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Uncertainty

• Often, an agent has only partial knowledge of the world, and the agent 
should make the best decision possible even in these situations

• For example, when predicting the weather, the agent has information about 
today's weather, but there is no way to predict tomorrow's weather with 100% 
accuracy

• The agent can do better than chance, so the focus is on how to create an 
agent that makes optimal decisions under limited information and uncertainty



Introduction

• Real-world problems contain uncertainties due to:
• partial observability
• nondeterminism
• adversaries

• Example of dental diagnosis using propositional logic

Toothache ⇒ Cavity
• However inaccurate, not all patients with toothaches have cavities

Toothache ⇒ Cavity ∨ GumProblem ∨ Abscess...

• To make the rule true, we must add an almost unlimited list of possible 
problems

• The only way to fix the rule is to make it logically exhaustive



Acting Under Uncertainty

• An agent seeks to make rational decisions by considering the relative 
importance of various goals and evaluating the likelihood and extent to which 
these goals can be achieved, however …

• Large domains such as medical diagnosis fail for three main reasons:
• Laziness: It is too much work to list the complete set of antecedents or consequents 

needed to ensure an exceptionless rule
• Theoretical ignorance: Medical science has no complete theory for the domain
• Practical ignorance: Even if we know all the rules, we might be uncertain about a 

particular patient because only some necessary tests have been or can be run

• An agent only has a degree of belief in the relevant sentences

• Probability theory
• tool to deal with degrees of belief in relevant sentences
• summarizes the uncertainty that comes from our laziness and ignorance 



Probability

• Uncertainty can be represented as a number of events and the 
likelihood, or probability, of each of them happening

• Every possible situation can be thought of as a world, represented 
by the letter 𝝎
• Example
• Rolling a die can result in six possible worlds:

• Where the die yields a 1, where it yields a 2, and so on

• The probability of a certain world is denoted as P(𝝎)



Probability Axioms

• 0 ≤ P(𝜔) ≤ 1: every probability value ranges between 0 and 1
• 0 is an impossible event
• 1 is an event that is certain to happen
• In general, the higher the value, the more likely the event is to happen

• ∑!∈#P(𝜔) = 1
• The sum of the probabilities of every possible event is equal to 1

• Example
• The probability of rolling a number R with a die is P(R) = 1/6

• Six possible worlds and each is equally likely to happen



Probability Axioms

• Example: rolling two dice
• There are 36 possible events equally likely
• In predicting the sum of the two dice we only have 11 possible events (the 

sum ranges from 2 to 12)
• These events do not occur equally as often

• To get the probability of an event we divide the number of worlds in which 
it occurs by the number of total possible worlds
• P(12) = 1/36
• P(7) = 6/36 = 1/6

Every possible situation can be thought of as a world, represented by the lowercase Greek letter
omega ω. For example, rolling a die can result in six possible worlds: a world where the die
yields a 1, a world where the die yields a 2, and so on. To represent the probability of a certain
world, we write P(ω).

Axioms in Probability

The probability of rolling a number R with a standard die can be represented as P(R). In our
case, P(R) = 1/6, because there are six possible worlds (rolling any number from 1 through 6)
and each is equally likely to happen. Now, consider the event of rolling two dice. Now, there are
36 possible events, which are, again, equally as likely.

0 < P(ω) < 1: every value representing probability must range between 0 and 1.¶

Zero is an impossible event, like rolling a standard die and getting a 7..

One is an event that is certain to happen, like rolling a standard die and getting a
value less than 10.

.

In general, the higher the value, the more likely the event is to happen..

The probabilities of every possible event, when summed together, are equal to 1.¶



Unconditional probability

• Is the degree of belief in a proposition in the absence of any other 
evidence
• All the questions that we have asked so far were questions of 

unconditional probability
• The result of rolling a die is not dependent on previous events



Conditional probability

• Is the degree of belief in a proposition given some evidence that 
has already been revealed

• An agent can use partial information to make consistent guesses 
about the future
• To use this information, which affects the probability that the event occurs 

in the future, it relies on conditional probability

• Conditional probability id denoted as P(a | b)
• The probability of event a occurring given that we know event b to have 

occurred, in other words, the probability of a given b



Conditional Probability

• Now we can ask questions like 
• “What is the probability of rain today given that it rained yesterday”

• P(rain today | rain yesterday)

• “What is the probability of the patient having the disease given their test 
results”
• P(disease | test results)



Conditional Probability

• From a mathematical point of view

• 𝑃 𝑎 𝑏) = !(# ∧ %)
!(%)

(1)

• Intuitively, we are interested in situations where the events a and b both happen, 
𝑃(𝑎 ∧ 𝑏), but only from worlds where we know b to be happened, 𝑃(𝑏)

• (1) is equivalent to
• 𝑃(𝑎 ∧ 𝑏) = 𝑃(𝑏) 𝑃 𝑎 𝑏)
• 𝑃(𝑎 ∧ 𝑏) =	𝑃(𝑎) 𝑃 𝑏 𝑎)



Example

• P(sum 12 | roll 6 on one die) 
• To calculate this, we first restrict our worlds to the ones where the value of the first die is 6: 

• Now we ask how many times the event a (the sum being 12) occurs in the worlds where the 
first die rolled 6 (dividing by P(b), or the probability of the first die yielding 6)

Now we ask how many times does the event a (the sum being 12) occur in the worlds that we
restricted the question to (dividing by P(b), or the probability of the rst die yielding 6).

Random Variables

A random variable is a variable in probability theory with a domain of possible values that it can
take on. For example, to represent possible outcomes when rolling a die, we can de ne a
random variable Roll, that can take on the values {0, 1, 2, 3, 4, 5, 6}. To represent the status of a

ight, we can de ne a variable Flight that takes on the values {on time, delayed, canceled}.

Often, we are interested in the probability with which each value occurs. We represent this using
a probability distribution. For example,

Now we ask how many times does the event a (the sum being 12) occur in the worlds that we
restricted the question to (dividing by P(b), or the probability of the rst die yielding 6).

Random Variables

A random variable is a variable in probability theory with a domain of possible values that it can
take on. For example, to represent possible outcomes when rolling a die, we can de ne a
random variable Roll, that can take on the values {0, 1, 2, 3, 4, 5, 6}. To represent the status of a

ight, we can de ne a variable Flight that takes on the values {on time, delayed, canceled}.

Often, we are interested in the probability with which each value occurs. We represent this using
a probability distribution. For example,



Random Variables

• In probability theory,  a random variable is a variable with a range 
of possible values it can take
• E.g., to represent the possible outcomes of rolling a die, we can define a 

random variable Roll that can take the values {1, 2, 3, 4, 5, 6}
• E.g., to represent the status of a flight, we can define a variable Flight that 

can take the values {on time, delayed, canceled}

• We are interested in the probability with which each value occurs
• By using a probability distribution



Probability Distribution

• P(Flight = on time) = 0.6

• P(Flight = delayed) = 0.3

• P(Flight = canceled) = 0.1

• A probability distribution can be represented as P(Flight) = <0.6, 0.3, 0.1>
• To interpret this notation, the values have a set order, i.e., on time, delayed, 

canceled



Independence

• Independence is the knowledge that the occurrence of one event does not 
affect the probability of the other event
• For example, when rolling two dice, the result of each die is independent of the other 

• This is opposed to dependent events, like clouds in the morning and rain in 
the afternoon
• If it is cloudy in the morning, it is more likely that it will rain in the afternoon, so these 

events are dependent 

• Independence is defined mathematically: 
• events a and b are independent if and only if the probability of a and b is 

• P(a ∧ b) = P(a)P(b)



Bayes’ Rule

• Bayes’ rule is commonly used in probability theory to compute conditional 
probability

𝑃 𝑏 𝑎 =
𝑃 𝑏 𝑃(𝑎|𝑏)

𝑃(𝑎)
• Example

• To compute the probability of it raining in the afternoon if there are clouds in the morning, 
P(rain | clouds), we start with the following information
• 80% of rainy afternoons start with cloudy mornings, or P(clouds | rain)

• 40% of days have cloudy mornings, or P(clouds)

• 10% of days have rainy afternoons, or P(rain)

• Applying Bayes’ rule, we compute (0.1)(0.8)/(0.4) = 0.2
• That is, the probability that it rains in the afternoon given that it was cloudy in the morning is 20%



Joint Probability
• Joint probability is the likelihood of multiple events all occurring

• Let us consider the following example, the probabilities of clouds in the morning and rain in 
the afternoon

• Looking at these data, we can’t say whether clouds in the morning are related to the 
likelihood of rain in the afternoon
• To be able to do so, we need to look at the joint probabilities of all the possible outcomes of the two variables 

• We can represent this in a table as follows: 

• Now we can know information about the co-occurrence of the events
• For example, we know that the probability of a certain day having clouds in the morning and rain in the afternoon is 0.08

• The probability of no clouds in the morning and no rain in the afternoon is 0.58

Applying Bayes’ rule, we compute (0.1)(0.8)/(0.4) = 0.2. That is, the probability that it rains in the
afternoon given that it was cloudy in the morning is 20%.

Knowing P(a | b), in addition to P(a) and P(b), allows us to calculate P(b | a). This is helpful,
because knowing the conditional probability of a visible effect given an unknown cause,
P(visible effect | unknown cause), allows us to calculate the probability of the unknown cause
given the visible effect, P(unknown cause | visible effect). For example, we can learn P(medical test
results | disease) through medical trials, where we test people with the disease and see how
often the test picks up on that. Knowing this, we can calculate P(disease | medical test results),
which is valuable diagnostic information.

Joint Probability

Joint probability is the likelihood of multiple events all occurring.

Let us consider the following example, concerning the probabilities of clouds in the morning
and rain in the afternoon.

Looking at these data, we can’t say whether clouds in the morning are related to the likelihood
of rain in the afternoon. To be able to do so, we need to look at the joint probabilities of all the
possible outcomes of the two variables. We can represent this in a table as follows:

Now we are able to know information about the co-occurrence of the events. For example, we
know that the probability of a certain day having clouds in the morning and rain in the

80% of rainy afternoons start with cloudy mornings, or P(clouds | rain).¶

40% of days have cloudy mornings, or P(clouds).¶

10% of days have rainy afternoons, or P(rain).¶

C = cloud C = ¬cloud

0.4 0.6

R = rain R = ¬rain

0.1 0.9

  R = rain R = ¬rain

C = cloud 0.08 0.32

C = ¬cloud 0.02 0.58

Applying Bayes’ rule, we compute (0.1)(0.8)/(0.4) = 0.2. That is, the probability that it rains in the
afternoon given that it was cloudy in the morning is 20%.

Knowing P(a | b), in addition to P(a) and P(b), allows us to calculate P(b | a). This is helpful,
because knowing the conditional probability of a visible effect given an unknown cause,
P(visible effect | unknown cause), allows us to calculate the probability of the unknown cause
given the visible effect, P(unknown cause | visible effect). For example, we can learn P(medical test
results | disease) through medical trials, where we test people with the disease and see how
often the test picks up on that. Knowing this, we can calculate P(disease | medical test results),
which is valuable diagnostic information.

Joint Probability

Joint probability is the likelihood of multiple events all occurring.
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know that the probability of a certain day having clouds in the morning and rain in the
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Applying Bayes’ rule, we compute (0.1)(0.8)/(0.4) = 0.2. That is, the probability that it rains in the
afternoon given that it was cloudy in the morning is 20%.

Knowing P(a | b), in addition to P(a) and P(b), allows us to calculate P(b | a). This is helpful,
because knowing the conditional probability of a visible effect given an unknown cause,
P(visible effect | unknown cause), allows us to calculate the probability of the unknown cause
given the visible effect, P(unknown cause | visible effect). For example, we can learn P(medical test
results | disease) through medical trials, where we test people with the disease and see how
often the test picks up on that. Knowing this, we can calculate P(disease | medical test results),
which is valuable diagnostic information.

Joint Probability

Joint probability is the likelihood of multiple events all occurring.

Let us consider the following example, concerning the probabilities of clouds in the morning
and rain in the afternoon.

Looking at these data, we can’t say whether clouds in the morning are related to the likelihood
of rain in the afternoon. To be able to do so, we need to look at the joint probabilities of all the
possible outcomes of the two variables. We can represent this in a table as follows:

Now we are able to know information about the co-occurrence of the events. For example, we
know that the probability of a certain day having clouds in the morning and rain in the

80% of rainy afternoons start with cloudy mornings, or P(clouds | rain).¶

40% of days have cloudy mornings, or P(clouds).¶

10% of days have rainy afternoons, or P(rain).¶

C = cloud C = ¬cloud

0.4 0.6

R = rain R = ¬rain

0.1 0.9

  R = rain R = ¬rain

C = cloud 0.08 0.32

C = ¬cloud 0.02 0.58



Joint Probability

• Using joint probabilities, we can deduce the conditional probability
• For example, if we are interested in the probability distribution of clouds in the 

morning given rain in the afternoon: P(cloud | rain) = P(cloud, rain)/P(rain)

• In the last equation, it is possible to view P(rain) as some constant by which P(C, rain) 
is multiplied
• Thus, we can rewrite P(C, rain)/P(rain) = αP(C, rain), or α<0.08, 0.02>

• Factoring out α leaves us with the proportions of the probabilities of the possible values of C 
given that there is rain in the afternoon

• Namely, if there is rain in the afternoon, the proportion of the probabilities of clouds in the 
morning and no clouds in the morning is 0.08:0.02

• Note that 0.08 and 0.02 don’t sum up to 1; however, since this is the probability distribution for the random variable C, 
we know that they should sum up to 1 

• Therefore, we need to normalize the values by computing α such that α0.08 + α0.02 = 1

• Finally, we can say that P(C | rain) = <0.8, 0.2>

Applying Bayes’ rule, we compute (0.1)(0.8)/(0.4) = 0.2. That is, the probability that it rains in the
afternoon given that it was cloudy in the morning is 20%.

Knowing P(a | b), in addition to P(a) and P(b), allows us to calculate P(b | a). This is helpful,
because knowing the conditional probability of a visible effect given an unknown cause,
P(visible effect | unknown cause), allows us to calculate the probability of the unknown cause
given the visible effect, P(unknown cause | visible effect). For example, we can learn P(medical test
results | disease) through medical trials, where we test people with the disease and see how
often the test picks up on that. Knowing this, we can calculate P(disease | medical test results),
which is valuable diagnostic information.
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Let us consider the following example, concerning the probabilities of clouds in the morning
and rain in the afternoon.

Looking at these data, we can’t say whether clouds in the morning are related to the likelihood
of rain in the afternoon. To be able to do so, we need to look at the joint probabilities of all the
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know that the probability of a certain day having clouds in the morning and rain in the

80% of rainy afternoons start with cloudy mornings, or P(clouds | rain).¶
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C = cloud C = ¬cloud

0.4 0.6

R = rain R = ¬rain

0.1 0.9

  R = rain R = ¬rain

C = cloud 0.08 0.32

C = ¬cloud 0.02 0.58



Probability Rules

• Negation: P(¬a) = 1 - P(a)
• Because the sum of the probabilities of all the possible worlds is 1, and the complementary 

literals a and ¬a include all the possible worlds

• Inclusion-Exclusion: P(a ∨ b) = P(a) + P(b) - P(a ∧ b)
• the worlds in which a or b are true are equal to all the worlds where a is true, plus the worlds 

where b is true
• However, in this case, some worlds are counted twice (the worlds where both a and b are true)

• To get rid of this overlap, we subtract once the worlds where both a and b are true (since they were 
counted twice)



Probability rules
• Marginalization: P(a) = P(a, b) + P(a, ¬b)

• The idea here is that b and ¬b are disjoint probabilities, i.e., the probability of b and ¬b occurring 
at the same time is 0

• We also know b and ¬b sum up to 1

• When a happens, b can either happen or not
• Taking the probability of both a and b happening in addition to the probability of a and ¬b, we end up with simply the 

probability of a

• Marginalization can be expressed for random variables in the following way

𝑃 𝑋 = 𝑥𝑖 = ,
"

𝑃(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗)

• Example 
• P(C = cloud) = P(C = cloud, R = rain) + P(C = cloud, R = ¬rain) = 0.08 + 0.32 = 0.4

Applying Bayes’ rule, we compute (0.1)(0.8)/(0.4) = 0.2. That is, the probability that it rains in the
afternoon given that it was cloudy in the morning is 20%.

Knowing P(a | b), in addition to P(a) and P(b), allows us to calculate P(b | a). This is helpful,
because knowing the conditional probability of a visible effect given an unknown cause,
P(visible effect | unknown cause), allows us to calculate the probability of the unknown cause
given the visible effect, P(unknown cause | visible effect). For example, we can learn P(medical test
results | disease) through medical trials, where we test people with the disease and see how
often the test picks up on that. Knowing this, we can calculate P(disease | medical test results),
which is valuable diagnostic information.

Joint Probability

Joint probability is the likelihood of multiple events all occurring.

Let us consider the following example, concerning the probabilities of clouds in the morning
and rain in the afternoon.

Looking at these data, we can’t say whether clouds in the morning are related to the likelihood
of rain in the afternoon. To be able to do so, we need to look at the joint probabilities of all the
possible outcomes of the two variables. We can represent this in a table as follows:

Now we are able to know information about the co-occurrence of the events. For example, we
know that the probability of a certain day having clouds in the morning and rain in the

80% of rainy afternoons start with cloudy mornings, or P(clouds | rain).¶

40% of days have cloudy mornings, or P(clouds).¶

10% of days have rainy afternoons, or P(rain).¶

C = cloud C = ¬cloud

0.4 0.6

R = rain R = ¬rain

0.1 0.9

  R = rain R = ¬rain

C = cloud 0.08 0.32

C = ¬cloud 0.02 0.58



Probability Rules

• Conditioning: P(a) = P(a | b)P(b) + P(a | ¬b)P(¬b)
• This is a similar idea to marginalization

𝑃 𝑋 = 𝑥𝑖 = /
!

𝑃 𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗)𝑃(𝑌 = 𝑦𝑗)



Bayesian Networks



Representing Knowledge in an Uncertain Domain

• Bayesian Networks
• Represents dependencies among (random) variables

• A simple directed graph in which each node is annotated with 
quantitative probability information
• Syntax

• A set of nodes, one per variable
• A directed, acyclic graph (a link means “directly influences”)

• Arrow from X to Y means X is parent of Y

• Each node Xi has a conditional distribution given its parents P(Xi|Parents(Xi))



Representing Knowledge in an Uncertain Domain

• Semantics
• The full joint distribution is the product of the node conditional 

distributions

1 nP(X , . . . ,X ) = Πni = 1 i 1 i− 1P(X |X , . . . , X ) i = 1 i i= Πn P(X |Parents(X ))



Example
• Getting to an appointment on time

• Rain is the root node in this BN
• The probability distribution is not reliant on any prior event
• It’s a random variable that can take the values (none, light, heavy) 

with a probability distribution

• Maintenance encodes whether there is train track maintenance, 
values (yes, no)
• Its probability distribution is affected by Rain (Rain is its parent node)

Let’s describe this Bayesian network from the top down:

Rain is the root node in this network. This means that its probability distribution is not
reliant on any prior event. In our example, Rain is a random variable that can take the
values {none, light, heavy} with the following probability distribution:

¶

none light heavy

0.7 0.2 0.1

Maintenance, in our example, encodes whether there is train track maintenance, taking
the values {yes, no}. Rain is a parent node of Maintenance, which means that the
probability distribution of Maintenance is affected by Rain.

¶

For example, if we want to nd the probability of missing the meeting when the train was
delayed on a day with no maintenance and light rain, or P(light, no, delayed, miss), we will
compute the following: P(light)P(no | light)P(delayed | light, no)P(miss | delayed). The value of each

R yes no

none 0.4 0.6

light 0.2 0.8

heavy 0.1 0.9

Train is the variable that encodes whether the train is on time or delayed, taking the
values {on time, delayed}. Note that Train has arrows pointing to it from both Maintenance
and Rain. This means that both are parents of Train, and their values affect the probability
distribution of Train.

¶

R M on time delayed

none yes 0.8 0.2

none no 0.9 0.1

light yes 0.6 0.4

light no 0.7 0.3

heavy yes 0.4 0.6

heavy no 0.5 0.5

Appointment is a random variable that represents whether we attend our appointment,
taking the values {attend, miss}. Note that its only parent is Train. This point about
Bayesian network is noteworthy: parents include only direct relations. It is true that
maintenance affects whether the train is on time, and whether the train is on time affects
whether we attend the appointment. However, in the end, what directly affects our
chances of attending the appointment is whether the train came on time, and this is what
is represented in the Bayesian network. For example, if the train came on time, it could be
heavy rain and track maintenance, but that has no effect over whether we made it to our
appointment.

¶

T attend miss

on time 0.9 0.1

delayed 0.6 0.4



Example (cont.)

• Train encodes whether the train is on 
time or delayed, values (on time, 
delayed)
• It is affected by both Rain and 

Maintenance

For example, if we want to nd the probability of missing the meeting when the train was
delayed on a day with no maintenance and light rain, or P(light, no, delayed, miss), we will
compute the following: P(light)P(no | light)P(delayed | light, no)P(miss | delayed). The value of each

R yes no

none 0.4 0.6

light 0.2 0.8

heavy 0.1 0.9

Train is the variable that encodes whether the train is on time or delayed, taking the
values {on time, delayed}. Note that Train has arrows pointing to it from both Maintenance
and Rain. This means that both are parents of Train, and their values affect the probability
distribution of Train.

¶

R M on time delayed

none yes 0.8 0.2

none no 0.9 0.1

light yes 0.6 0.4

light no 0.7 0.3

heavy yes 0.4 0.6

heavy no 0.5 0.5

Appointment is a random variable that represents whether we attend our appointment,
taking the values {attend, miss}. Note that its only parent is Train. This point about
Bayesian network is noteworthy: parents include only direct relations. It is true that
maintenance affects whether the train is on time, and whether the train is on time affects
whether we attend the appointment. However, in the end, what directly affects our
chances of attending the appointment is whether the train came on time, and this is what
is represented in the Bayesian network. For example, if the train came on time, it could be
heavy rain and track maintenance, but that has no effect over whether we made it to our
appointment.

¶

T attend miss

on time 0.9 0.1

delayed 0.6 0.4

For example, if we want to nd the probability of missing the meeting when the train was
delayed on a day with no maintenance and light rain, or P(light, no, delayed, miss), we will
compute the following: P(light)P(no | light)P(delayed | light, no)P(miss | delayed). The value of each

R yes no

none 0.4 0.6

light 0.2 0.8

heavy 0.1 0.9

Train is the variable that encodes whether the train is on time or delayed, taking the
values {on time, delayed}. Note that Train has arrows pointing to it from both Maintenance
and Rain. This means that both are parents of Train, and their values affect the probability
distribution of Train.

¶

R M on time delayed

none yes 0.8 0.2

none no 0.9 0.1

light yes 0.6 0.4

light no 0.7 0.3

heavy yes 0.4 0.6

heavy no 0.5 0.5

Appointment is a random variable that represents whether we attend our appointment,
taking the values {attend, miss}. Note that its only parent is Train. This point about
Bayesian network is noteworthy: parents include only direct relations. It is true that
maintenance affects whether the train is on time, and whether the train is on time affects
whether we attend the appointment. However, in the end, what directly affects our
chances of attending the appointment is whether the train came on time, and this is what
is represented in the Bayesian network. For example, if the train came on time, it could be
heavy rain and track maintenance, but that has no effect over whether we made it to our
appointment.

¶

T attend miss

on time 0.9 0.1

delayed 0.6 0.4

• Appointment represents whether one 
attends his appointment, values 
(attend, miss)

• Note that the only parent of Appointment is Train
• Parents include only direct relations

• For example, if the train arrived on time, there could be heavy 
rain and track maintenance, but that would not affect whether 
we made our appointment



Example (cont.)

• Let’s pretend to find the probability of missing the meeting when the train was delayed on 
a day with no maintenance and light rain, or P(light, no, delayed, miss):
• P(light)P(no | light)P(delayed | light, no)P(miss | delayed)

• The value of each of the individual probabilities can be found in the probability distributions, and then these 
values are multiplied to produce the probability we’re looking for, i.e., 0.0192

Let’s describe this Bayesian network from the top down:

Rain is the root node in this network. This means that its probability distribution is not
reliant on any prior event. In our example, Rain is a random variable that can take the
values {none, light, heavy} with the following probability distribution:

¶

none light heavy

0.7 0.2 0.1

Maintenance, in our example, encodes whether there is train track maintenance, taking
the values {yes, no}. Rain is a parent node of Maintenance, which means that the
probability distribution of Maintenance is affected by Rain.

¶

For example, if we want to nd the probability of missing the meeting when the train was
delayed on a day with no maintenance and light rain, or P(light, no, delayed, miss), we will
compute the following: P(light)P(no | light)P(delayed | light, no)P(miss | delayed). The value of each

R yes no

none 0.4 0.6

light 0.2 0.8

heavy 0.1 0.9

Train is the variable that encodes whether the train is on time or delayed, taking the
values {on time, delayed}. Note that Train has arrows pointing to it from both Maintenance
and Rain. This means that both are parents of Train, and their values affect the probability
distribution of Train.

¶

R M on time delayed

none yes 0.8 0.2

none no 0.9 0.1

light yes 0.6 0.4

light no 0.7 0.3

heavy yes 0.4 0.6

heavy no 0.5 0.5

Appointment is a random variable that represents whether we attend our appointment,
taking the values {attend, miss}. Note that its only parent is Train. This point about
Bayesian network is noteworthy: parents include only direct relations. It is true that
maintenance affects whether the train is on time, and whether the train is on time affects
whether we attend the appointment. However, in the end, what directly affects our
chances of attending the appointment is whether the train came on time, and this is what
is represented in the Bayesian network. For example, if the train came on time, it could be
heavy rain and track maintenance, but that has no effect over whether we made it to our
appointment.

¶

T attend miss

on time 0.9 0.1

delayed 0.6 0.4

For example, if we want to nd the probability of missing the meeting when the train was
delayed on a day with no maintenance and light rain, or P(light, no, delayed, miss), we will
compute the following: P(light)P(no | light)P(delayed | light, no)P(miss | delayed). The value of each

R yes no

none 0.4 0.6

light 0.2 0.8

heavy 0.1 0.9

Train is the variable that encodes whether the train is on time or delayed, taking the
values {on time, delayed}. Note that Train has arrows pointing to it from both Maintenance
and Rain. This means that both are parents of Train, and their values affect the probability
distribution of Train.

¶

R M on time delayed

none yes 0.8 0.2

none no 0.9 0.1

light yes 0.6 0.4

light no 0.7 0.3

heavy yes 0.4 0.6

heavy no 0.5 0.5

Appointment is a random variable that represents whether we attend our appointment,
taking the values {attend, miss}. Note that its only parent is Train. This point about
Bayesian network is noteworthy: parents include only direct relations. It is true that
maintenance affects whether the train is on time, and whether the train is on time affects
whether we attend the appointment. However, in the end, what directly affects our
chances of attending the appointment is whether the train came on time, and this is what
is represented in the Bayesian network. For example, if the train came on time, it could be
heavy rain and track maintenance, but that has no effect over whether we made it to our
appointment.

¶

T attend miss

on time 0.9 0.1

delayed 0.6 0.4

For example, if we want to nd the probability of missing the meeting when the train was
delayed on a day with no maintenance and light rain, or P(light, no, delayed, miss), we will
compute the following: P(light)P(no | light)P(delayed | light, no)P(miss | delayed). The value of each

R yes no

none 0.4 0.6

light 0.2 0.8

heavy 0.1 0.9

Train is the variable that encodes whether the train is on time or delayed, taking the
values {on time, delayed}. Note that Train has arrows pointing to it from both Maintenance
and Rain. This means that both are parents of Train, and their values affect the probability
distribution of Train.

¶

R M on time delayed

none yes 0.8 0.2

none no 0.9 0.1

light yes 0.6 0.4

light no 0.7 0.3

heavy yes 0.4 0.6

heavy no 0.5 0.5

Appointment is a random variable that represents whether we attend our appointment,
taking the values {attend, miss}. Note that its only parent is Train. This point about
Bayesian network is noteworthy: parents include only direct relations. It is true that
maintenance affects whether the train is on time, and whether the train is on time affects
whether we attend the appointment. However, in the end, what directly affects our
chances of attending the appointment is whether the train came on time, and this is what
is represented in the Bayesian network. For example, if the train came on time, it could be
heavy rain and track maintenance, but that has no effect over whether we made it to our
appointment.

¶

T attend miss

on time 0.9 0.1

delayed 0.6 0.4



Inference

• We can infer new information from probabilities
• Not information for certain but probability distributions for some values

• Property of inference
• Query X

• the variable for which we want to compute the probability distribution

• Evidence variable E
• One or more variables that have been observed for event e

• Hidden variable Y
• variables that aren’t the query and also haven’t been observed

• The goal
• Compute P(X|e)



Inference example

• Probability distribution of Appointment variable
• Given the evidence that there is light rain and no track maintenance

• P(Appointment | light, no)
• We can express the possible values of Appointment as a proportion, rewriting

• P(Appointment | light, no) as αP(Appointment, light, no)

• Through marginalization we get
P(Appointment, light, no) = 𝜶[P(Appointment, light, no, delayed) + P(Appointment, light, no, on time) ]



Inference by Enumeration

• A process of finding the probability distribution of variable X given observed 
evidence and some hidden variables

𝑃 𝑋|e = 𝛼𝑃 𝑋, 𝑒 = 𝛼/
$

𝑃(𝑋, 𝑒, 𝑦)

• X is the query variable 

• e is the observed evidence

• y for all the values of the hidden variables 

• 𝛼 normalization value (probabilities adding up to 1)



BN in Python
• First, we create the nodes and provide a probability distribution for each one

from pomegranate import *

# Rain node has no parents

rain = Node(DiscreteDistribution({

"none": 0.7,

"light": 0.2,

"heavy": 0.1

}), name="rain")



BN in Python
# Train node is conditional on rain and maintenance

train = Node(ConditionalProbabilityTable([

["none", "yes", "on time", 0.8],

["none", "yes", "delayed", 0.2],

["none", "no", "on time", 0.9],

["none", "no", "delayed", 0.1],

["light", "yes", "on time", 0.6],

["light", "yes", "delayed", 0.4],

["light", "no", "on time", 0.7],

["light", "no", "delayed", 0.3],

["heavy", "yes", "on time", 0.4],

["heavy", "yes", "delayed", 0.6],

["heavy", "no", "on time", 0.5],

["heavy", "no", "delayed", 0.5],

], [rain.distribution, maintenance.distribution]), name="train")



BN in Python

# Track maintenance node is conditional on rain

maintenance = Node(ConditionalProbabilityTable([
["none", "yes", 0.4],

["none", "no", 0.6],

["light", "yes", 0.2],
["light", "no", 0.8],

["heavy", "yes", 0.1],

["heavy", "no", 0.9]
], [rain.distribution]), name="maintenance")



BN in Python

# Appointment node is conditional on train

appointment = Node(ConditionalProbabilityTable([
["on time", "attend", 0.9],

["on time", "miss", 0.1],

["delayed", "attend", 0.6],
["delayed", "miss", 0.4]

], [train.distribution]), name="appointment")



BN in Python

• Second, we create the model by adding all the nodes and then describing which 
node is the parent of which other node by adding edges between them

# Create a Bayesian Network and add states

model = BayesianNetwork()

model.add_states(rain, maintenance, train, appointment)

# Add edges connecting nodes

model.add_edge(rain, maintenance)

model.add_edge(rain, train)

model.add_edge(maintenance, train)

model.add_edge(train, appointment)

# Finalize model

model.bake()



BN in Python

• For asking how probable a certain event is, we run the model with 
the values we are interested in
• In this example, we want to ask what is the probability that there is no rain, 

no track maintenance, the train is on time, and we attend the meeting

# Calculate probability for a given observation

probability = model.probability([["none", "no", "on time", "attend"]])

print(probability)



BN in Python
• We could also use the program to provide probability distributions for all variables 

given some observed evidence 
• In the following case, we know that the train was delayed

• Given this information, we compute and print the probability distributions of the variables Rain, 
Maintenance, and Appointment

# Calculate predictions based on the evidence that the train was delayed

predictions = model.predict_proba({

"train": "delayed"

})

# Print predictions for each node

for node, prediction in zip(model.states, predictions):

if isinstance(prediction, str):

print(f"{node.name}: {prediction}")

else:

print(f"{node.name}")

for value, probability in prediction.parameters[0].items():

print(f" {value}: {probability:.4f}")



Cons of Inference by Enumeration

• This way of computing probability is inefficient
• Think of many variables in the model

• A solution is to focus on an approximate inference instead of an 
exact inference
• Some precision is lost, but often the imprecision is negligible

• Sampling is one technique of approximate inference
• Each variable is sampled for a value according to its probability 

distribution



Sampling Example

• To generate a distribution using sampling with a die, we can roll the die 
multiple times and record what value we got each time

• Suppose we rolled the die 600 times
• We count how many times we got 1, which is supposed to be roughly 100, and then 

repeat for the rest of the values, 2-6
• Dividing each count by the total number of rolls will generate an approximate distribution 

of the values of rolling a die: 
• on one hand, it is unlikely that we get the result that each value has a probability of 1/6 of occurring (which 

is the exact probability), but we will get a value that’s close to it



Approximate Inference

• Sampling
• Starting by sampling the Rain variable

• the value none will be generated with a probability of 0.7
• the value light will be generated with a probability of 0.2
• the value heavy will be generated with a probability of 0.1



Approximate Inference

• Suppose that the sampled value we get is none
• When we get to the Maintenance variable, we sample it, too, but 

only from the probability distribution where Rain is equal to none, 
because this is an already sampled result

Rain 
{none, light, heavy}

none light heavy

0.7 0.2 0.1

R = none

Rain 
{none, light, heavy}

none light heavy

0.7 0.2 0.1

R = none



Approximate Inference

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R yes no
none 0.4 0.6
light 0.2 0.8

heavy 0.1 0.9

R = none
M = yes

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R yes no
none 0.4 0.6
light 0.2 0.8

heavy 0.1 0.9

R = none
M = yes



Approximate Inference

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

R = none
M = yes

T = on time



Approximate Inference

Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

T attend miss

on time 0.9 0.1
delayed 0.6 0.4

R = none
M = yes

T = on time
A = attend



Approximate Inference

• Now we have one sample, and repeating this process multiple 
times generates a distribution

R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



Approximate Inference

• P(Train = on time)?
• Count the number of samples where Train has the value on time and divide by the number of 

samples

R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



Approximate Inference

• We can also answer questions involving conditional probability, that is
• P(Rain = light | Train = on time)?

R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



Approximate Inference
• P(Rain = light | Train = on time)?

• Ignore all samples where the value of Train is not on time (do not match the evidence) and 
proceed as before

R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



Approximate Inference
• P(Rain = light | Train = on time)?

• Count how many samples with Rain = light among those samples with Train = on time
• then divide by the total number of samples where Train = on time

R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



BN in Python: Sampling

import pomegranate

from collections import Counter

from model import model

def generate_sample():

# Mapping of random variable name to sample generated

sample = {}

# Mapping of distribution to sample generated

parents = {}



BN in Python: Sampling

# Loop over all states, assuming topological order

for state in model.states:

# If we have a non-root node, sample conditional on parents

if isinstance(state.distribution, pomegranate.ConditionalProbabilityT:

sample[state.name] = state.distribution.sample(parent_values=parents)

# Otherwise, just sample from the distribution alone

else:

sample[state.name] = state.distribution.sample()

# Keep track of the sampled value in the parents mapping

parents[state.distribution] = sample[state.name]

# Return generated sample

return sample



BN in Python: Sampling

• To compute P(Appointment | Train = delayed), which is the probability distribution of 
the Appointment variable given that the train is delayed:

# Rejection sampling

# Compute distribution of Appointment given that train is delayed

N = 10000

data = []

# Repeat sampling 10,000 times

for i in range(N):

# Generate a sample based on the function that we defined earlier

sample = generate_sample()

# If, in this sample, the variable of Train has the value delayed, save t

if sample["train"] == "delayed":

data.append(sample["appointment"])

# Count how many times each value of the variable appeared. We can later norm

print(Counter(data))



Alternative Sampling

• Sampling by rejection rejects the samples that did not match the 
evidence
• Inefficient!

• Likelihood Weighting
• Start by fixing the values for evidence variables
• Sample the non-evidence variables using conditional probabilities in the 

Bayesian Network
• Weight each sample by its likelihood:

• The probability of all the evidence



Example: Likelihood Weighting

• P(Rain = light | Train = on time)?
• Start by fixing the evidence variable

• Train = on time

Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}



Example: Likelihood Weighting

Rain 
{none, light, heavy}

none light heavy

0.7 0.2 0.1

T = on time

R = light

Rain 
{none, light, heavy}

none light heavy

0.7 0.2 0.1

T = on time

R = light



Example: Likelihood Weighting

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R yes no
none 0.4 0.6
light 0.2 0.8

heavy 0.1 0.9

T = on time

R = lightR = light
M = yes



Example: Likelihood Weighting

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

T = on time

R = lightR = light
M = yes



Example: Likelihood Weighting

Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

T attend miss

on time 0.9 0.1
delayed 0.6 0.4

T = on time

R = lightR = light
M = yes
R = light
M = yes

A = attend



Example: Likelihood Weighting

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

T = on time

R = lightR = light
M = yes
R = light
M = yes

A = attend



Example: Likelihood Weighting

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

T = on time

R = lightR = light
M = yes
R = light
M = yes

A = attend



Uncertainty over Time

• Let’s suppose to predict the weather at a given time based on the 
weather in the previous times (e.g., days)

• Xt: Weather at time t

• Markov assumption
• The assumption that the current state depends on only a finite fixed 

number of previous states

• Markov chain
• A sequence of random variables where the distribution of each variable 

follows the Markov assumption


