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Introduction

• An agent with a knowledge base can make inferences enabling it 
to act appropriately 

• Now, the question is what content to put into an agent’s 
knowledge base, that is, how to represent facts about the world

• We can use FOL as a representation language for discussing the 
content and organization of knowledge
• Even though other representation formalisms exist
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Ontologies

• An ontology formally represents knowledge that defines the 
concepts, relationships, and properties within a specific domain

• It provides a structured framework for organizing and sharing 
knowledge in a machine-readable format

• Ontologies play a crucial role in knowledge representation, 
semantic web technologies, and various fields of artificial 
intelligence



Ontological Engineering

• The representations can be created focusing on general concepts such as 
Events, Time, Physical objects, and belief 

• Ontological Engineering
• General and flexible representations for complex domains

• Upper ontology
• The general framework of concepts

• Example
• Ontology of the world

• Each link indicates that the lower concept is a specialization of the upper one



Categories and Objects
• The organization of objects into categories is a vital part of knowledge representation

• Indeed, much reasoning takes place at a level of categories 

• Categories for FOL can be represented by predicates and objects
1. BasketBall(s) is a predicate whereas 
2. a category can be reified as an object BasketBalls

• Turning a proposition into an object

• Member(s, BasketBalls) that is s is a member of the category BasketBalls

• We can use Subset(BasketBalls, Balls), that is, BasketBalls⊂ Balls, to say that BasketBalls is 
a subcategory of Balls

• Categories organize knowledge through inheritance
• If all instances of Food are edible, Fruit ⊂ Food and Apple ⊂ Fruit we infer that Apple is edible

• Subclass relations organize categories into a taxonomic hierarchy or taxonomy



Categories and Objects

• FOL makes it easy to state facts about categories
• Relating objects to categories or quantifying their members

• Examples
• An object is a member of a category

• BB9 ∈ Basketballs

• A category is a subclass of another category
• Basketballs ⊂ Balls

• All members of a category have some properties
• (x∈Basketballs) ⇒ Spherical(x)

• Members of a category can be recognized by some properties
• Orange(x) ∧ Round(x)∧Diameter(x)=9.5’’ ∧ x ∈ Balls ⇒ x ∈ Basketballs

• A category as a whole has some properties
• Dogs ∈ DomesticatedSpecies



Categories and Objects

• Categories can also be defined by providing necessary and 
sufficient conditions for membership

• Example
• a bachelor is an unmarried adult male: 

• x ∈ Bachelors ⇔ Unmarried(x) ∧ x ∈ Adults ∧ x ∈ Males



Categories and Objects

• Physical composition: the idea that an object can be part of another is a familiar one
• We use the general PartOf relation to say that one thing is part of another

• Eg: Bucharest is part of Romania, PartOf(Bucharest, Romania)

• Objects can be grouped into PartOf hierarchies
• PartOf(Bucharest,Romania) 

• PartOf(Romania,EasternEurope) 
• PartOf(EasternEurope,Europe) 

• PartOf(Europe,Earth) 

• The PartOf relation is transitive and reflexive, that is,
• PartOf(x,y) ∧ PartOf(y, z) ⇒ PartOf(x, z) 

• PartOf(x,x) 



Categories and Objects

• In both scientific and common-sense theories of the world, objects have 
height, mass, cost, and so on
• The values we assign to these properties are called measures 
• Ordinary quantitative measures are easy to represent

• We imagine that the universe contains abstract "measure objects”, such 
as length, that is the length of a line segment (denote it by L1)
• We represent length with a units function that takes a number as an 

argument
• Eg: Length(L1) = Inches(1.5) = Centimeters(3.81)

• The same length has different names in our language



Things and Stuff

• The real world can be viewed as consisting of primitive objects (e.g., atomic 
particles) and composite objects built from them as an aggregation

• By keeping the reasoning at the level of objects as large as apples and cars, 
we can handle the complexity inherent in treating many primitive objects 
individually

• However, a significant portion of reality appears to resist clear division into 
distinct objects, and this is referred to as stuff
• As an example, if we have some butter there is no obvious number of “butter-objects” 

because any part of a butter-object is also a butter-object

• Instead, If we have a cat, we have just one cat and if we cut the cat, we do not 
get two cats
• the cat is an example of a thing



Categories and Objects
• Natural language distinguishes clearly between stuff and things

• we say a cat (count nouns, e.g., holes, theorems, … ) and not a butter (mass nouns, e.g., 
water, energy, …)

• Some properties are intrinsic: they belong to the very substance of the object, 
rather than to the object as a whole
• When you cut an instance of stuff in half, the two pieces retain the intrinsic properties, such 

as density, boiling point, flavor, color, ownership …
• Substance 

• a category of objects that includes in its definition only intrinsic properties  (mass noun)

• Other properties are extrinsic 
• Properties like weight, length, and shape that are not retained under subdivision
• Count noun

• A class that includes any extrinsic properties in its definition



Events
• Something that happen

• Events (things that happen), fluents (aspects of the world that change), time points
• It is possible to represent events and fluents with propositions, but it is easy in a world where events are discrete, 

instantaneous, happen one at a time, and have no variations …

• Event calculus
• Approach to describe what’s happening during an event or action and two actions happening at the 

same time
• The objects of event calculus are events, fluents, and time points

• Fluents: At(Shankar, Berkeley), that is, the fact that Shankar is in Berkeley 

• Events: Event E1 of Shankar flying from San Francisco to DC
• E1 ∈ Flyings ∧ Flyer (E1, Shankar) ∧ Origin(E1, SF) ∧ Destination(E1, DC) 

• Flyings is the category of all flying events

• To assert that a fluent is actually true starting at some point in time t1 and continuing to time t2
• predicate T, as in T(At(Shankar,Berkeley),t1,t2)

• to say that the event E1 actually happened, starting at time t1 and ending at time t2
• Similarly, we use the predicate Happens(E1,t1,t2)



Events

• Time points and time intervals

• To say that the reign of Elizabeth II immediately followed that of George VI, and the 
reign of Elvis overlapped with the 1950s, we can write the following:
• Meets(ReignOf(GeorgeVI),ReignOf(ElizabethII)) 

• Overlap(Fifties,ReignOf(Elvis)) 
• Begin(Fifties) = Begin(AD1950) 

• End(Fifties) = End(AD1959)
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where Terminated and Initiated are defined by:

Terminated( f , t1, t5) ⇔
∃e, t2, t3, t4 Happens(e, t2, t4)∧Terminates(e, f , t3)∧ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5

Initiated( f , t1, t5) ⇔
∃e, t2, t3, t4 Happens(e, t2, t4)∧ Initiates(e, f , t3)∧ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5

We can extend event calculus to represent simultaneous events (such as two people being nec-
essary to ride a seesaw), exogenous events (such as the wind moving an object), continuous
events (such as the rising of the tide), nondeterministic events (such as flipping a coin and
having it come up heads or tails), and other complications.

10.3.1 Time

Event calculus opens us up to the possibility of talking about time points and time intervals.
We will consider two kinds of time intervals: moments and extended intervals. The distinc-
tion is that only moments have zero duration:

Partition({Moments,ExtendedIntervals}, Intervals)
i∈Moments ⇔ Duration(i)=Seconds(0) .

Next we invent a time scale and associate points on that scale with moments, giving us abso-
lute times. The time scale is arbitrary; we will measure it in seconds and say that the moment
at midnight (GMT) on January 1, 1900, has time 0. The functions Begin and End pick out
the earliest and latest moments in an interval, and the function Time delivers the point on the
time scale for a moment. The function Duration gives the difference between the end time
and the start time.

Interval(i) ⇒ Duration(i)=(Time(End(i))−Time(Begin(i))) .
Time(Begin(AD1900))=Seconds(0) .
Time(Begin(AD2001))=Seconds(3187324800) .
Time(End(AD2001))=Seconds(3218860800) .
Duration(AD2001)=Seconds(31536000) .

To make these numbers easier to read, we also introduce a function Date, which takes six
arguments (hours, minutes, seconds, day, month, and year) and returns a time point:

Time(Begin(AD2001))=Date(0,0,0,1,Jan,2001)
Date(0,20,21,24,1,1995)=Seconds(3000000000) .

Two intervals Meet if the end time of the first equals the start time of the second. The complete
set of interval relations (Allen, 1983) is shown below and in Figure 10.2:

Meet(i, j) ⇔ End(i)=Begin( j)
Before(i, j) ⇔ End(i)< Begin( j)
After( j, i) ⇔ Before(i, j)
During(i, j) ⇔ Begin( j) < Begin(i)< End(i)< End( j)
Overlap(i, j) ⇔ Begin(i)< Begin( j) < End(i)< End( j)
Starts(i, j) ⇔ Begin(i) = Begin( j)
Finishes(i, j) ⇔ End(i) = End( j)
Equals(i, j) ⇔ Begin(i) = Begin( j)∧End(i) = End( j)

These all have their intuitive meaning, with the exception of Overlap: we tend to think of
overlap as symmetric (if i overlaps j then j overlaps i), but in this definition, Overlap(i, j)
only is true if i begins before j. Experience has shown that this definition is more useful for



Mental Objects

• Mental objects refer to abstract entities that exist within the realm of human cognition and 
mental representation
• They are subjective constructs that represent various aspects of knowledge, beliefs, concepts, and ideas that 

individuals hold in their minds

• Mental objects are knowledge in someone’s head (or KB) 

• Propositional attitudes refer to mental states or attitudes that individuals have toward 
propositions or statements
• These attitudes represent an individual's beliefs, desires, intentions, opinions, and other mental states regarding 

the truth or falsehood of propositions
• For instance, attitudes such as Believes, Knows, Wants, and Informs

• Example: Lois knows that Superman can fly:

  Knows(Lois, CanFly(Superman)) 



Modal Logic

• Sentences can sometimes be verbose and clumsy
• Regular logic is concerned with a single modality, the modality of truth

• Modal logic addresses this, with special modal operators that take sentences (rather 
than terms) as arguments
• Modal logic allows for reasoning about statements and propositions that are qualified by 

modalities, which reflect different modes of truth and possibility 

• It provides a framework to analyze and reason about concepts like necessity, possibility, 
impossibility, certainty, belief, and knowledge

• “A knows P” is represented with the notation KAP, where K is the modal operator for 
knowledge
• It takes two arguments, an agent (written as the subscript) and a sentence

• The syntax of modal logic is the same as first-order logic, except that sentences can 
also be formed with modal operators



Mental Objects and Modal Logic

• Having a modal operator for knowledge, one can write axioms for it
• Agents are able to draw conclusions

• If an agent knows P and knows that P implies Q, then the agent knows Q:

(KAP ∧ KA(P ⇒ Q)) ⇒ KAQ

• Logical agents can introspect on their own knowledge
• If they know something, then they know that they know it:

KAP ⇒ KA (KAP)



Reasoning Systems for Categories 

• Categories are the primary building blocks of large-scale knowledge 
representation schemes

• To organize and reason with categories there are two closely related 
families of systems 
• semantic networks 

• provide a graphical representation of a knowledge base and efficient algorithms for inferring 
the properties of an object based on its membership in a category

• description logics
• provide a formal language for constructing and combining category definitions and provide 

efficient algorithms for determining subset and superset relationships of categories



Reasoning Systems for Categories 

• Semantic networks
• Represent individual objects, categories of objects, and 

relations among objects
• A typical graphical notation displays object or category 

names in ovals or boxes and connects them with labeled 
links

• convenient to perform inheritance reasoning
• Mary inherits the property of having two legs

• to find out how many legs Mary has, the inheritance 
algorithm follows the MemberOf link from Mary to the 
category she belongs to 

• and then follows SubsetOf links up the hierarchy until it finds 
a category for which there is a boxed Legs link

∀x  x ∈ Persons ⇒ [∀y HasMother(x,y) ⇒ y ∈ FemalePersons]

∀x  x ∈ Persons ⇒ Legs(x,2)



Semantic Networks

• One drawback of semantic networks is that links between bubbles 
represent only binary relations
• Example

• Fly(Shankar, NewYork, NewDelhi, Yesterday)
• N-ary assertions by reifying the proposition itself as an event belonging to an event 

category
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Figure 10.4 A semantic network with four objects (John, Mary, 1, and 2) and four categories.
Relations are denoted by labeled links.
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Figure 10.5 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar,NewYork,NewDelhi,Yesterday).

follows SubsetOf links up the hierarchy until it finds a category for which there is a boxed
Legs link—in this case, the Persons category. The simplicity and efficiency of this inference
mechanism, compared with semidecidable logical theorem proving, has been one of the main
attractions of semantic networks.

Inheritance becomes complicated when an object can belong to more than one category
or when a category can be a subset of more than one other category; this is called multiple in-

heritance. In such cases, the inheritance algorithm might find two or more conflicting valuesMultiple inheritance

answering the query. For this reason, multiple inheritance is banned in some object-oriented

programming (OOP) languages, such as Java, that use inheritance in a class hierarchy. It is
usually allowed in semantic networks, but we defer discussion of that until Section 10.6.

The reader might have noticed an obvious drawback of semantic network notation, com-
pared to first-order logic: the fact that links between bubbles represent only binary relations.
For example, the sentence Fly(Shankar,NewYork,NewDelhi,Yesterday) cannot be asserted
directly in a semantic network. Nonetheless, we can obtain the effect of n-ary assertions
by reifying the proposition itself as an event belonging to an appropriate event category.
Figure 10.5 shows the semantic network structure for this particular event. Notice that the
restriction to binary relations forces the creation of a rich ontology of reified concepts.



Reasoning Systems for Categories 

• Description logics
• notations that are designed to make it easier to describe definitions and properties of 

categories

• evolved from semantic networks in response to the need to formalize what the networks 
mean, while retaining the emphasis on taxonomic structure as an organizing principle

• Principal inference tasks:
• Subsumption: checking if one category is a subset of another by comparing their definitions

• Classification: checking whether an object belongs to a category

• The CLASSIC language (Borgida et al., 1989) is a typical description logic
• Eg: bachelors are unmarried adult males
                Bachelor = And(Unmarried, Adult, Male)
• The equivalent in first-order logic would be: 

                Bachelor(x) ⇔ Unmarried(x) ∧ Adult(x)∧ Male(x) 



Reasoning Systems for Categories 

• The description logic has an algebra of operations on predicates, 
which we can’t do in first-order logic

• Any description in CLASSIC can be translated into an equivalent 
first-order sentence, but some descriptions are more 
straightforward in CLASSIC

• Example
• to describe the set of men with at least three sons who are all unemployed 

and married to doctors, and at most two daughters who are all professors 
in physics or math departments, we would use
• And(Man,AtLeast(3,Son),AtMost(2,Daughter), 

All(Son,And(Unemployed,Married, All(Spouse,Doctor))), 
All(Daughter,And(Professor,Fills(Department,Physics,Math)))) 

• The language does not allow one to state that one concept or 
category is a subset of another
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Concept → Thing | ConceptName

| And(Concept, . . .)

| All(RoleName,Concept)

| AtLeast(Integer,RoleName)

| AtMost(Integer,RoleName)

| Fills(RoleName, IndividualName, . . .)

| SameAs(Path,Path)

| OneOf(IndividualName, . . .)

Path → [RoleName, . . .]

ConceptName → Adult | Female | Male | . . .

RoleName → Spouse | Daughter | Son | . . .

Figure 10.6 The syntax of descriptions in a subset of the CLASSIC language.

The CLASSIC language (Borgida et al., 1989) is a typical description logic. The syntax
of CLASSIC descriptions is shown in Figure 10.6.6 For example, to say that bachelors are
unmarried adult males we would write

Bachelor = And(Unmarried,Adult,Male) .

The equivalent in first-order logic would be

Bachelor(x) ⇔ Unmarried(x)∧Adult(x)∧Male(x) .

Notice that the description logic has an algebra of operations on predicates, which of course
we can’t do in first-order logic. Any description in CLASSIC can be translated into an equiv-
alent first-order sentence, but some descriptions are more straightforward in CLASSIC. For
example, to describe the set of men with at least three sons who are all unemployed and
married to doctors, and at most two daughters who are all professors in physics or math
departments, we would use

And(Man,AtLeast(3,Son),AtMost(2,Daughter),
All(Son,And(Unemployed,Married,All(Spouse,Doctor))),
All(Daughter,And(Professor,Fills(Department,Physics,Math)))) .

We leave it as an exercise to translate this into first-order logic.
Perhaps the most important aspect of description logics is their emphasis on tractability of

inference. A problem instance is solved by describing it and then asking if it is subsumed by
one of several possible solution categories. In standard first-order logic systems, predicting
the solution time is often impossible. It is frequently left to the user to engineer the represen-
tation to detour around sets of sentences that seem to be causing the system to take several

6 Notice that the language does not allow one to simply state that one concept, or category, is a subset of
another. This is a deliberate policy: subsumption between categories must be derivable from some aspects of the
descriptions of the categories. If not, then something is missing from the descriptions.



Description Logic

• The most important aspect of description logics is their emphasis on the 
tractability of inference 
• A problem instance is solved by describing it and then asking if it is subsumed by one of 

several possible solution categories

• First-order logic systems often struggle to predict problem-solving times
• requiring users to engineer problem representations to circumvent issue sets that cause 

the system to take weeks to solve

• The thrust for description logic is to ensure that subsumption testing can be 
solved in polynomial time to the size of the description


