delle dispense sul sito)

Equilibrio del mercato dei beni secondo la teoria classica - <u>DATI</u>:

- ▶ $Y = \bar{K}^{\alpha}\bar{L}^{1-\alpha}$ con $\alpha = \frac{1}{2}$; offerte dei fattori di produzione: $\bar{K} = 500$ e $\bar{L} = 720$.
- ▶ Domanda aggregata: $C = 150 + 0.75Y^d$; I = 100 10r; T = 200; G = 150.

- 1. Si calcoli il valore del reddito/prodotto netto di equilibrio.
- 2. Si calcoli il tasso di interesse reale r che garantisce l'equilibrio nel mercato dei beni (e quindi anche in quello dei fondi prestabili).

ESERCIZIO 3

Teoria classica e politica economica - <u>DATI</u>:

- ▶ Offerte dei fattori di produzione: $\bar{K} = 160$ e $\bar{L} = 400$.
- ▶ Prezzi di equilibrio dei fattori produttivi: $\frac{W}{P}^* = 1, 5; \frac{R}{P}^* = 2, 5.$
- ▶ Domanda aggregata: $C = 150 + 0.75Y^d$; I = 200 10r; T = 500; G = 300.

- 1. Calcolare il prodotto reale di equilibrio \bar{Y} , il tasso di interesse reale r^* di equilibrio nel mercato S-I, e il livello di equilibrio degli investimenti I^* .
- 2. Considerate poi un aumento della spesa pubblica: G' = 320. Qual è la variazione del livello degli investimenti e del tasso di interesse reale di equilibrio?

ESERCIZIO 4 (\rightarrow n.13 delle dispense sul sito)

Moneta e sistema bancario - <u>DATI</u>:

Base monetaria: B = 100;

rapporto circolante/depositi: $cr = \frac{1}{3}$; rapporto riserve/depositi: $rr = \frac{1}{3}$.

- 1. Calcolare l'offerta nominale di moneta.
- 2. Si assuma che il circolate sia pari a C=150; calcolare l'ammontare delle riserve R.

ESERCIZIO 5

Moneta e inflazione.

- Valore del PIL reale a t=0: $Y_0=4500$; valore al tempo t=1: $Y_1=4900$.
- Tasso di inflazione tra t=0 e t=1: il 12% (cioè 0, 12).

DOMANDE:

1. Si calcoli il tasso di crescita dell'offerta nominale di moneta secondo la Teoria quantitativa della moneta.

ESERCIZIO 6 (\rightarrow n.15 delle dispense sul sito)

Teoria quantitativa e domanda di moneta.

<u>Offerta di moneta</u>: base monetaria: B = 100; rapporti: $cr = \frac{1}{3}$; $rr = \frac{1}{9}$.

<u>Domanda di moneta</u>: componente transattiva e speculativa: $\left(\frac{M}{P}\right)^d = \frac{1}{2}Y - 10i$.

Si assuma inoltre che sia:

Y = 800; tasso reale di interesse: r = 10; aspettative nulle di inflazione: $\pi^e = 0$.

DOMANDE:

1. Calcolare: la quantità nominale di moneta M e il livello dei $\$ prezzi P secondo la teoria quantitativa.

Rendimenti costanti di scala:

$$(xK)^{0,4} (xL)^{1-0,4} = x^{0,4+1-0,4} (K^{0,4}L^{0,6}) = xY.$$

Output con
$$K = 243 \text{ e } L = 32 \text{ s}$$

Output con
$$K = 243$$
 e $L = 32$: $\mathbf{Y} = (243)^{0.4} (32)^{0.6} = \mathbf{72}$.

Produttività marginali:

$$PML \text{ (lavoro):} \qquad \frac{\partial Y}{\partial L} = (1 - \alpha) K^{\alpha} L^{-\alpha} = 0.6 (243)^{0.4} (32)^{-0.4} = \mathbf{1}, \mathbf{35}$$

$$PMK$$
 (capitale): $\frac{\partial Y}{\partial K} = \alpha K^{\alpha-1} L^{1-\alpha} = 0.4 (243)^{-0.6} (32)^{0.6} = \mathbf{0}, \mathbf{118}$

1) Il reddito di equilibrio, dal lato dell'offerta: $\bar{Y} = \bar{K}^{\alpha} \bar{L}^{1-\alpha}$

cioè:
$$\mathbf{\bar{Y}} = (500)^{0.5} (720)^{0.5} = 360000^{0.5} = \mathbf{600}$$

2) Equilibrio nel mercato dei beni: $\bar{Y} = D = C + I + G$ con le componenti della domanda: $\bar{Y} = a + b(\bar{Y} - T) + I + G$

$$\rightarrow 600 = 150 + 0.75(600 - 200) + 100 - 10r + 150$$

cioè:
$$600 = 450 + 100 - 10r + 150 = 700 - 10r$$
.

Ora risolviamo per
$$r$$
: $\mathbf{r} = \frac{700-600}{10} = \mathbf{10}$

1) Dal teorema di esaustione del prodotto:
$$Y = (\frac{W}{P}) \bar{L} + (\frac{R}{P}) \bar{K} \rightarrow \bar{\mathbf{Y}} = 1.5 * 400 + 2.5 * 160 = \mathbf{1000}$$

Equilibrio mercato dei beni:
$$\bar{Y} = C + I + G$$

= $150 + 0.75 \left(\bar{Y} - T\right) + 80 - 10r + G$ cioè:

$$1000 = 150 + 0.75(1000 - 500) + 200 - 10r + 300 =$$
 1025 - **10r** = **1000**

Risolviamo per
$$r$$
: $\mathbf{r}^* = \frac{1025 - 1000}{10} = \mathbf{2.5}$

$$I^* = 200 - 10 * 2.5 = 175$$

2) Con
$$G' = 320 \rightarrow 1000 = 150 + 0.75 (1000 - 500) + 200 - 10r + 320$$

= $\mathbf{1045} - \mathbf{10r} = \mathbf{1000}$

Il tasso di interesse è ora: $\mathbf{r}^{**} = \frac{1045 - 1000}{10} = \mathbf{4.5}$ Investimenti e Risparmi:

$$\mathbf{S}^{**} = Y - C - G' = 1000 - 150 - 0.75 (1000 - 500) - 320 = \mathbf{155}$$

 $\mathbf{I}^{**} = 200 - 10 * 4.5 = \mathbf{155}$

1) Offerta di moneta:
$$M=C+D$$
 quindi: $M=mB$ con $m=\frac{1+cr}{cr+rr}$ Usando la formula del moltiplicatore: $\mathbf{M}=\frac{1+\frac{1}{3}}{\frac{1}{2}+\frac{1}{2}}100=2*100=\mathbf{200}$

2) Sfruttando il coefficiente cirocolante/depositi: $cc = \frac{C}{D}$ $\frac{1}{3} = \frac{150}{D}$ da cui: $\mathbf{D} = 150 * 3 = \mathbf{450}$

quindi riserve/depositi:
$$rr = \frac{R}{D} \rightarrow \frac{1}{3} = \frac{R}{450}$$
 da cui: $\mathbf{R} = \frac{450}{3} = \mathbf{150}$

Tasso di variazione del PIL reale: $\frac{\Delta Y}{Y} = \frac{Y_1 - Y_0}{Y_0} = \frac{4900 - 4500}{4500} = 0.088$ (cioè 8, 8%).

$$\frac{\Delta \mathbf{Y}}{\mathbf{Y}} = \frac{\mathbf{Y}_1 - \mathbf{Y}_0}{\mathbf{Y}_0} = \frac{490}{2}$$

Equazione della teoria quantitativa:

$$\pi = \frac{\Delta M}{M} - \frac{\Delta Y}{Y} \longrightarrow \frac{\Delta M}{M} = \pi + \frac{\Delta Y}{Y}$$

e quindi:
$$\frac{\Delta M}{M} = 0.12 + 0.088 = 0.208$$
 (cioè il 20,8%)

Prima cosa: offerta nominale di moneta: $M = mB = \frac{1+cr}{cr+rr}B$

$$\rightarrow \mathbf{M} = \frac{1 + \frac{1}{3}}{\frac{1}{3} + \frac{1}{9}} 100 = 3 * 100 = \mathbf{300}.$$

Equilibrio mercato monetario (offerta di moneta = domanda di mon.): $M=M^d\,$ - quindi scriviamo

l'equazione di equilibrio del mercato monetario: $\frac{M}{P} = \frac{1}{2}Y - 10i$ \rightarrow

$$\frac{300}{P} = \frac{800}{2} - 10i$$

Equazione di Fisher (attesa): $i = r + \pi^e = 10$ da cui:

$$\frac{300}{P} = \frac{1}{2}800 - 10 * 10$$
 \rightarrow $\frac{300}{P} = 300$ da cui: $\mathbf{P} = \mathbf{1}$