

Artificial Intelligence

First-Order Logic: Inference

LESSON 16

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

The Resolution Algorithm

- Completeness theorem for predicate logic (Gödel, 1930)
 - For every first-order sentence α entailed by a given KB (KB $|= \alpha$) there exists some inference algorithm that derives α (KB $\vdash \alpha$) in a finite number of steps
 - The opposite does not hold
 - Predicate logic is semi-decidable
- A complete inference algorithm for predicate logic: Resolution (1965) based on
 - Converting sentences into Conjunctive Normal Form
 - Using only Resolution inference rule
 - Proof by contradiction
 - to prove $KB \models \alpha$, prove that $KB \land \neg \alpha$ is unsatisfiable (contradictory)
 - Refutation-completeness
 - if $KB \land \neg \alpha$ is unsatisfiable, then resolution derives a contradiction in a finite number of steps

Conjunctive Normal Form for FOL

• First step

- Convert sentences to conjunctive normal form (CNF)
 - CNF -> conjunction of clauses
 - Each clause a disjunction of literals
 - Literals can contain variables (universally quantified)
- Example
 - $\forall x, y, z \text{ American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x)$
 - In CNF becomes
 - ¬American(x) V ¬Weapon(y) V ¬Sells(x,y, z) V ¬Hostile(z) V Criminal(x)
- Keypoint
 - Every sentence of FL can be converted into an inferentially equivalent CNF sentence

Conjunctive Normal Form for FOL

- Same procedure for converting to CNF in propositional logic
 - Main difference -> eliminate existential quantifiers
- Example
 - Everyone who loves all animals is loved by someone
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y, x)]$
 - Steps
 - Eliminate implications (replace $P \Rightarrow Q$ with $\neg P \lor Q$)
 - $\forall x \neg [\forall y \text{ Animal}(y) \Rightarrow \text{Loves}(x,y)] \lor [\exists y \text{ Loves}(y,x)]$
 - $\forall x \neg [\forall y \neg Animal(x) \lor Loves(x,y)] \lor [\exists y Loves(y,x)]$
 - Move \neg inwards $\neg \forall x \ p \equiv \exists x \neg p$, $\neg \exists x \ p \equiv \forall x \neg p$
 - $\forall x [\exists y \neg (\neg Animal(y) \lor Loves(x,y))] \lor [\exists y Loves(y,x)]$
 - $\forall x [\exists y \neg \neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y Loves(y,x)]$
 - $\forall x [\exists y Animal(y) \land \neg Loves(x,y)] \lor [\exists y Loves(y,x)]$

Note that $\forall y$ in the premise of \Rightarrow

has become an $\exists y$

• Either there is some animal that x does not love, or (if it is not the case) someone loves x

Conjunctive Normal Form for FOL

- Standardize variables
 - Change the name of one of the variables in sentences using the variable name twice $(\exists x P(x)) \vee (\exists x Q(x))$
 - $\forall x [\exists y Animal(y) \land \neg Loves(x, y)] \lor [\exists z Loves(z, x)]$
- Skolemize
 - a more general form of existential instantiation, where each existential variable is replaced by a Skolem function of the enclosing universally quantified variables
 - ∀x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(x), x)]
 - F and G are Skolem functions
 - The arguments of a Skolem function are all the universally quantified variables in whose scope the existential quantifiers appear
- Drop Universal quantifiers
 - At this point, all the remaining variables are universally quantified, therefore we can drop the quantifier
 - [Animal(F(x)) ∧ ¬Loves(x, F(x)) ∨ Loves(G(x), x)]
- Distribute V over Λ
 - [Animal(F(x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(x), x)]
 - CNF consisting of two clauses

Skolemization

• A more general form of Existential Instantiation must be applied when an existential quantifier appears in the scope of a universal quantifier:

$\forall x, \dots \exists y, \dots \alpha[x, \dots, y \dots]$

- For instance
 - from ∀x ∃y Loves(x,y) (Everybody loves somebody)
 - it is not correct to derive ∀x Loves(x,A) (Everybody loves A)
 - the latter sentence means that everybody loves the same person

Skolemization

 Instead of a constant symbol, a new function symbol, known as the Skolem function, must be introduced with as many arguments as universally quantified variables. Therefore, from:

 $\forall x, \dots \exists y, \dots \alpha[x, \dots, y \dots]$

the correct application of EI derives:

 $\forall \mathsf{x}, \ldots \; \alpha[\mathsf{x}, \ldots, \mathsf{F}_1(\mathsf{x}), \ldots]$

• For instance, from

 $\forall x \exists y Loves(x,y)$

one can correctly derive

```
\forall x Loves(x,F(x))
where F maps any individual x to someone loved by x
```

PARTHENOPE

The Resolution Inference Rule

• Two clauses (standardized apart) can be resolved if they contain complementary literals

• FOL literals are complementary if one unifies with the negation of the other

$$\frac{l_1 \vee \cdots \vee l_k, \qquad m_1 \vee \cdots \vee m_n}{SUBST(\theta, l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n)}$$

where $\text{UNIFY}(l_i, \neg m_i) = \theta$

• Example

[Animal(F(x)) V Loves(G(x), x)] and [-Loves(u,v) V - Kills(u, v)] becomes [Animal(F(x)) V - Kills(G(x), x)]

- By eliminating the complementary literals Loves(G(x), x) and \neg Loves(u,v) with the unifier $\theta = \{u/G(x), v/x\}$
- Apply resolution steps to CNF (KB $\land \neg a$); complete for FOL

Example Proof

- Resolution proves that (KB $\land \neg a$) is unsatisfiable
- Crime example
 - The sentences in CNF are
 - ¬American(x) V ¬Weapon(y) V ¬Sells(x,y, z) V ¬Hostile(z) V Criminal(x)
 - ¬Missile(x) V ¬ Owns(Nono, x) V ¬Sells(West, x, Nono)
 - ¬Enemy(x, America) V Hostile(x)
 - ¬Missile(x) v Weapon(x)
 - Owns(Nono, M1) Missile(M1)
 - American(West) Enemy(Nono, America)

Resolution Proof: Definite Clauses

Figure 9.10 A resolution proof that West is a criminal. At each resolution step, the literals that unify are in bold and the clause with the positive literal is shaded blue.

Gödel's Incompleteness Theorem

- There are true arithmetic sentences that cannot be proved
- For any set of true sentences of number theory, and in particular any set of basic axioms, there are true sentences that cannot be proved from those axioms
- We can never prove all the theorems of mathematics within any given system of axioms

Applications of FC, BC and Resolution

• FC

- Encoding condition-action rules to recommend actions, based on a data-driven approach
 - Production systems (production: condition-action rules)
 - Expert systems
- BC
 - Logic programming languages (e.g. Prolog), used for
 - Rapid prototyping
 - Symbol processing applications (compilers, NL parsers, ...)
- Resolution
 - Main application -> theorem provers, used for
 - Assisting mathematicians
 - Proof checking
 - Verification and synthesis of hardware and software

Assignments

- Choose a topic from the list (next slide) and provide
 - Your problem specifications (by the end of the course, early June 2024)
 - The Python implementation and a Jupiter Notebook step-by-step explanation
 - 1 week ahead of the exam
- Possible libraries
 - Pygame
 - Pylogic
 - PyPlan
 - PyCogent
 - PySAT

List of projects

- 1. LogicalBattleShip (at most 10x10 grid)
- 2. LogicalTict-Tac-Toe
- 3. PropostionalLogicMinesweeper (6x6 grid, at most 8x8)
- 4. First-Order Logic Wumpus World
 - Exploring the Wumpus World
- 5. FirstOrdeLogic HarryPotter World
 - Gain knowledge from the Harry Potter Saga
- 6. FOL Detective Al
 - Imagine a spy or crime story and try to find the culprit