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The Resolution Algorithm

• Completeness theorem for predicate logic (Gödel, 1930)
• For every first-order sentence 𝛼 entailed by a given KB (KB |= 𝛼) there exists some inference 

algorithm that derives 𝛼 (KB ⊢ 𝛼 ) in a finite number of steps
• The opposite does not hold

• Predicate logic is semi-decidable

• A complete inference algorithm for predicate logic: Resolution (1965) based on
• Converting sentences into Conjunctive Normal Form
• Using only Resolution inference rule
• Proof by contradiction

• to prove KB |= 𝛼 , prove that KB ∧ ¬ 𝛼 is unsatisfiable (contradictory) 

• Refutation-completeness
• if KB ∧ ¬ 𝛼 is unsatisfiable, then resolution derives a contradiction in a finite number of steps 



Conjunctive Normal Form for FOL

• First step
• Convert sentences to conjunctive normal form (CNF)

• CNF -> conjunction of clauses
• Each clause a disjunction of literals

• Literals can contain variables (universally quantified)

• Example
• ∀x,y,z American(x) ∧ Weapon(y) ∧ Sells(x,y, z) ∧ Hostile(z) ⇒ Criminal(x) 

• In CNF becomes
• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x,y, z) ∨ ¬Hostile(z) ∨ Criminal(x)

• Keypoint
• Every sentence of FL can be converted into an inferentially equivalent CNF 

sentence



Conjunctive Normal Form for FOL

• Same procedure for converting to CNF in propositional logic
• Main difference -> eliminate existential quantifiers

• Example
• Everyone who loves all animals is loved by someone
• ∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y, x)] 

• Steps
• Eliminate implications (replace P ⇒ Q with ¬P ∨ Q)

• ∀x ¬[∀y Animal(y) ⇒ Loves(x,y)] ∨ [∃y Loves(y,x)] 

• ∀x ¬[∀y ¬Animal(x) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 

• Move ¬ inwards
• ∀x [∃y ¬(¬Animal(y) ∨	Loves(x,y))] ∨ [∃y Loves(y,x)] 
• ∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)] 

• ∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)] 

• Either there is some animal that x does not love, or (if it is not the case) someone loves x

Note that ∀y  in the premise of ⇒ 

has become an ∃y 

¬∀x  p≡ ∃x ¬p, ¬∃x  p ≡ ∀x ¬p



Conjunctive Normal Form for FOL

• Standardize variables
• Change the name of one of the variables in sentences using the variable name twice (∃x P(x)) ∨ (∃x Q(x))
• ∀x [∃y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃z Loves(z, x)] 

• Skolemize
• a more general form of existential instantiation, where each existential variable is replaced by a Skolem function of 

the enclosing universally quantified variables 
• ∀x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨	Loves(G(x), x)] 

• F and G are Skolem functions

• The arguments of a Skolem function are all the universally quantified variables in whose scope the existential quantifiers appear

• Drop Universal quantifiers
• At this point, all the remaining variables are universally quantified, therefore we can drop the quantifier
• [Animal(F(x)) ∧ ¬Loves(x, F(x)) ∨	Loves(G(x), x)]

• Distribute ∨ over ∧
• [Animal(F(x)) ∨	Loves(G(x), x)] ∧ [¬Loves(x, F(x)) ∨	Loves(G(x), x)]
• CNF consisting of two clauses



Skolemization

• A more general form of Existential Instantiation must be applied when 
an existential quantifier appears in the scope of a universal quantifier: 

                                      ∀x,... ∃y,... 𝛼[x,...,y ...] 

• For instance
• from ∀x ∃y Loves(x,y) (Everybody loves somebody) 
• it is not correct to derive ∀x Loves(x,A) (Everybody loves A)

• the latter sentence means that everybody loves the same person 



Skolemization
• Instead of a constant symbol, a new function symbol, known as the Skolem 

function, must be introduced with as many arguments as universally 
quantified variables. Therefore, from: 

                               ∀x,... ∃y,... 𝛼[x,...,y ...]
   the correct application of EI derives: 

                               ∀x,... 𝛼[x,...,F1(x),...]
• For instance, from

                                    ∀x ∃y Loves(x,y)

  one can correctly derive

                                    ∀x Loves(x,F(x))
where F maps any individual x to someone loved by x



The Resolution Inference Rule

• Two clauses (standardized apart) can be resolved if they contain complementary literals
• FOL literals are complementary if one unifies with the negation of the other

𝑙( ∨ ⋯ ∨ 𝑙) , 𝑚( ∨ ⋯ ∨𝑚*

𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑙( ∨ ⋯ ∨ 𝑙+,( ∨ 𝑙+-(⋯ ∨ 𝑙) ∨ 𝑚( ∨ ⋯ ∨𝑚.,( ∨ 𝑚.-( ∨ ⋯ ∨𝑚*)

where UNIFY(𝑙+ , ¬𝑚+) = 𝜃
• Example
   [Animal(F(x)) ∨	Loves(G(x), x)] and [¬Loves(u,v) ∨ 	¬	Kills(u, v)] becomes [Animal(F(x)) ∨ 	¬	Kills(G(x), x)] 

• By eliminating the complementary literals Loves(G(x), x) and ¬Loves(u,v) with the unifier 𝜃 = {u/G(x), v/x}

• Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL



Example Proof

• Resolution proves that (KB ∧ ¬α) is unsatisfiable

• Crime example
• The sentences in CNF are
• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x,y, z) ∨ ¬Hostile(z) ∨ Criminal(x)
• ¬Missile(x) ∨ ¬	Owns(Nono, x) ∨ ¬Sells(West, x, Nono)
•  ¬Enemy(x, America) ∨ Hostile(x)
• ¬Missile(x) ∨ Weapon(x)
• Owns(Nono, M1)          Missile(M1)
• American(West)            Enemy(Nono, America) 
• We also include the negated goal ¬	Criminal(x)



Resolution Proof: Definite Clauses

Section 9.5 Resolution 301

binary resolution rule by itself does not yield a complete inference procedure. The full reso-

lution rule resolves subsets of literals in each clause that are unifiable. An alternative approach

is to extend factoring—the removal of redundant literals—to the first-order case. Proposi-

tional factoring reduces two literals to one if they are identical; first-order factoring reduces

two literals to one if they are unifiable. The unifier must be applied to the entire clause. The

combination of binary resolution and factoring is complete.

9.5.3 Example proofs

Resolution proves that KB |= α by proving that KB∧¬α unsatisfiable—that is, by deriving

the empty clause. The algorithmic approach is identical to the propositional case, described

in Figure 7.13, so we need not repeat it here. Instead, we give two example proofs. The first

is the crime example from Section 9.3. The sentences in CNF are

¬American(x)∨¬Weapon(y)∨¬Sells(x,y,z)∨¬Hostile(z)∨Criminal(x)
¬Missile(x)∨¬Owns(Nono,x)∨Sells(West,x,Nono)
¬Enemy(x,America)∨Hostile(x)
¬Missile(x)∨Weapon(x)
Owns(Nono,M1) Missile(M1)
American(West) Enemy(Nono,America) .

We also include the negated goal ¬Criminal(West). The resolution proof is shown in Fig-

ure 9.10. Notice the structure: single “spine” beginning with the goal clause, resolving against

clauses from the knowledge base until the empty clause is generated. This is characteristic

of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine

correspond exactly to the consecutive values of the goals variable in the backward-chaining

algorithm of Figure 9.6. This is because we always choose to resolve with a clause whose

positive literal unifies with the leftmost literal of the “current” clause on the spine; this is

Figure 9.10 A resolution proof that West is a criminal. At each resolution step, the literals
that unify are in bold and the clause with the positive literal is shaded blue.



Gödel's Incompleteness Theorem

• There are true arithmetic sentences that cannot be proved

• For any set of true sentences of number theory, and in particular 
any set of basic axioms, there are true sentences that cannot be 
proved from those axioms

• We can never prove all the theorems of mathematics within any 
given system of axioms



Applications of FC, BC and Resolution

• FC
• Encoding condition-action rules to recommend actions, based on a data-driven approach

• Production systems (production: condition-action rules)
• Expert systems

• BC
• Logic programming languages (e.g. Prolog), used for

• Rapid prototyping
• Symbol processing applications (compilers, NL parsers, …)

• Resolution
• Main application -> theorem provers, used for

• Assisting mathematicians

• Proof checking
• Verification and synthesis of hardware and software



Assignments

• Choose a topic from the list (next slide) and provide
• Your problem specifications (by the end of the course, early June 2024)
• The Python implementation and a Jupiter Notebook step-by-step 

explanation
• 1 week ahead of the exam

• Possible libraries
• Pygame
• Pylogic
• PyPlan
• PyCogent
• PySAT



List of projects

1. LogicalBattleShip (at most 10x10 grid)
2. LogicalTict-Tac-Toe 
3. PropostionalLogicMinesweeper (6x6 grid, at most 8x8)
4. First-Order Logic Wumpus World
• Exploring the Wumpus World

5. FirstOrdeLogic HarryPotter World
• Gain knowledge from the Harry Potter Saga

6. FOL Detective AI
• Imagine a spy or crime story and try to find the culprit


