Artificial Intelligence

## Bayesian Networks

LESSON 20

## Uncertainty

- Often, an agent has only partial knowledge of the world, and the agent should make the best decision possible even in these situations
- For example, when predicting the weather, the agent has information about today's weather, but there is no way to predict tomorrow's weather with $100 \%$ accuracy
- The agent can do better than chance, so the focus is on how to create an agent that makes optimal decisions under limited information and uncertainty


## Introduction

- Real-world problems contain uncertainties due to:
- partial observability
- nondeterminism
- adversaries
- Example of dental diagnosis using propositional logic

$$
\text { Toothache } \Rightarrow \text { Cavity }
$$

- However inaccurate, not all patients with toothaches have cavities

$$
\text { Toothache } \Rightarrow \text { Cavity v GumProblem v Abscess... }
$$

- To make the rule true, we must add an almost unlimited list of possible problems
- The only way to fix the rule is to make it logically exhaustive


## Acting Under Uncertainty

- An agent seeks to make rational decisions by considering the relative importance of various goals and evaluating the likelihood and extent to which these goals can be achieved, however ...
- Large domains such as medical diagnosis fail for three main reasons:
- Laziness: It is too much work to list the complete set of antecedents or consequents needed to ensure an exceptionless rule
- Theoretical ignorance: Medical science has no complete theory for the domain
- Practical ignorance: Even if we know all the rules, we might be uncertain about a particular patient because only some necessary tests have been or can be run
- An agent only has a degree of belief in the relevant sentences
- Probability theory
- tool to deal with degrees of belief in relevant sentences
- summarizes the uncertainty that comes from our laziness and ignorance


## Probability

- Uncertainty can be represented as a number of events and the likelihood, or probability, of each of them happening
- Every possible situation can be thought of as a world, represented by the letter $\boldsymbol{\omega}$
- Example
- Rolling a die can result in six possible worlds:
- Where the die yields a 1 , where it yields a 2, and so on
- The probability of a certain world is denoted as $\mathrm{P}(\boldsymbol{\omega})$


## Probability Axioms

- $0 \leq P(\omega) \leq 1$ : every probability value ranges between 0 and 1
- 0 is an impossible event
- 1 is an event that is certain to happen
- In general, the higher the value, the more likely the event is to happen
- $\sum_{\omega \in \Omega} P(\omega)=1$
- The sum of the probabilities of every possible event is equal to 1
- Example
- The probability of rolling a number $R$ with a die is $P(R)=1 / 6$
- Six possible worlds and each is equally likely to happen


## Probability Axioms

- Example: rolling two dice
- There are 36 possible events equally likely
- In predicting the sum of the two dice we only have 11 possible events (the sum ranges from 2 to 12)
- These events do not occur equally as often
- To get the probability of an event we divide the number of worlds in which it occurs by the number of total possible worlds
- $P(12)=1 / 36$
- $P(7)=6 / 36=1 / 6$

| $\cdot \cdot$ | 1 | $\bullet \cdot$ | . | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdot{ }^{\cdot} \cdot$ | . $\odot$ | $\bullet \cdot \square$ | ¿3. ${ }^{\circ}$ | ®.¢ | 83. ${ }^{\circ}$ |
| $\cdot \cdot^{\circ}$ | . $\odot^{\circ}$ | $\bullet \cdot$ | :8. ${ }^{\circ}$ | $\because \cdot \square^{\circ}$ | ๕ $\rho^{\circ} \cdot{ }^{\circ}$ |
| $\cdot \mathrm{P}$ : |  | $\bullet \cdot \square$ | : P: $^{\text {P }}$ | \&o? ${ }^{\text {P }}$ | 89\% |
| $\cdot \because \cdot 8$ | $\square \because$ |  | : $3: \%$ | $\because \cdot \%$ \% | ¢ 3 \% ${ }^{\circ}$ |
| - $\square^{8}$ | . ® $^{8}$ |  | :3¢ | ¿゚¢ ${ }^{\text {\% }}$ | 83: |

## Unconditional probability

- Is the degree of belief in a proposition in the absence of any other evidence
- All the questions that we have asked so far were questions of unconditional probability
- The result of rolling a die is not dependent on previous events


## Conditional probability

- Is the degree of belief in a proposition given some evidence that has already been revealed
- An agent can use partial information to make consistent guesses about the future
- To use this information, which affects the probability that the event occurs in the future, it relies on conditional probability
- Conditional probability id denoted as $P(a \mid b)$
- The probability of event a occurring given that we know event b to have occurred, in other words, the probability of a given b


## Conditional Probability

- Now we can ask questions like
- "What is the probability of rain today given that it rained yesterday"
- P (rain today | rain yesterday)
- "What is the probability of the patient having the disease given their test results"
- $\mathrm{P}($ disease | test results)


## Conditional Probability

- From a mathematical point of view
- $P(a \mid b)=\frac{P(a \wedge b)}{P(b)}(1)$
- Intuitively, we are interested in situations where the events a and both happen, $P(a \wedge b)$, but only from worlds where we know $b$ to be happened, $P(b)$
- (1) is equivalent to
- $P(a \wedge b)=P(b) P(a \mid b)$
- $P(a \wedge b)=P(a) P(b \mid a)$


## Example

- $P($ sum $12 \mid$ roll 6 on one die)
- To calculate this, we first restrict our worlds to the ones where the value of the first die is 6 :

|  | - | S | \% |
| :---: | :---: | :---: | :---: |
| - $\square_{\text {- }}$ | [.] |  | 8\% |
| - $\square^{\text {c }}$ | D- | ¢ | \% \% $\overbrace{}^{\circ}$ |
| $\square_{1}$ | $\square$ | E1 | \% ${ }^{\circ} \mathrm{B}$ |
| $P(80)=\frac{1}{6}$ | +10 | 마ㅇㅏㅏㅇ | ¢ $8^{\circ} \mathrm{C}$ |
| $1 \square{ }^{6}$ | $\square$ | 당 | 8\%\% |

- Now we ask how many times the event a (the sum being 12 ) occurs in the worlds where the first die rolled 6 (dividing by $P(b)$, or the probability of the first die yielding 6 )



## Random Variables

- In probability theory, a random variable is a variable with a range of possible values it can take
- E.g., to represent the possible outcomes of rolling a die, we can define a random variable Roll that can take the values $\{1,2,3,4,5,6\}$
- E.g., to represent the status of a flight, we can define a variable Flight that can take the values \{on time, delayed, canceled\}
- We are interested in the probability with which each value occurs
- By using a probability distribution


## Probability Distribution

- $P($ Flight $=$ on time $)=0.6$
- $P($ Flight $=$ delayed $)=0.3$
- $P($ Flight $=$ canceled $)=0.1$
- A probability distribution can be represented as $\mathrm{P}(F$ Flight $)=<0.6,0.3,0.1>$
- To interpret this notation, the values have a set order, i.e., on time, delayed, canceled


## Independence

- Independence is the knowledge that the occurrence of one event does not affect the probability of the other event
- For example, when rolling two dice, the result of each die is independent of the other
- This is opposed to dependent events, like clouds in the morning and rain in the afternoon
- If it is cloudy in the morning, it is more likely that it will rain in the afternoon, so these events are dependent
- Independence is defined mathematically:
- events $a$ and $b$ are independent if and only if the probability of $a$ and $b$ is
- $P(a \wedge b)=P(a) P(b)$


## Bayes' Rule

- Bayes' rule is commonly used in probability theory to compute conditional probability

$$
P(b \mid a)=\frac{P(b) P(a \mid b)}{P(a)}
$$

- Example
- To compute the probability of it raining in the afternoon if there are clouds in the morning, $P$ (rain | clouds), we start with the following information
- $80 \%$ of rainy afternoons start with cloudy mornings, or P(clouds | rain)
- $40 \%$ of days have cloudy mornings, or P(clouds)
- $10 \%$ of days have rainy afternoons, or $P($ rain $)$
- Applying Bayes' rule, we compute (0.1)(0.8)/(0.4) $=0.2$
- That is, the probability that it rains in the afternoon given that it was cloudy in the morning is $20 \%$


## Joint Probability

- Joint probability is the likelihood of multiple events all occurring
- Let us consider the following example, the probabilities of clouds in the morning and rain in the afternoon

| C = cloud | C = -cloud |  | R = rain | R = rain |
| :--- | :--- | :--- | :--- | :--- |
| 0.4 | 0.6 | 0.1 | 0.9 |  |

- Looking at these data, we can't say whether clouds in the morning are related to the likelihood of rain in the afternoon
- To be able to do so, we need to look at the joint probabilities of all the possible outcomes of the two variables
- We can represent this in a table as follows:

|  | $R=$ rain | $R=-$ rain |
| :--- | :--- | :--- |
| C = cloud | 0.08 | 0.32 |
| C = cloud | 0.02 | 0.58 |

- Now we can know information about the co-occurrence of the events
- For example, we know that the probability of a certain day having clouds in the morning and rain in the afternoon is 0.08
- The probability of no clouds in the morning and no rain in the afternoon is 0.58


## Joint Probability

- Using joint probabilities, we can deduce the conditional probability
- For example, if we are interested in the probability distribution of clouds in the

|  | $R=$ rain | $R=$ rain |
| :--- | :--- | :--- |
| $C=$ cloud | 0.08 | 0.32 |
| $C=$ cloud | 0.02 | 0.58 | morning given rain in the afternoon: $\mathrm{P}($ cloud $\mid$ rain $)=\mathrm{P}($ cloud, rain $) / \mathrm{P}($ rain $)$

- In the last equation, it is possible to view $P($ rain ) as some constant by which $P(C$, rain) is multiplied
- Thus, we can rewrite $P(C$, rain $) / P($ rain $)=a P(C$, rain $)$, or $\mathbf{a}<0.08,0.02>$
- Factoring out a leaves us with the proportions of the probabilities of the possible values of $C$ given that there is rain in the afternoon
- Namely, if there is rain in the afternoon, the proportion of the probabilities of clouds in the morning and no clouds in the morning is $0.08: 0.02$
- Note that 0.08 and 0.02 don't sum up to 1 ; however, since this is the probability distribution for the random variable C, we know that they should sum up to 1
- Therefore, we need to normalize the values by computing $\mathbf{a}$ such that $\mathbf{a} 0.08+\mathbf{a} 0.02=1$
- Finally, we can say that $P(C \mid$ rain $)=<0.8,0.2>$


## Probability Rules

- Negation: $\mathrm{P}(\neg \mathrm{a})=1$ - $\mathrm{P}(\mathrm{a})$
- Because the sum of the probabilities of all the possible worlds is 1 , and the complementary literals a and $\neg$ a include all the possible worlds
- Inclusion-Exclusion: $\mathrm{P}(\mathrm{a} \vee \mathrm{b})=\mathrm{P}(\mathrm{a})+\mathrm{P}(\mathrm{b})-\mathrm{P}(\mathrm{a} \wedge \mathrm{b})$
- the worlds in which a or b are true are equal to all the worlds where a is true, plus the worlds where $b$ is true
- However, in this case, some worlds are counted twice (the worlds where both a and b are true)
- To get rid of this overlap, we subtract once the worlds where both $a$ and $b$ are true (since they were counted twice)


## Probability rules

- Marginalization: $\mathrm{P}(\mathrm{a})=\mathrm{P}(\mathrm{a}, \mathrm{b})+\mathrm{P}(\mathrm{a}, \neg \mathrm{b})$
- The idea here is that $b$ and $\neg b$ are disjoint probabilities, i.e., the probability of $b$ and $\neg b$ occurring at the same time is 0
- We also know b and $\neg b$ sum up to 1
- When a happens, b can either happen or not
- Taking the probability of both $a$ and $b$ happening in addition to the probability of $a$ and $\neg b$, we end up with simply the probability of a
- Marginalization can be expressed for random variables in the following way

$$
P(X=x i)=\sum_{j} P(X=x i, Y=y j)
$$

- Example
- $P(C=$ cloud $)=P(C=$ cloud, $R=$ rain $)+P(C=$ cloud, $R=\neg$ rain $)=0.08+0.32=0.4$

|  | $R=$ rain | $R=$ rain |
| :--- | :--- | :--- |
| C = cloud | 0.08 | 0.32 |
| C = rcloud | 0.02 | 0.58 |

## Probability Rules

- Conditioning: $P(a)=P(a \mid b) P(b)+P(a \mid \neg b) P(\neg b)$
- This is a similar idea to marginalization

$$
P(X=x i)=\sum_{j} P(X=x i, \mid Y=y j) P(Y=y j)
$$

## Bayesian Networks

## Representing Knowledge in an Uncertain Domain

- Bayesian Networks
- Represents dependencies among (random) variables
- A simple directed graph in which each node is annotated with quantitative probability information
- Syntax
- A set of nodes, one per variable
- A directed, acyclic graph (a link means "directly influences")
- Arrow from $X$ to $Y$ means $X$ is parent of $Y$
- Each node $X_{i}$ has a conditional distribution given its parents $\mathrm{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$


## Representing Knowledge in an Uncertain Domain

- Semantics
- The full joint distribution is the product of the node conditional distributions

$$
\mathrm{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid \text { Parents }\left(X_{i}\right)\right)
$$

## Example

- Getting to an appointment on time
- Rain is the root node in this BN
- The probability distribution is not reliant on any prior event
- It's a random variable that can take the values (none, light, heavy) with a probability distribution

| none | light | heavy |
| :--- | :--- | :--- |
| 0.7 | 0.2 | 0.1 |

- Maintenance encodes whether there is train track maintenance, values (yes, no)
- Its probability distribution is affected by Rain (Rain is its parent node)

| $\mathbf{R}$ | yes | no |
| :--- | :--- | :--- |
| none | 0.4 | 0.6 |
| light | 0.2 | 0.8 |
| heavy | 0.1 | 0.9 |



## Example (cont.)

- Train encodes whether the train is on time or delayed, values (on time, delayed)
- It is affected by both Rain and Maintenance

| R | $\mathbf{M}$ | on time | delayed |
| :--- | :--- | :--- | :--- |
| none | yes | 0.8 | 0.2 |
| none | no | 0.9 | 0.1 |
| light | yes | 0.6 | 0.4 |
| light | no | 0.7 | 0.3 |
| heavy | yes | 0.4 | 0.6 |
| heavy | no | 0.5 | 0.5 |

- Appointment represents whether one attends his appointment, values (attend, miss)

| T | attend | miss |
| :--- | :--- | :--- |
| on time | 0.9 | 0.1 |
| delayed | 0.6 | 0.4 |



- Note that the only parent of Appointment is Train
- Parents include only direct relations
- For example, if the train arrived on time, there could be heavy rain and track maintenance, but that would not affect whether we made our appointment


## Example (cont.)

- Let's pretend to find the probability of missing the meeting when the train was delayed on a day with no maintenance and light rain, or P(light, no, delayed, miss):
- P(light)P(no | light)P(delayed | light, no)P(miss | delayed)
- The value of each of the individual probabilities can be found in the probability distributions, and then these values are multiplied to produce the probability we're looking for, i.e., 0.0192

|  |  |  |  |  |  | R | M | on time | delayed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | R | yes | no | none | yes | 0.8 | 0.2 |
|  |  |  | none |  |  | no | 0.9 | 0.1 |
| none | light | heavy |  | none | 0.4 | 0.6 | light | yes | 0.6 | 0.4 |
| 0.7 | 0.2 | 0.1 | light | 0.2 | 0.8 | light | no | 0.7 | 0.3 |
|  |  |  | heavy | 0.1 | 0.9 | heavy | yes | 0.4 | 0.6 |
|  |  |  |  |  |  | heavy | no | 0.5 | 0.5 |


| T | attend | miss |
| :--- | :--- | :--- |
| on time | 0.9 | 0.1 |
| delayed | 0.6 | 0.4 |

## Inference

- We can infer new information from probabilities
- Not information for certain but probability distributions for some values
- Property of inference
- Query X
- the variable for which we want to compute the probability distribution
- Evidence variable E
- One or more variables that have been observed for event e
- Hidden variable Y
- variables that aren't the query and also haven't been observed
- The goal
- Compute P(X|e)


## Inference example

- Probability distribution of Appointment variable
- Given the evidence that there is light rain and no track maintenance
- P(Appointment | light, no)
- We can express the possible values of Appointment as a proportion, rewriting
- P(Appointment | light, no) as $\alpha$ P(Appointment, light, no)
- Through marginalization we get
$\mathrm{P}($ Appointment, light, no $)=\boldsymbol{\alpha}[\mathrm{P}($ Appointment, light, no, delayed $)+\mathrm{P}($ Appointment, light, no, on time $)]$


## Inference by Enumeration

- A process of finding the probability distribution of variable $X$ given observed evidence and some hidden variables

$$
P(X \mid \mathrm{e})=\alpha P(X, e)=\alpha \sum_{y} P(X, e, y)
$$

- $X$ is the query variable
- e is the observed evidence
- y for all the values of the hidden variables
- $\alpha$ normalization value (probabilities adding up to 1 )


## BN in Python

- First, we create the nodes and provide a probability distribution for each one

```
from pomegranate import *
# Rain node has no parents
rain = Node(DiscreteDistribution({
"none": 0.7,
"light": 0.2,
"heavy": 0.1
}), name="rain")
```


## BN in Python

```
# Train node is conditional on rain and maintenance
train = Node(ConditionalProbabilityTable([
["none", "yes", "on time", 0.8],
["none", "yes", "delayed", 0.2],
["none", "no", "on time", 0.9],
["none", "no", "delayed", 0.1],
["light", "yes", "on time", 0.6],
["light", "yes", "delayed", 0.4],
["light", "no", "on time", 0.7],
["light", "no", "delayed", 0.3],
["heavy", "yes", "on time", 0.4],
["heavy", "yes", "delayed", 0.6],
["heavy", "no", "on time", 0.5],
["heavy", "no", "delayed", 0.5],
], [rain.distribution, maintenance.distribution]), name="train")
```


## BN in Python

\# Track maintenance node is conditional on rain maintenance = Node(ConditionalProbabilityTable([ ["none", "yes", 0.4],
["none", "no", 0.6],
["light", "yes", 0.2],
["light", "no", 0.8],
["heavy", "yes", 0.1],
["heavy", "no", 0.9]
], [rain.distribution]), name="maintenance")

## BN in Python

\# Appointment node is conditional on train appointment $=$ Node(ConditionalProbabilityTable([
["on time", "attend", 0.9],
["on time", "miss", 0.1],
["delayed", "attend", 0.6],
["delayed", "miss", 0.4]
], [train.distribution]), name="appointment")

## BN in Python

- Second, we create the model by adding all the nodes and then describing which node is the parent of which other node by adding edges between them

```
# Create a Bayesian Network and add states
model = BayesianNetwork()
model.add_states(rain, maintenance, train, appointment)
# Add edges connecting nodes
model.add_edge(rain, maintenance)
model.add_edge(rain, train)
model.add_edge(maintenance, train)
model.add_edge(train, appointment)
# Finalize model
model.bake()
```


## BN in Python

- For asking how probable a certain event is, we run the model with the values we are interested in
- In this example, we want to ask what is the probability that there is no rain, no track maintenance, the train is on time, and we attend the meeting

```
# Calculate probability for a given observation
probability = model.probability([["none", "no", "on time", "attend"]])
print(probability)
```


## BN in Python

- We could also use the program to provide probability distributions for all variables given some observed evidence
- In the following case, we know that the train was delayed
- Given this information, we compute and print the probability distributions of the variables Rain, Maintenance, and Appointment

```
# Calculate predictions based on the evidence that the train was delayed
predictions = model.predict_proba({
"train": "delayed"
})
# Print predictions for each node
for node, prediction in zip(model.states, predictions):
    if isinstance(prediction, str):
        print(f"{node.name}: {prediction}")
    else:
        print(f"{node.name}")
for value, probability in prediction.parameters[0].items():
    print(f" {value}: {probability:.4f}")
```


## Cons of Inference by Enumeration

- This way of computing probability is inefficient
- Think of many variables in the model
- A solution is to focus on an approximate inference instead of an exact inference
- Some precision is lost, but often the imprecision is negligible
- Sampling is one technique of approximate inference
- Each variable is sampled for a value according to its probability distribution


## Sampling Example

- To generate a distribution using sampling with a die, we can roll the die multiple times and record what value we got each time
- Suppose we rolled the die 600 times
- We count how many times we got 1 , which is supposed to be roughly 100 , and then repeat for the rest of the values, 2-6
- Dividing each count by the total number of rolls will generate an approximate distribution of the values of rolling a die:
- on one hand, it is unlikely that we get the result that each value has a probability of $1 / 6$ of occurring (which is the exact probability), but we will get a value that's close to it


## Approximate Inference

- Sampling
- Starting by sampling the Rain variable
- the value none will be generated with a probability of 0.7
- the value light will be generated with a probability of 0.2
- the value heavy will be generated with a probability of 0.1



## Approximate Inference

- Suppose that the sampled value we get is none

$$
\mathrm{R}=\text { none }
$$

- When we get to the Maintenance variable, we sample it, too, but only from the probability distribution where Rain is equal to none, because this is an already sampled result



## Approximate Inference

$$
\begin{gathered}
\mathrm{R}=\text { none } \\
\mathrm{M}=\text { yes }
\end{gathered}
$$



## Approximate Inference



## Approximate Inference



## Approximate Inference

- Now we have one sample, and repeating this process multiple times generates a distribution

| $\mathrm{R}=$ light | $\mathrm{R}=$ light | $\mathrm{R}=$ none | $\mathrm{R}=$ none |
| :---: | :---: | :---: | :---: |
| $\mathrm{M}=$ no | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ yes |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ miss | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend |
| $\mathrm{R}=$ none | $\mathrm{R}=$ none | $\mathrm{R}=$ heavy | $\mathrm{R}=$ light |
| $\mathrm{M}=$ yes | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ no |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time |
| A = attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ miss | $\mathrm{A}=$ attend |

## Approximate Inference

- $P($ Train $=$ on time $)$ ?
- Count the number of samples where Train has the value on time and divide by the number of samples

| $\mathrm{R}=$ light | $\mathrm{R}=$ light | $\mathrm{R}=$ none | $\mathrm{R}=$ none |
| :---: | :---: | :---: | :---: |
| $\mathrm{M}=$ no | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ yes |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ lelayed | $\mathrm{T}=$ on time | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ miss | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend |
| R = none | $\mathrm{R}=$ none | $\mathrm{R}=$ heavy | $\mathrm{R}=$ light |
| $\mathrm{M}=$ yes | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ no |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ miss | $\mathrm{A}=$ attend |

## Approximate Inference

- We can also answer questions involving conditional probability, that is
- $P($ Rain $=$ light $\mid$ Train = on time $)$ ?

| $\mathrm{R}=$ light | $\mathrm{R}=$ light | $\mathrm{R}=$ none | $\mathrm{R}=$ none |
| :---: | :---: | :---: | :---: |
| $\mathrm{M}=$ no | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ yes |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ miss | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend |
| $\mathrm{R}=$ none | $\mathrm{R}=$ none | $\mathrm{R}=$ heavy | $\mathrm{R}=$ light |
| $\mathrm{M}=$ yes | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ no |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ miss | $\mathrm{A}=$ attend |

## Approximate Inference

- $\mathrm{P}($ Rain $=$ light $\mid$ Train $=$ on time $)$ ?
- Ignore all samples where the value of Train is not on time (do not match the evidence) and proceed as before

| $\mathrm{R}=$ light | $\mathrm{R}=$ light | $\mathrm{R}=$ none | $\mathrm{R}=$ none |
| :---: | :---: | :---: | :---: |
| $\mathrm{M}=$ no | $\mathrm{M}=$ yes | $\mathrm{M}=$ по | $\mathrm{M}=$ yes |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ miss | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend |
| $\mathrm{R}=$ none | $\mathrm{R}=$ none | $\mathrm{R}=$ heavy | $\mathrm{R}=$ light |
| $\mathrm{M}=$ yes | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ no |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | $\mathrm{A}=$ miss | $\mathrm{A}=$ attend |

## Approximate Inference

- $P($ Rain $=$ light $\mid$ Train $=$ on time $)$ ?
- Count how many samples with Rain = light among those samples with Train = on time
- then divide by the total number of samples where Train = on time

| $\mathrm{R}=$ light | $\mathrm{R}=\operatorname{light}$ | $\mathrm{R}=$ none | $\mathrm{R}=$ none |
| :---: | :---: | :---: | :---: |
| $\mathrm{M}=$ no | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ yes |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time | $\mathrm{T}=$ on time |
| $\mathrm{A}=$ miss | $\mathrm{A}=$ attend | $\mathrm{A}=$ attend | A = attend |
| $\mathrm{R}=$ none | $\mathrm{R}=$ none | $\mathrm{R}=$ heavy | $\mathrm{R}=$ light |
| $\mathrm{M}=$ yes | $\mathrm{M}=$ yes | $\mathrm{M}=$ no | $\mathrm{M}=$ no |
| $\mathrm{T}=$ on time | $\mathrm{T}=$ on time | $\mathrm{T}=$ delayed | $\mathrm{T}=$ on time |
| A = attend | A $=$ attend | $\mathrm{A}=$ miss | $\mathrm{A}=$ attend |

## BN in Python: Sampling

import pomegranate
from collections import Counter
from model import model
def generate_sample():
\# Mapping of random variable name to sample generated
sample $=$ \{ \}
\# Mapping of distribution to sample generated
parents $=$ \{ \}

## BN in Python: Sampling

```
# Loop over all states, assuming topological order
for state in model.states:
# If we have a non-root node, sample conditional on parents
        if isinstance(state.distribution, pomegranate.ConditionalProbabilityT:
        sample[state.name] = state.distribution.sample(parent_values=parents)
# Otherwise, just sample from the distribution alone
        else:
            sample[state.name] = state.distribution.sample()
# Keep track of the sampled value in the parents mapping
    parents[state.distribution] = sample[state.name]
# Return generated sample
return sample
```


## BN in Python: Sampling

- To compute P(Appointment | Train = delayed), which is the probability distribution of the Appointment variable given that the train is delayed:
\# Rejection sampling
\# Compute distribution of Appointment given that train is delayed
$\mathrm{N}=10000$
data $=$ []
\# Repeat sampling 10,000 times
for i in range(N):
\# Generate a sample based on the function that we defined earlier
sample = generate_sample()
\# If, in this sample, the variable of Train has the value delayed, save $t$
if sample["train"] == "delayed":
data.append(sample["appointment"])
\# Count how many times each value of the variable appeared. We can later norm
print(Counter(data))


## Alternative Sampling

- Sampling by rejection rejects the samples that did not match the evidence
- Inefficient!
- Likelihood Weighting
- Start by fixing the values for evidence variables
- Sample the non-evidence variables using conditional probabilities in the Bayesian Network
- Weight each sample by its likelihood:
- The probability of all the evidence


## Example: Likelihood Weighting

- $P($ Rain $=$ light | Train = on time $)$ ?
- Start by fixing the evidence variable
- Train = on time



## Example: Likelihood Weighting

$$
\mathrm{R}=\text { light }
$$

## $\mathrm{T}=$ on time

| Rain |
| :---: | :---: | :---: | :---: |
| \{none, light, heavy\} | | none | light |
| :---: | :---: |
| 0.7 | 0.2 |
| $\square$ |  |
| $\square$ |  |

## Example: Likelihood Weighting

| Rain <br> \{none, light, heavy\} |  |  | $\mathrm{R}=$ light |
| :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{M}=$ yes |
|  |  |  | $\mathrm{T}=$ on time |
|  |  |  |  |
| $\downarrow$ | $R$ | yes | no |
| Maintenance | none | 0.4 | 0.6 |
| \{yes, no\} | light | 0.2 | 0.8 |
|  | heavy | 0.1 | 0.9 |

## Example: Likelihood Weighting



## Example: Likelihood Weighting



## Example: Likelihood Weighting



## Example: Likelihood Weighting



## Uncertainty over Time

- Let's suppose to predict the weather at a given time based on the weather in the previous times (e.g., days)
- Xt: Weather at time t
- Markov assumption
- The assumption that the current state depends on only a finite fixed number of previous states
- Markov chain
- A sequence of random variables where the distribution of each variable follows the Markov assumption

