

### Course of "Automatic Control Systems" 2023/24

## Procedure for the controller design

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: mfs9zfr



### Procedure for the controller design

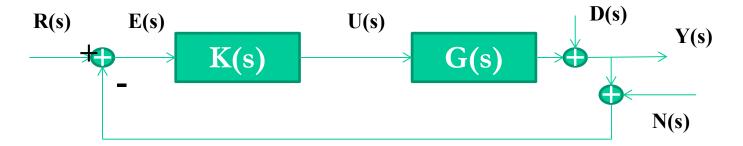
▲ The procedure for the controller design consists in three main steps:

#### **♦ STEP 1**

Convert the closed loop requirements in requirements on the open loop transfer function F(s)

#### **♦ STEP 2**

Design the controller K(s) so that the open loop function F(s) = K(s)G(s) satisfies the requirements in the STEP 1


#### **♦ STEP 3**

Verify, with the aid of an appropriate software (for example MATLAB), that the closed loop system satisfies the requirements. Otherwise, go back to the STEP1 using more accurate techniques.



# STEP 1: convert the requirements on T(s) into requirements on F(s)

- ▲ The performance of the closed loop system are evaluated in terms of
  - ♦ Tracking of the reference input
  - *♦* Rejection of the disturbs
  - **♦** Insensibility to the noise



- Assuming that the stability of the C.L. system is guaranteed, the responses of the system can be divided in a transient and a steady-state parts.
- The *steady-state performance* cares about the steady-state behavior of the closed loop system while the *transient performance* cares about the tracking of the reference signal during the transient phase

Prof. Francesco Montefusco

Automatic Control Systems 2023/24



### STEP 1: Steady-state performance

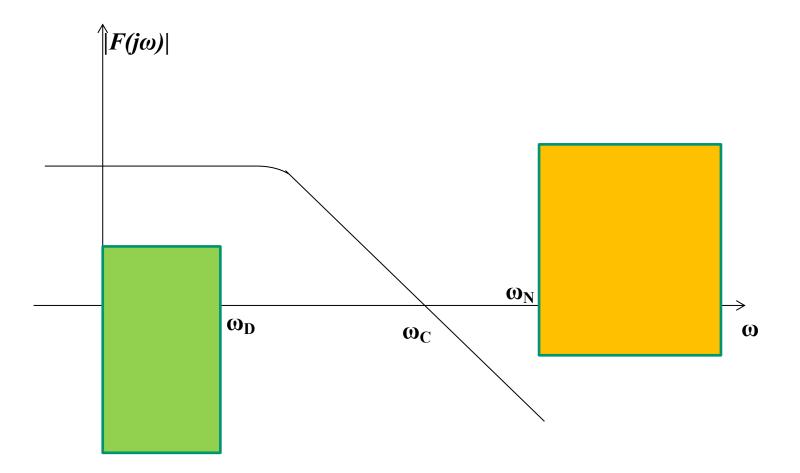
- ▲ The steady-state performance are classified in
- $\land$  Tracking of the reference input R(s)
  - ♦ Null or bounded steady-state error to polynomial inputs (step, ramp,...)
  - ♦ Null or bounded steady-state error to sinusoidal inputs at fixed frequency or to multi-frequency reference signal
- $\land$  Rejection of the disturbs D(s)
  - ♦ Null or bounded steady-state error to polynomial inputs
  - ♣ Bounded steady-state error to multi-frequency sinusoidal inputs
- $\land$  Insensibility to the noise N(s)
  - ♣ Bounded steady-state error to multi-frequency sinusoidal inputs



## Step1: Steady-state performance

The requirements concerning polynomial reference and/or disturbs define the steady-state part of the controller

$$K'(s) = \frac{k_0}{s^{\mu}}$$


where  $k_0$  and  $\mu$  depend on

- ♦ the order of the polynomial input
- ♦ bounded or null error requirement
- \* structure of the plan transfer function (gain and poles in the origin)



### Step1: Steady-state performance

 $^{\perp}$  The requirements concerning *multi-frequency noise and disturbs* defines the set of the forbidden zones for the magnitude Bode diagram of F(s)



Prof. Francesco Montefusco Automatic Control Systems 2023/24



### Step 1: Transient performance

- The *transient performance* are usually expressed in terms of tracking properties of a polynomial reference of order 0 (step)
- ▲ The transient performance concerns
  - $\Rightarrow$  Dynamic precision (overshoot)  $\longrightarrow$  Phase margin  $\varphi_m^*$

$$\begin{cases} T_a(s) = \frac{1}{1+\tau s} & \varphi_m^* > 60^{\circ} \\ T_a(s) = \frac{1}{1+2\zeta s/\omega_n + s^2/\omega_n^2} & \varphi_m^* < 60^{\circ} \end{cases}$$

→ Time response (settling time)

$$\begin{cases} \omega_c^* = \frac{1}{\tau} & \varphi_m^* > 60^{\circ} \\ \omega_c^* = \omega_n & \varphi_m^* < 60^{\circ} \end{cases}$$

Crossing frequency  $\omega_c^*$ 



### Example

Let us consider the following set of requirements:

- 1.  $e_{\infty} = 0$  for a reference signal  $r(t) = R_0 1(t)$
- 2. Attenuation  $\geq 20_{db}$  for multi-frequency disturbs in the range  $[0 \quad 0.01]$  rad/s
- 3. Attenuation  $\geq 80\%$  for multi-frequency noise in the range [10 100] rad/s
- 4. Overshoot  $s \le 10\%$
- 5. Settling time  $t_{s5\%} \le 10s$



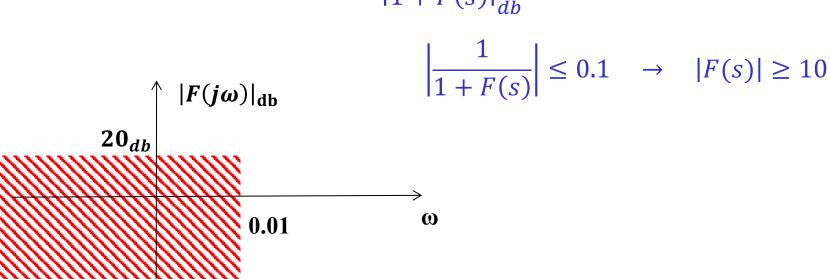
# Example: steady-state spec. for polynomial reference signal

1.  $e_{\infty} = 0$  for a reference signal  $r(t) = R_0 \mathbf{1}(t)$ 

- A Steady-state requirement for polynomial reference signal.
- To assure a null steady state error for a polynomial signal of order 0 it is necessary that F(s) is of type 1, that is F(s) has a pole in the origin.
- Assuming that the plant transfer function G(s) doesn't contain poles in the origin, the steady-state part of the controller is

$$K'(s) = \frac{k_0}{s}$$

where  $k_0$  is a free parameter



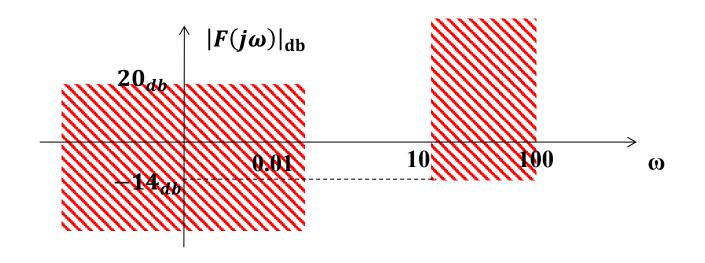

## Example: steady-state spec. for multi-frequency disturbs

### 2. Attenuation $\geq 20_{db}$ for multi-frequency disturbs in the range $\begin{bmatrix} 0 & 0.01 \end{bmatrix}$ rad/s

- ▲ Steady-state requirement for multi-frequency disturb.
- ▲ It implies that, in the range [0 0.01] rad/s,

$$|S(s)|_{db} = \left|\frac{1}{1+F(s)}\right|_{db} \le -20 \quad \to$$






## Example: steady-state spec. for multi-frequency noise

3. Attenuation  $\geq 80\%$  for multi-frequency noise in the range [10 100] rad/s

- ▲ Steady-state requirement for multi-frequency noise
- ▲ It implies that, in the range [10 100] rad/s,

$$|T(s)| = \left| \frac{F(s)}{1 + F(s)} \right| \le 0.2 \quad \to \quad |F(s)| \le 0.2 \quad \to \quad |F(s)|_{db} \le -14$$





### Example: transient spec. on the overshoot

#### 4. Overshoot $s \leq 10\%$

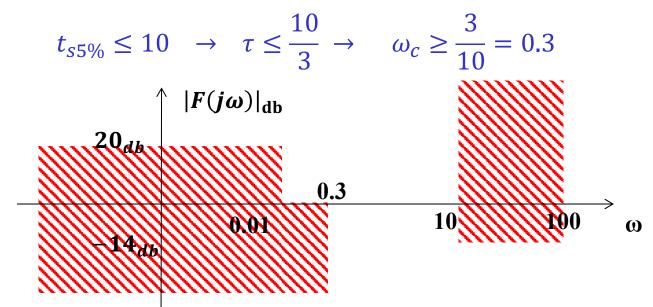
▲ Transient requirement on the overshoot

A Taking into account that  $s = e^{\sqrt{1-\zeta^2}}$ , we have that

$$s \le 10\% \rightarrow \zeta \ge 0.6 \rightarrow \varphi_m \cong 100\zeta \ge 60^\circ$$

▲ Hence the complementary sensitivity function can be approximated by a first order system

$$T_a(s) = \frac{1}{1 + \tau s}$$


where  $\tau$  depends on the settling time requirement



### Example: transient spec. on the settling time

### 5. Settling time $t_{s5\%} \leq 10s$

- ▲ Transient requirement on the settling time
- A Taking into account that the settling time at 5% for a first order system is defined as  $t_{s5\%} \cong 3\tau$ , we have that



The transfer function F(s) should have a crossing frequency  $\omega_c > 0.3$  and a phase margin  $\varphi_m > 60^\circ$ .



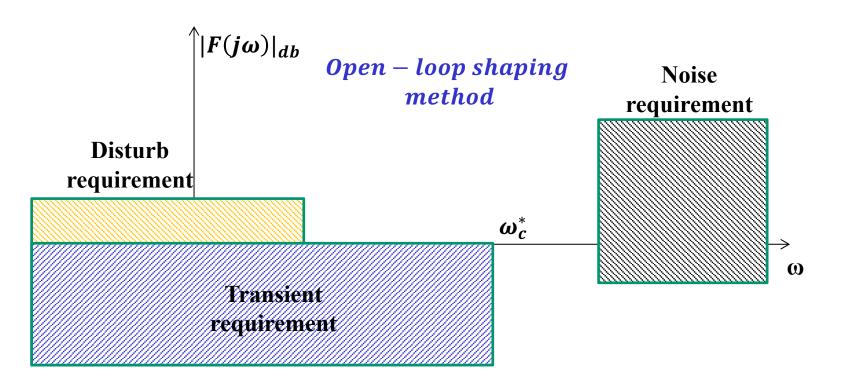
## Step2: Controller design

- Design the controller K(s) so that the open loop function F(s) = K(s)G(s) satisfies the requirements in STEP 1
- ▲ The controller will be in the form

$$K(s) = K'(s) \cdot K''(s)$$

where

 $\star K'(s)$  have been designed according to the steady-state requirements concerning polynomial reference and/or disturbs


$$K'(s) = \frac{k_0}{s^{\mu}}$$

 $\star K''(s)$  have to be designed according to the steady-state multi-frequency requirements and the transient requirements



### Step2: Controller design

 $\wedge$  The control part K''(s) is usually designed so that F(s) doesn't intersect the forbidden zones



with 
$$\angle F(j\omega_c^*) = \varphi_m^* - 180^\circ$$

15



### Step3: Validation of the controller

- ▲ If some of the requirements are not satisfied, more accuracy have been added in the design process:

16

- ♦ Use the real Bode diagram instead of the asymptotic Bode diagram
- ♦ Use the Nichols chart to evaluate the desired phase margin
- ♦ Satisfy the requirements with a greater safety factor
- **♦** ....