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Transient performance

ñ We have introduced two parameters in the frequency domain related to the transient 
behavior  

ò Bandwidth  𝑩𝟑 of  𝑻(𝒔) related to the rise time

ò Resonant peak  𝑴𝒑 of  𝑻(𝒔) related to the overshoot

ñ We have also assumed to refer to regularly stable open loop functions such that:

ò at low frequencies  𝐹 𝑠 ≫ 1 → 𝑇(𝑠) ≅ 1

ò at high frequencies  𝐹 𝑠 ≪ 1 → 𝑇(𝑠) ≅ 𝐹(𝑠)

ω|T(jω)|

ωC

|F(jω)|>>1

|F(jω)|<<1
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Transient performance

ñ Hence

ò the bandwidth  𝐵# of  𝑇(𝑠) is the first frequency such that for all frequencies 
greater than 𝐵# the magnitude is less than −3𝑑𝑏

ò the resonant peak  𝑀$ of  𝑇(𝑠) is the maximum value assumed by the 
magnitude of 𝑇(𝑠)

ñ In order to quantify the bandwidth  𝐵# and resonant peak  𝑀$ of  𝑇(𝑠) we need 
to analyze the behavior of 𝑇(𝑠) in the two decades with center 𝜔%

ñ To this aim, we have introduced the so called Nichols chart that relates the 
magnitude and phase of the open loop function 𝐹(𝑠) to the the magnitude and 
phase of the closed loop function 𝑇(𝑠) 
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Nichols chart
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Bandwidth 𝐵! of 𝑇(𝑠)

ñ In order to quantify the bandwidth 𝐵# of 𝑇(𝑠), let us consider a regularly stable 
open loop function 𝐹(𝑠) on the Nichols chart.

ωC

𝑩𝟑

The distance between 𝝎𝒄 
and 𝑩𝟑 is very small 

𝑇 𝑗0 '( ≅ 0
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Bandwidth 𝐵! of 𝑇(𝑠)

ω
|T(jω)|

ωC

|F(jω)|>>1

|F(jω)|<<1

|T(jω)|

0.1ωC

10ωC

ñ It implies that we can approximate the bandwidth  𝐵#  with the  crossing 
frequency 𝜔%

B3
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Resonant peak𝑀" of 𝑇(𝑠)

ñ Making use of the Nichols charts, the resonant peak  𝑀$ of  𝑇(𝑠) corresponds to 
the magnitude of the smallest of the constant magnitude curves that is the tangent 
to the 𝐹 𝑠  Nichols plot.

ñ The closed loop function has a resonant peak only if the Nichols plot of 𝐹(𝑠) 
intersect the magnitude surface at 0'(

𝑀$ is approximately 6'(
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Resonant peak𝑀" of 𝑇(𝑠)

ñ In order to simplify the evaluation of the resonant peak, it is easy to recognized 
that:

An approximate value of the resonant peak 𝑀$ is given by the value of the 
constant magnitude curve passing through the intersection of the Nichols plot of 
𝐹(𝑠) with the open loop 0'( axis. 
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Resonant peak𝑀" of 𝑇(𝑠)

ñ From the previous approximation we can conclude that

ñ the resonant peak 𝑀$ is strictly related to the phase margin 𝜑) of 𝐹(𝑠)

ñ The closed loop function has a resonant peak only if 𝜑) < 60°

−𝟏𝟐𝟎

𝝋𝒎
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Resonant peak𝑀" of 𝑇(𝑠)

ñ The previous results allows to define to possible approximation 𝑇* 𝑠  of the 
closed loop function depending on the 𝐹(𝑠) phase margin.

CASE 1:       𝝋𝒎 > 𝟔𝟎°

𝑇$ 𝑠 =
1

1 + ⁄𝑠 𝜔% ω|T(jω)|

ωC

|F(jω)|

First order approximation
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Resonant peak𝑀" of 𝑇(𝑠)

ñ The previous results allows to define to possible approximation 𝑇* 𝑠  of the 
closed loop function depending on the 𝐹(𝑠) phase margin.

CASE 2:       𝝋𝒎 < 𝟔𝟎°

𝑇$ 𝑠 =
1

1 + ⁄2𝜁𝑠 𝜔% + ⁄𝑠& 𝜔%& ω|T(jω)|
ωC

|F(jω)|
𝑴𝒑 ≅ ⁄𝟏 𝟐𝜻

where, imposing the equality 𝑇(𝑗𝜔%) = 𝑇*(𝑗𝜔%) , it is possible to prove that

𝜁 ≅
𝜑)
100

Second order approximation
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Damping factor and phase margin

𝑇$ 𝑠 =
1

1 + ⁄2𝜁𝑠 𝜔% + ⁄𝑠& 𝜔%&
ω|T(jω)|

ωC

|F(jω)|
𝑴𝒑 ≅ ⁄𝟏 𝟐𝜻

Second order approximation

𝑇 𝑗𝜔𝑐 =
𝐹 𝑗𝜔𝑐

1 + 𝐹 𝑗𝜔𝑐
=

1
1 + 𝑒#$𝒄

=
1

2𝑠𝑖𝑛 𝜑%
2

|𝑻𝒂 𝑗𝜔 | =
1

1 − 𝜔
'

𝜔('
'
+ 2𝜁𝜔

𝜔(

'
	→ |𝑻𝒂 𝑗𝝎𝒄 | =

 

1
2𝜁  

𝜑# = 180° − |𝜑$|

𝜁= 𝑠𝑖𝑛 𝜑!/2 ≅ ""
#
∗ $
%&'

≅ ""
𝟏𝟎𝟎
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Example: closed loop approximate function 𝑇$(𝑠) 

ñ Let us consider an open loop transfer function F 𝑠 = 0
1 231

𝜔%≅ 2.13 rad/s

𝜑4 ≅ 25°

Second order 
approximation of the 

closed loop system 
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Example: closed loop approximate function 𝑇$(𝑠) 

ñ The second order approximation of the closed loop system is

𝑇* 𝑠 =
1

1 + ⁄2𝜁𝑠 𝜔+ + ⁄𝑠, 𝜔+,

with

Ø 𝜁 ≅ -*
.//

= 0.25

Ø 𝜔+ = 𝜔% = 2.13
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Example: closed loop approximate function 𝑇$(𝑠) 

ñ In order to verify the effectiveness of the second order approximated model 𝑇*(𝑠), 
let us compare the step response of 𝑇 𝑠 and 𝑇* 𝑠 .

Rise	time	and	overshoot	of	
𝑻𝒂 𝒔 𝒂𝒏𝒅 𝑻 𝒔 𝒂𝒓𝒆 𝒗𝒆𝒓𝒚 𝒔𝒊𝒎𝒊𝒍𝒂𝒓


