

Course of "Automatic Control Systems" 2023/24

PID controller

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences

Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: mfs9zfr

Pro

PID controller

- A PID controller is characterized by a Proportional-Integral-Derivative control actions with respect to the tracking error e(t) = r(t) y(t).
- \blacktriangle A PID can be written in the time domain as

$$u(t) = K_P e(t) + K_I \int e(t)dt + K_D \frac{de(t)}{dt}$$

even if it is usually defined in the form

$$u(t) = K_P \left(e(t) + \frac{K_I}{K_P} \int e(t)dt + \frac{K_D}{K_P} \frac{de(t)}{dt} \right)$$
$$= K_P \left(e(t) + \frac{1}{T_I} \int e(t)dt + T_D \frac{de(t)}{dt} \right)$$

where
$$T_I = \frac{K_P}{K_I}$$
 (Integral time) and $T_D = \frac{K_D}{K_P}$ (Derivative time)
Francesco Montefusco 2 Automatic Control Systems 20

PID controller in the time domain

 \blacktriangle A PID controller in the time domain form,

$$u(t) = K_P e(t) + K_I \int e(t)dt + K_D \frac{de(t)}{dt}$$

can be represented as

PID controller in the Laplace domain

▲ A PID controller defined in the Laplace domain as

$$U(s) = K_p E(s) + \frac{K_I}{s} E(s) + K_D s E(s)$$

can be represented as

A Or by
$$u(t) = K_p \left(e(t) + \frac{1}{T_I} \int e(t) dt + T_D \frac{de(t)}{dt} \right)$$

$$U(s) = K_p \left(E(s) + \frac{1}{T_I s} E(s) + T_D s E(s) \right)$$

PID controller

- ▲ Usually, only a subset of the possible PID control actions are implemented.
- ▲ In particular we have
 - Proportional controller (P)
 - Integral controller (I)

 - Proportional-Derivative controller (PD)

Proportional-Integral-Derivative controller (PID)

P controller

 \checkmark The P controller can be written as

$$u(t) = K_p e(t) \rightarrow U(s) = K_p E(s) \rightarrow \frac{U(s)}{E(s)} = K(s) = K_p$$

▲ P controllers are used to reduce the steady-state error when

- the integral action is not required for the steady-state performance
- the bandwidth can be increased without violating the requirements
- the phase margin can be reduced without violating the requirements

Assuming that the steady-state error to polynomial signal is finite, increasing the proportional gain it is possible to reduce the steady-state error with respect to reference and disturb polynomial signals.

Order k Type n	Step R ₀ /s	Ramp R_0/s^2	Quadrati $c R_0/s^3$
n = 0	$\frac{R_0}{1+F_0}$	œ	8
<i>n</i> = 1	0	$\frac{R_0}{F_0}$	œ
<i>n</i> = 2	0	0	$\frac{R_0}{F_0}$

$$F_0 = K_p G_0$$

where G_0 is the static gain of the plant to be controlled (hp, plant without poles in the origin)

 \blacktriangle The integral (I) action can be written as

$$u(t) = K_I \int e(t)dt \to U(s) = \frac{K_I E(s)}{s} \to \frac{U(s)}{E(s)} = K(s) = \frac{K_I}{s}$$

▲ I controllers are used to reduce or eliminate the steady-state error when

the phase margin can be reduced of 90° without violating the requirements

▲ Assuming that the steady-state error to polynomial signal is finite

order of the polynomial signal = type of F(s)

adding an integral action it is possible to eliminate the steady-state error with respect to reference and disturb polynomial signals.

\checkmark			
Order k Type n	Step R ₀ /s	Ramp R_0/s^2	Quadrati $c R_0/s^3$
n = 0	$\frac{R_0}{1+F_0}$	œ	×
n = 1	0	$\frac{R_0}{F_0}$	8
<i>n</i> = 2	0	0	$\frac{R_0}{F_0}$

PI controller

▲ The proportional-integral controller in the Laplace domain can be written as

$$U(s) = K_P E(s) + \frac{K_I}{s} E(s) = \left(K_P + \frac{K_I}{s}\right) E(s) \rightarrow U(s) = K_p \left(1 + \frac{K_I}{K_P s}\right) E(s)$$
$$\rightarrow \frac{U(s)}{E(s)} = K(s) = K_p \left(1 + \frac{1}{T_I s}\right) E(s)$$
$$K(s) = \frac{K_P}{T_I} \frac{(1 + T_I s)}{s} = K_I \frac{\left(1 + \frac{K_P}{K_I} s\right)}{s}$$

 \blacktriangle The PI controllers are composed by

$$*$$
 a gain $\frac{K_P}{T_I} = K_I (T_I = \frac{K_P}{K_I})$

 \Rightarrow a pole in the origin

$$\Rightarrow$$
 a zero in $z = -\frac{1}{T_I}$

PI controller

▲ PI controllers are used to improve the steady-state performance of the system

▲ Due to the presence of the zero, a PI controller performs better than a pure integral controller in terms of transient requirements

▲ Indeed, the zero can reduce or eliminate the phase lag at the crossing frequency ω_c

PD controller

▲ The proportional-derivative controller in the Laplace domain can be written as

$$U(s) = K_p E(s) + K_d s E(s) \rightarrow U(s) = \left(K_p + K_d s\right) E(s) = K_p \left(1 + \frac{K_d}{K_p}\right) E(s)$$

$$K(s) = K_p (1 + T_D s)$$

$$T_D = \frac{K_d}{K_p}$$

▲ In the present form, the controller has an improper transfer function due to the presence of the ideal derivative action.

PD controller

▲ In the common practice, a real derivative action is implemented

$$K(s) = K_P \left(1 + \frac{T_D s}{1 + \frac{T_D}{N} s} \right) = K_P + \frac{K_D s}{1 + \frac{K_D}{K_P N} s}$$

with $N \gg 1$. In general, typical values of *N* are from 5 to 20.

A Taking into account that $T_D + \frac{T_D}{N} \cong T_D$, a real PD controller is in the form

$$K(s) = K_P \frac{(1 + T_D s)}{\left(1 + \frac{T_D}{N} s\right)}$$

PD controller

PD controllers has the same steady-state performance of the proportional controller

▲ However, due to the presence of a no-null zero and pole, it can also guarantee an increment of the phase margin

Ideal PID controller

▲ The proportional-integral-derivative controller in the Laplace domain can be written as

$$U(s) = K_P E(s) + \frac{K_I}{s} E(s) + K_D s E(s) \rightarrow U(s) = \left(K_P + \frac{K_I}{s} + K_D s\right) E(s)$$
$$\bigcup$$
$$\frac{U(s)}{E(s)} = K(s) = K_P + \frac{K_I}{s} + K_D s = \frac{K_D s^2 + K_P s + K_I}{s}$$

Or
$$K(s) = K_P \left(1 + \frac{K_I}{K_P s} + \frac{K_D}{K_P} s \right) = K_P \left(1 + \frac{1}{T_I s} + T_D s \right) = \frac{K_P}{T_I} \frac{(1 + T_I s + T_I T_D s^2)}{s}$$

▲ Also, in this case a pole at high frequencies have to be added for the physical implementation.

Real PID controller

A By implementing the real derivative action as $K_{D_r} = \frac{K_D s}{1 + \frac{K_D}{K_P N} s} = \frac{K_P T_D s}{1 + \frac{T_D}{N} s}$ $K(s) = K_P + \frac{K_I}{s} + \frac{K_D s}{1 + \frac{K_D}{K_P N} s}$

Or

$$K(s) = K_P \left(1 + \frac{1}{T_I s} + \frac{T_D s}{1 + \frac{T_D}{N} s} \right)$$

Also in this case a pole at high frequencies have to be added for the physical implementation.

PID controller

- ▲ PID controllers are used to improve both the steady-state and transient performance of the system
- \checkmark Due to the pole in the origin, they are able

 \blacklozenge to reduce or eliminate the steady-stare error

 \checkmark Due to the PD action, they are able to

* increase or reduce the phase margin of the system