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Introduction

• Planning is deciding what to do based on an agent’s ability, goals, and the state of the 
world
• It is finding a sequence of actions to solve a goal

• Planning combines the two major areas of AI we have covered so far: search and logic
• The combination enables planners to progress from toy problems, limited to around a dozen 

actions and states, to real-world industrial applications involving millions of states and 
thousands of actions

• Assumptions
• The world is deterministic
• There are no exogenous events outside the agent's control that change the state of the world
• The agent knows what state it is in
• Time progresses discretely from one state to the next

• Goals are predicates of states that need to be achieved or maintained



Definition of Classical Planning
• Classical planning is defined as the task of finding a sequence of actions to 

accomplish a goal in a discrete, deterministic, static, fully observable environment

• Planning Domain Definition Language (PDDL) is a factored representation
• Basic PDDL can handle classical planning domains, and extensions can handle non-

classical domains that are continuous, partially observable, concurrent, and multi-agent
• State: represented as a conjunction of ground atomic fluents

• Recall 
• Ground -> no variables

• fluent -> an aspect of the world that changes over time

• Ground atomic -> there is a single predicate, with possible arguments being constants

• uses database semantics: the closed-world assumption means that any fluents that are 
not mentioned are false
• A semantic used in logic to allow straightforward logical sentences

• Example
• Poor ∧ Unknown  (a state of a hapless agent?)

• At(Truck1, Melbourne) ∧ At(Truck2, Sydney) (a state in a package delivery problem)



Action Schema
• An action schema represents a family of ground actions

• The schema consists of the action name, a list of all the variables used in the schema, a 
precondition (what must be true before the action) , and an effect (what becomes true 
after the action)

Action(Fly(p, from, to),    // action schema for flying a plane from one location to another

PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to))

• The precondition and the effect are each conjunctions of literals, that is, positive or 
negated atomic sentences

• It is also possible to choose constants to instantiate the variables (ground action)
Action(Fly(P1, SFO, JFK),

PRECOND: At(P1, SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK)
EFFECT: ¬At(P1, SFO) ∧ At(P1, JFK))



Action Schema

• A ground action a is applicable in state s if s entails the precondition of a
• that is, if every positive literal in the precondition is in s and every negated literal is not

• Executing an applicable action a in state s defines a state s’
• represented by the set of fluents formed by starting with s, removing the fluents that appear as 

negative literals in the action’s effect (delete list, i.e. DEL(a)), and adding the fluents that are positive 
literals in the action’s effect (add list, ADD(a))

• s’=RESULT(s,a)=(s−DEL(a))∪ADD(a)

• Example
• the action Fly(P1,SFO,JFK) would remove the fluent At(P1,SFO) and add the fluent At(P1,JFK)

Action(Fly(P1, SFO, JFK),

PRECOND: At(P1, SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK)

EFFECT: ¬At(P1, SFO) ∧ At(P1, JFK))



Planning Domain 

• A set of action schemas serves as a definition of a planning domain
• A specific problem within the domain is defined with the addition of an initial 

state and a goal
• The initial state is a conjunction of ground fluents (Init)
• The goal is just like a precondition: a conjunction of literals (positive or 

negative) that may contain variables
• Example

• At(C1, SFO) ∧ ¬At(C2, SFO) ∧ At(p, SFO)

• Any state in which cargo C1 is at SFO but C2 is not, and in which there is a plane at SFO



Example Domain: Air Cargo Transport
• Air cargo transport problem involving loading and unloading cargo and flying it from place to 

place
• The problem can be defined with three actions: Load, Unload, and Fly

• The following plan is a solution to the problem: 
• [Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)]

At predicates are maintained properly



Example Domain: The Spare Tire Problem
• Consider the problem of changing a flat tire

• The goal is to have a good spare tire properly mounted onto the car’s axle
• the initial state has a flat tire on the axle and a good spare tire in the trunk

• The following plan is a solution to the problem: 
• [Remove(Flat, Axle), Remove(Spare, Trunk), PutOn(Spare, Axle)] 



Example Domain: The Block World
• The famous blocks world planning domain

• It consists of a set of cube-shaped blocks sitting on an arbitrarily large table

• On(b,x) 
• block b is on x, where x is either another block or the table

• Move(b, x, y)
• block b from the top of x to the top of y 

• One of the preconditions on moving b is that no other block be on it
• In first-order logic, this would be ¬∃x On(x,b) or ∀x ¬On(x,b) 

• Basic PDDL does not allow quantifiers, so we introduce a predicate Clear(x)

• Clear(x)
• Nothing on x (true when nothing is on x)

• The action Move moves a block b from x to y if both b and y are clear, after, b is still clear but
y is not
• A first attempt at the Move schema is

Action(Move(b, x, y), 
PRECOND:On(b,x)∧Clear(b)∧Clear(y),              
EFFECT:On(b,y)∧Clear(x)∧¬On(b,x)∧¬Clear(y)) 



The Block World
Move schema

Action(MoveToTable(b, x), 
   PRECOND:On(b,x) ∧ Clear(b), 
   EFFECT:On(b,Table) ∧ Clear(x) ∧ ¬On(b,x))

Clear(x) is interpreted as “there is a clear space on x to hold a block.” 
Under this interpretation, Clear(Table) will always be true



Algorithms for Classical Planning

• Forward state-space search for planning
• Start at initial state
• To determine the applicable actions we unify the current state against the preconditions 

of each action schema
• For each unification that successfully results in a substitution, we apply the substitution to 

the action schema to yield a ground action with no variables

• Backward search for planning
• Start at the goal and apply the actions backward until we find a sequence of steps that 

reaches the initial state
• Consider relevant actions at each step
• Reduces branching factor
• A relevant action is one with an effect that unifies with one of the goal literals, but with no 

effect that negates any part of the goal



Forward state-space search for planning
• Planning problems can be solved by using heuristic search algorithms

• The states in the search space are ground states where the fluents are either true or not
• The goal state has all positive fluents in the problem’s goal and none of the negative 

fluents
• The applicable actions in a state s, Actions(s), are grounded instantiations of the action 

schemas
• That is, constant values have replaced variables

• They are determined by unifying the current state against the preconditions of each action schema

• The identified substitution is applied to the action schema providing a ground action with no variables

• Each schema may unify in multiple ways
• If an action has multiple literals in the precondition, then each of them can potentially be matched against 

the current state in several ways

• E.g., in spare tire, the Remove action, the precondition At(obj, loc) matches against the initial state in two 
ways, resulting in the two substitutions {obj/Flat,loc/Axle} and {obj/Spare,loc/Trunk} 

• This can lead to search graphs whose depth to the solution has an unfeasible number of nodes
• An accurate heuristics is needed to make forward search feasible



Backward search for planning
• Starts at the goal and works backward, applying actions to find a sequence of 

steps reaching the initial state

• Focuses on relevant actions, i.e., with an effect that unifies with one of the 
goal literals, but with no effect that negates any part of the goal
• For example, the goal ¬Poor ∧ Famous considers actions with the sole effect Famous but 

not those with Poor ∧ Famous

• Regression Process:

• Given a goal g and an action a, the regression from g over a, yields a state g’ 
whose positive and negative literals are given by
• POS(g′) = (POS(g) - ADD(a)) ∪ POS(Precond(a))
• NEG(g′) = (NEG(g) - DEL(a)) ∪ NEG(Precond(a))

• Preconditions must hold before action execution, but added/deleted literals 
need not be true before



Backward search for planning
• Some care is required when there are variables in g and a

• Suppose the goal is to deliver a specific piece of cargo to SFO: At(C2,SFO)
• The Unload action schema has the effect At(c,a)
• The unification with the goal provides the substitution {c/C2,a/SFO}

• applying that substitution to the schema gives us a new schema that captures the idea of using any plane 
that is at SFO: 

Action(Unload(C2, p′,SFO), 

PRECOND:In(C2,p′) ∧ At(p′,SFO) ∧ Cargo(C2) ∧ Plane(p′) ∧ Airport(SFO) 

EFFECT:At(C2,SFO) ∧ ¬In(C2,p′))
• p is replaced with p’ (standardizing apart variable names) to avoid conflicts between different variables with 

the same name

• The regressed state description gives the new goal 

• g′ =In(C2,p′) ∧ At(p′,SFO) ∧ Cargo(C2) ∧ Plane(p′) ∧ Airport(SFO)

• For most problem domains backward search keeps the branching factor lower 
than forward search



Algorithms for Classical Planning



Algorithms for Classical Planning

• Other classical planning approaches
• An alternative called partial-order planning represents a plan as a graph rather than a 

linear sequence: 
• each action is a node in the graph, 

• for each precondition of the action there is an edge from another action (or from the initial 
state) that indicates that the predecessor action establishes the precondition
• So we could have a partial-order plan that says that actions Remove(Spare, Trunk) and Remove(Flat, 

Axle) must come before PutOn(Spare, Axle), without saying which of the two Remove actions should
come first

• We search in the space of plans rather than world-states, inserting actions to satisfy conditions



Heuristics for Planning

• Forward and backward search is inefficient without a good heuristic function 
h(s)
• h(s) estimates the distance from a state s to the goal
• if we can derive an admissible heuristic for this distance then we can use A∗ search to find 

optimal solutions
• an admissible heuristic can be derived by defining a relaxed problem that is easier to 

solve
• the exact cost of a solution to this easier problem then becomes the heuristic for the original problem

• A search problem is a graph where the nodes are states, and the edges are actions
• There are two main ways we can relax this problem to make it easier: 

• by adding more edges to the graph, making it easier to find a path, 

• or by grouping multiple nodes, forming an abstraction of the state space that has fewer states, and thus is easier to 
search



Heuristics for Planning

• Heuristics that add edges to the graph
• Ignore preconditions heuristic: drops all preconditions from actions

• Every action becomes applicable
• Any single goal fluent can be achieved in one step (if there are any applicable 

actions)
• It’s possible to ignore only selected preconditions of actions, e.g., consider the 8-

puzzle encoded as a planning problem with a single schema
Action(Slide(t,s1,s2), 
PRECOND:On(t,s1) ∧ Tile(t) ∧ Blank(s2) ∧ Adjacent(s1,s2) 
EFFECT:On(t,s2) ∧ Blank(s1) ∧ ¬On(t,s1) ∧ ¬Blank(s2)) 

• if we remove the preconditions Blank(s2) ∧ Adjacent(s1,s2) then any tile can move in 
one action to any blank space and we get the number-of-misplaced-tiles heuristic

• If we remove only the Blank(s2) precondition then we get the Manhattan distance 
heuristic 



Heuristics for Planning

• Heuristics that add edges to the graph
• Ignore-delete-lists heuristic: removing the delete lists from all actions  (i.e., removing all 

negative literals from effects)
• That makes it possible to make monotonic progress toward the goal

• no action will ever undo the progress made by another action

• It turns out it is still NP-hard to find the optimal solution to this relaxed problem, but an 
approximate solution can be found in polynomial time by hill climbing



Heuristics for Planning

• Domain-independent pruning
• Many states are just variants of other states

• symmetry reduction: prune out of consideration all symmetric branches of the search tree except for one

• For example, suppose we have a dozen blocks on a table, and the goal is to have block A 
on top of a three-block tower
• The first step in a solution is to place some block x on top of block y (where x, y, and A are all different)

• then, place A on top of x and we’re done
• There are 11 choices for x, and given x, 10 choices for y, and thus 110 states to consider

• But all these states are symmetric: choosing one over another makes no difference, and thus a planner should 
only consider one of them



Heuristics for Planning

• State abstraction in planning
• state abstraction: a many-to-one mapping from states in the ground representation of the 

problem to the abstract representation
• relaxations that decrease the number of states

• The easiest form of state abstraction is to ignore some fluents

• decomposition: dividing a problem into parts, solving each part independently, and then 
combining the parts

• Subgoal independence assumption: the cost of solving a conjunction of subgoals is 
approximated by the sum of the costs of solving each subgoal independently

• The subgoal independence assumption can be optimistic or pessimistic
• optimistic: negative interactions between the subplans for each subgoal

• That is, when an action in one subplan deletes a goal achieved by another subplan

• pessimistic: inadmissible, when subplans contain redundant actions
• That is, two actions that could be replaced by  single action in the merged plan


