

Course of "Automatic Control Systems" 2023/24

Control requirements: Transient performance

Prof. Francesco Montefusco

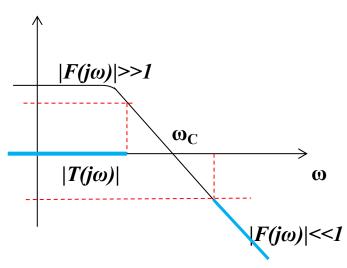
Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: mfs9zfr

Transient performance

- We have introduced two parameters in the frequency domain related to the transient behavior
 - \Rightarrow Bandwidth B_3 of T(s) related to the rise time
 - ightharpoonup Resonant peak M_p of T(s) related to the overshoot
- ▲ We have also assumed to refer to regularly stable open loop functions such that:
 - \Rightarrow at low frequencies $F(s) \gg 1 \rightarrow T(s) \cong 1$
 - \Rightarrow at high frequencies $F(s) \ll 1 \rightarrow T(s) \cong F(s)$



Transient performance

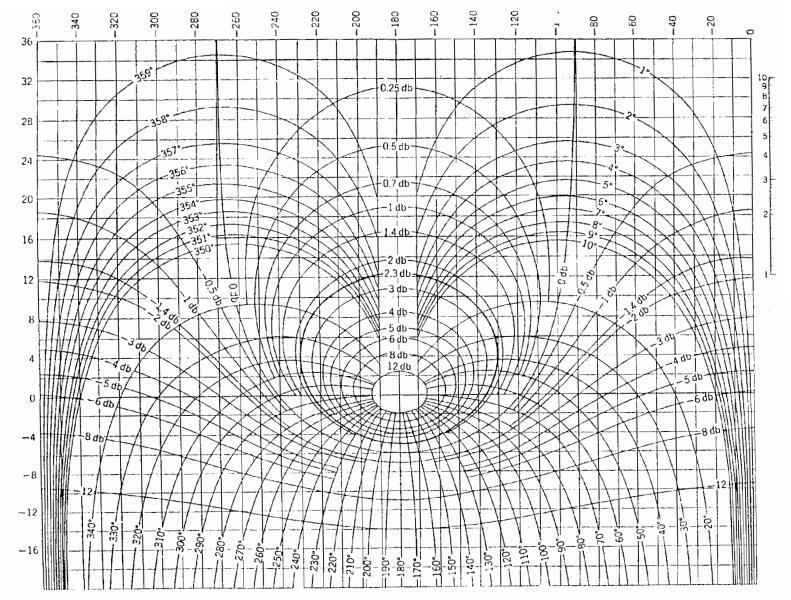
▲ Hence

- \Rightarrow the bandwidth B_3 of T(s) is the first frequency such that for all frequencies greater than B_3 the magnitude is less than -3db
- \Rightarrow the resonant peak M_p of T(s) is the maximum value assumed by the magnitude of T(s)

In order to quantify the bandwidth B_3 and resonant peak M_p of T(s) we need to analyze the behavior of T(s) in the two decades with center ω_c

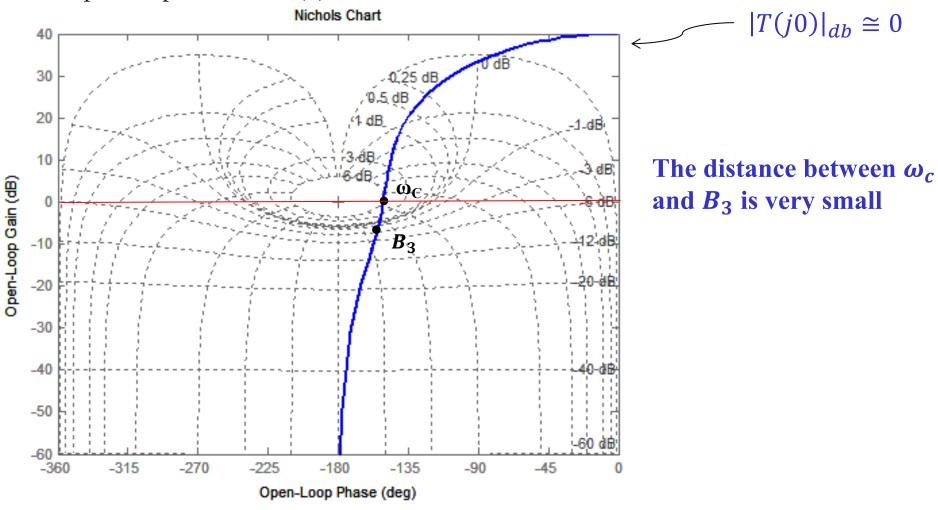
To this aim, we have introduced the so called *Nichols chart* that relates the magnitude and phase of the open loop function F(s) to the the magnitude and phase of the closed loop function T(s)

Nichols chart



Bandwidth B_3 of T(s)

In order to quantify the bandwidth B_3 of T(s), let us consider a regularly stable open loop function F(s) on the Nichols chart.

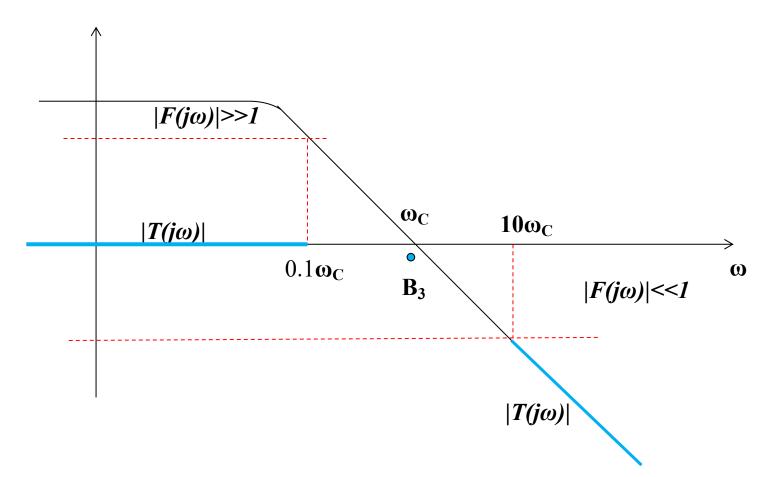


Prof. Francesco Montefusco

Automatic Control Systems 2023/24

Bandwidth B_3 of T(s)

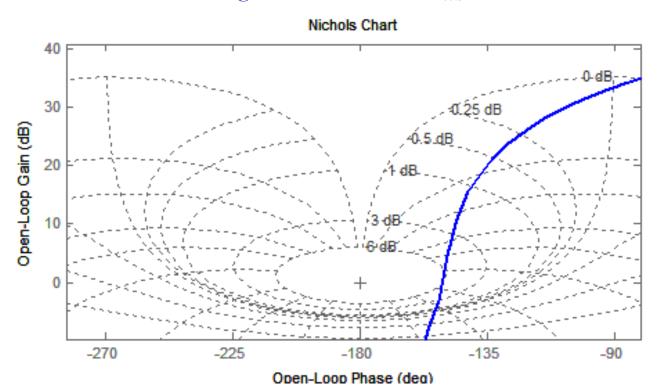
A It implies that we can approximate the bandwidth B_3 with the crossing frequency ω_c



Prof. Francesco Montefusco

Automatic Control Systems 2023/24

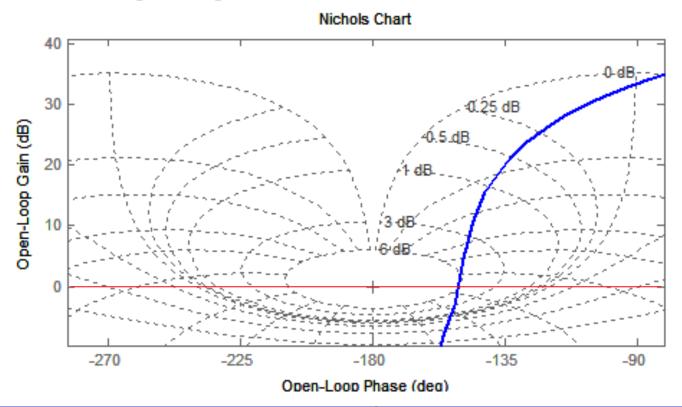
- Making use of the Nichols charts, the resonant peak M_p of T(s) corresponds to the magnitude of the smallest of the constant magnitude curves that is the tangent to the F(s) Nichols plot.
- The closed loop function has a resonant peak only if the Nichols plot of F(s) intersect the magnitude surface at $\mathbf{0}_{db}$



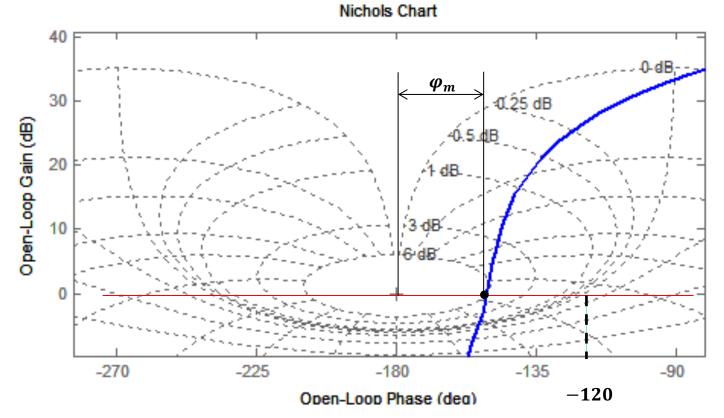
 M_p is approximately 6_{db}

▲ In order to simplify the evaluation of the resonant peak, it is easy to recognized that:

An approximate value of the resonant peak M_p is given by the value of the constant magnitude curve passing through the intersection of the Nichols plot of F(s) with the open loop 0_{db} axis.



- ▲ From the previous approximation we can conclude that
 - \wedge the resonant peak M_p is strictly related to the phase margin φ_m of F(s)
 - $^{\perp}$ The closed loop function has a resonant peak only if $\varphi_m < 60^{\circ}$

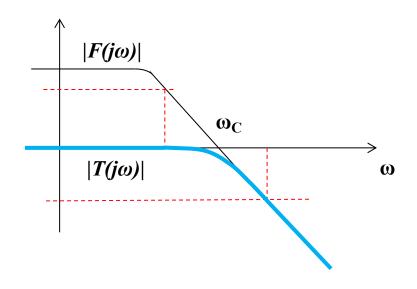


 \wedge The previous results allows to define to possible approximation $T_a(s)$ of the closed loop function depending on the F(s) phase margin.

CASE 1:
$$\varphi_m > 60^\circ$$

$$T_a(s) = \frac{1}{1 + s/\omega_c}$$

First order approximation

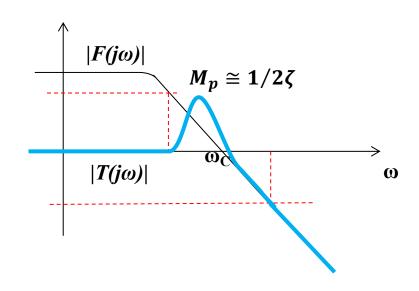


 \wedge The previous results allows to define to possible approximation $T_a(s)$ of the closed loop function depending on the F(s) phase margin.

CASE 2:
$$\varphi_m < 60^\circ$$

$$T_a(s) = \frac{1}{1 + 2\zeta s/\omega_c + s^2/\omega_c^2}$$

Second order approximation



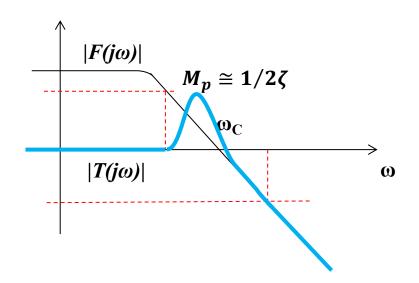
where, imposing the equality $|T(j\omega_c)| = |T_a(j\omega_c)|$, it is possible to prove that

$$\zeta \cong \frac{\varphi_m}{100}$$

Damping factor and phase margin

Second order approximation

$$T_a(s) = \frac{1}{1 + 2\zeta s/\omega_c + s^2/\omega_c^2}$$



$$\varphi_{m} = 180^{\circ} - |\varphi_{c}|$$

$$\left\{ |T(j\omega_{c})| = \frac{|F(j\omega_{c})|}{|1 + F(j\omega_{c})|} = \frac{1}{|1 + e^{j\varphi_{c}}|} = \frac{1}{2\sin\left(\frac{\varphi_{m}}{2}\right)} \right\}$$

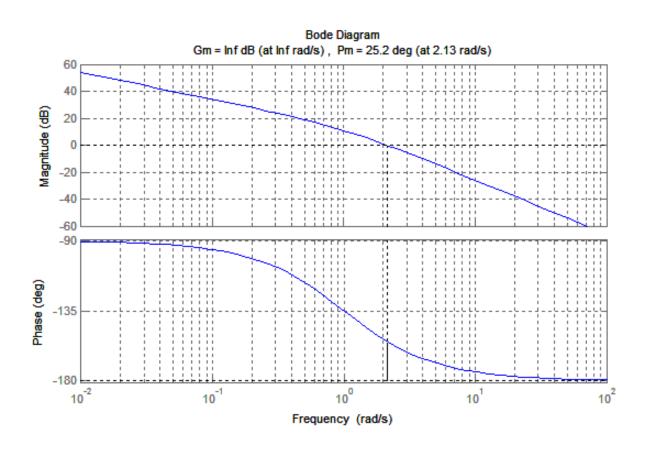
$$\left| |T_{a}(j\omega)| = \frac{1}{\sqrt{\left(1 - \frac{\omega^{2}}{\omega_{c}^{2}}\right)^{2} + \left(\frac{2\zeta\omega}{\omega_{c}}\right)^{2}}} \rightarrow |T_{a}(j\omega_{c})| = \frac{1}{2\zeta}$$

$$\zeta = \sin(\varphi_{m}/2) \cong \frac{\varphi_{m}}{2} * \frac{\pi}{180} \cong \frac{\varphi_{m}}{100}$$

Example: closed loop approximate function $T_a(s)$

▲ Let us consider an open loop transfer function

$$F(s) = \frac{5}{s(1+s)}$$



$$\omega_c \cong 2.13 \ rad/s$$

$$\varphi_m \cong 25^{\circ}$$

Second order approximation of the closed loop system

Example: closed loop approximate function $T_a(s)$

▲ The second order approximation of the closed loop system is

$$T_a(s) = \frac{1}{1 + 2\zeta s/\omega_n + s^2/\omega_n^2}$$

with

$$\succ \zeta \cong \frac{\varphi_m}{100} = 0.25$$

$$\triangleright \ \omega_n = \omega_c = 2.13$$

Example: closed loop approximate function $T_a(s)$

In order to verify the effectiveness of the second order approximated model $T_a(s)$, let us compare the step response of T(s) and $T_a(s)$.

