
First-Order Logic: Inference

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 15

Artificial Intelligence

Inference in First-Order Logic

• Inference algorithms are more complex than in propositional logic, due to quantifiers
and functions

• Basic tools: two inference rules for sentences with quantifiers (Universal and
Existential Instantiation), that derive sentences without quantifiers

• This reduces first-order inference to propositional inference, with complete but semi-
decidable inference procedures:
• algorithms exist that find a proof KB ⊢ 𝛼 in a finite number of steps for every entailed

sentence KB |= 𝛼
• no algorithm is capable to find the proof KB ⊬ 𝛼 in a finite number of steps for every non-

entailed sentence KB ⊭ 𝛼
• Therefore, since one does not know that a sentence is entailed until the proof is

done, when a proof procedure is running one does not know whether it is about to
find proof, or whether it will never find one

Inference in FOL

• Modus Ponens can be generalized to FOL, leading to the first-
order versions of the Forward Chaining and Backward Chaining
algorithms, which are complete and semi-decidable and limited to
Horn clauses

• The Resolution rule can also be generalized to predicate logic,
leading to the first-order version of the complete but semi-
decidable resolution algorithm

Inference: Propositional vs First-Order
• A first approach for inference in FOL is to convert the FOL KB to PL

• Apply propositional inference

• As an example, let’s suppose that the KB contains the axiom that all greedy
kings are evil

• ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x)

• we can infer

• King(John) ∧Greedy(John) ⇒ Evil(John)

• King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)

• King(Father(John)) ∧Greedy(Father(John)) ⇒Evil(Father(John))

• The previous example, suggests that we can apply a general rule for Universal
instantiation (UI)
• Any sentence we get by substituting a ground term, i.e., a term with no variables, for a

universally quantified variable can be inferred

• …

Eliminating Universal Quantifiers

• Let 𝜃 denote a substitution list {v1/t1, . . . , vn/tn}, where:
• v1,...,vn are variable names
• t1, . . . , tn are terms (either constant symbols, variables, or functions

recursively applied to terms)

• Let SUBST(𝜃, 𝛼) denote the sentence obtained by applying the
substitution 𝜃 to the sentence 𝛼
• Example:

• SUBST({y/One}, ∀x, y Eq(S(x), S(y)) ⇒ Eq(x, y))

produces
∀x Eq(S(x), S(One)) ⇒ Eq(x, One)

Universal Instantiation

• The rule is

∀v !
SUBST({v/t },!)

where t can be any ground term, and v any variable

• Since a sentence ∀x 𝛼[x] states that 𝛼 is true for every domain element
in place of x, then one can derive that 𝛼 is true for any given element t

• Example: from ∀x N(x) ⇒ N(S(x)) one can derive
• N(Z) ⇒ N(S(Z)), for 𝜃 = {x/Z}
• N(S(S(Z))) ⇒ N(S(S(S(Z)))), for 𝜃 = {x/S(S(Z))}
• …

Existential Instantiation

• The same approach can be derived for eliminating the existential quantifier

• It is called Existential Instantiation (EI)
∃v 𝛼

SUBST({v /t },𝛼)
where t must be a new constant symbol, called Skolem constant, that does not appear
elsewhere in the KB

• A sentence ∃v 𝛼[v] states that there is some domain element satisfying a condition
• The above rule just gives a name to one such an element, but that name must not belong to another

element

• Example
• ∃x Crown(x) ∧ OnHead(x,John)

• Crown(C1) ∧ OnHead(C1, John), provided that C1 is not in the KB

Existential Instantiation

• UI can be applied several times to add new sentences
• The new KB is logically equivalent to the old one

• EI can be applied once to replace the existential sentence
• The new KB is not logically equivalent to the old one, but it is inferentially

equivalent
• it is satisfiable iff the old KB was satisfiable

Exercise: Existential Instantiation

• Suppose a knowledge base contains just one sentence
• ∃x AsHighAs(x,Everest)

• Which of the following are legitimate results of applying Existential
Instantiation?

a. AsHighAs(Everest, Everest)
b. AsHighAs(Kilimanjaro, Everest)
c. AsHighAs(Kilimanjaro, Everest) ∧ AsHighAs(BenNevis, Everest) (after two applications)

Inference Algorithms and Quantifiers

• First-order inference algorithms usually apply Existential Instantiation as a pre-
processing step
• every existentially quantified sentence is replaced by a single sentence
• Accordingly, the resulting KB contains only sentences without variables and sentences

where all the variables are universally quantified

• Another useful pre-processing step is renaming all the variables in the KB to
avoid name clashes between variables used in different sentences
• For instance, the variables in ∀x P(x) and ∀x Q(x) are not related to each other, and

renaming any of them (say, ∀y Q(y)) produces an equivalent sentence

Reduction to Propositional Inference
• Propositionalization

• Suppose the KB contains just the following sentences and facts
• ∀ x King(x) ∧ Greedy(x) ⇒Evil(x)

• King(John)
• Greedy(John)

• Brother(Richard, John)

• Instantiating the universal sentence in all possible substitutions {x/John}, {x/Richard} (pretending
that John and Richard are the only objects), we have
• King(John) ∧ Greedy(John) ⇒Evil(John)

• King(Richard) ∧ Greedy(Richard) ⇒Evil(Richard)
• King(John)

• Greedy(John)
• Brother(Richard, John)

• Next, replace atomic sentences with proposition symbols
• That is, King(John) with KingJohn

• And apply any of the propositional inference algorithm

Reduction to Propositional Inference

• When the KB includes function symbols, a problem emerges
• there are possibly infinitely ground-term substitutions
• E.g., Father(Father(Father(John)))

• However, a theorem due to Herbrand (1930) states
• If a sentence 𝛼 is entailed by a FOL KB, it is entailed by a finite subset of the

propositional KB

• … and suggests
for n in range(∞)

Create a propositional KB by instantiating with depth-n terms
See if this KB ⊨ 𝛼

• It works if KB ⊨ α, loops otherwise
• That is, entailment in FOL is semidecidable

• No algorithm exists that says no to every non-entailed sentence

Problems with Propositionalization

• Propositionalization could generate lots of irrelevant sentences

• For instance, from
• ∀ x King(x) ∧ Greedy(x) ⇒Evil(x)
• King(John)
• ∀ y Greedy(y)
• Brother(Richard, John)

• it seems obvious that Evil (John), but propositionalization produces lots of irrelevant facts
such as Greedy (Richard)

• With pk-ary predicates and n constants, there are pnk instantiations
• With function symbols, it gets much worse!

Generalized Modus Ponens

• The aim is to use a single rule to reason that {x/John} solves the query Evil(x)

• As an example, given that ∀ x King(x) ∧ Greedy(x) ⇒Evil(x)
• find some x such that x is a king and x is greedy, then this x is evil

• i.e., if there is some substitution 𝜃 that makes the conjuncts of the premise identical to sentences in the KB,
then we can assert the conclusion after applying 𝜃

• {x/John} does the job

• If the KB contains ∀ y Greedy(y) instead of Greedy(John) then we want still be
able to conclude Evil(John), since King(John) and John is greedy (since
everyone is greedy)
• we need to find a substitution for both variables x and y that makes the premises identical

to sentences in the KB
• {x/John, y/John} does the job

Generalized Modus Ponens
• Generalized Modus Ponens (GMP):

• given atomic sentences (non-negated predicates) pi , p’i , i = 1,...,n, and q, and a substitution 𝜃
such that SUBST(𝜃,pi) = SUBST(𝜃, p’i) for all i:

• GMP is sound
• It must be shown that p’1 p’2 … p’n , (p1 ∧ … ∧ pn⇒ q) ⊨ SUBST(𝜃,q),

• provided that SUBST(𝜃,pi) = SUBST(𝜃, p’i) for all i

• Lemma: For any definite clause p, we have p⊨ SUBST(𝜃,p) by UI
1. (p1 ∧ … ∧ pn⇒ q) ⊨ SUBST(𝜃, p1 ∧ … ∧ pn⇒ q) = SUBST(𝜃, p1) ∧ … ∧ SUBST(𝜃, pn) ⇒ SUBST(𝜃,q)

2. p’1 p’2 … p’n⊨ p’1 ∧ p’2 ∧ … ∧ p’n⊨ SUBST(𝜃, p’1) ∧ … ∧ SUBST(𝜃, p’n)
3. From 1 and 2, SUBST(𝜃,q) follows by ordinary Modus Ponens

130

Generalized Modus Ponens

All but the last inference steps in the above example can be seen
as pre-processing steps whose aim is to “prepare” the application
of Modus Ponens. Moreover, some of these steps (Universal
Instantiation using the symbol Richard) are clearly useless to
derive the consequent of implication (1), i.e., Evil(John).

Indeed, the above steps can be combined into a single first-order
inference rule, Generalized Modus Ponens (GMP):
given atomic sentences (non-negated predicates) pi , pÕ

i ,
i = 1, . . . , n, and q, and a substitution ◊ such that
Subst(◊, pi) = Subst(◊, pÕ

i) for all i :

(p1 · p2 · . . . · pn ∆ q), pÕ
1, pÕ

2 . . . , pÕ
n

Subst(◊, q)

Unification

• A widely used tool in first-order inference algorithms is unification, the process of finding a
substitution (if any) that makes two sentences (where at least one contains variables) identical

• For instance, ∀x,y Knows(x,y) and ∀z Knows(John,z) can be unified by different substitutions
• Assuming that Bill is one of the constant symbols, two possible unifiers are:

• {x/John,y/Bill,z/Bill}

• {x/John,y/z}

• Among all possible unifiers, the one of interest for first-order inference algorithms is the most
general unifier, i.e., the one that places the fewest restrictions on the values of the variables
• The only constraint is that every occurrence of a given variable can be replaced by the same term

• In the above example, the most general unifier is {x/John,y/z}, as it does not restrict the value
of y and z

Unification Example

• Consider the sentence ∀x Knows(John,x) (John knows everyone). Assume that the KB
also contains the following sentences (note that different variables names are used in
different sentences):

1. Knows(John,Jane)

2. ∀y Knows(y,Bill)
3. ∀z Knows(z,Mother(z))

4. Knows(Elizabeth,Bill)

• The most general unifier with Knows(John,x) is:
1. {x/Jane}

2. {y/John,x/Bill}
3. {z/John,x/Mother(John)}

4. no unifier exists, as the constant symbols John and Elizabeth in the first argument are different

Exercise: Unification
• For each pair of atomic sentences, give the most general unifier if it

exists:
• P(A, B, B), P(x, y, z)

{x/A, y/B, z/B} (or some permutation of this)

• Q(y, G(A,B)),Q(G(x,x), y)
No unifier (x cannot bind to both A and B)

• Older(Father(y), y),Older(Father(x), John)
{y/John,x/John}

• Knows(Father(y), y),Knows(x, x)
No unifier (because the occurs-check prevents unification of y with Father(y))

Propositionalization vs GMP

• Consider again the domain made up of two individuals denoted with the
constant symbols John and Richard, and the following KB:

1) ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
2) ∀y Greedy(y)
3) King (John)
4) Brother (Richard , John)

• Intuitively, this entails Evil(John), i.e., KB |= Evil(John)

• The corresponding inference KB ⊢ Evil(John) can be obtained by using the
inference rules after propositionalization, as shown in the following

Propositionalization vs GMP

• Applying Universal Instantiation to (1) produces:
5) King(John) ∧ Greedy(John) ⇒ Evil(John), with {x/John}
6) King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard), with {x/Richard}

• Applying Universal Instantiation to (2, i.e., ∀y Greedy(y)) produces:
7) Greedy(John), with {y/John}
8) Greedy(Richard), with {y/Richard}

• Applying And Introduction to (3) and (7) produces:
9) King(John)∧Greedy(John)

• Applying Modus Ponens to (5) and (9) produces:
10) Evil(John)

Propositionalization vs GMP
• All but the last inference steps in the above example can be seen as pre-processing

steps whose aim is to “prepare” the application of Modus Ponens

• Moreover, some of these steps (Universal Instantiation using the symbol Richard) are
clearly useless to derive the consequent of implication (1)
• i.e., Evil(John)

• In the previous example, GMP allows Evil(John) to be derived in a single step
• and avoids unnecessary applications of inference rules like Universal Instantiation to sentences (1)

and (2) with {x/Richard} or {y/Richard}

• GMP can be applied to sentences (1), (2), and (3), with 𝜃 = {x/John, y/John}
1) ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

2) ∀y Greedy(y)
3) King (John)

• this immediately derives Evil(John)

• The key advantage of GMP inference rule over propositionalization is that it makes
only those substitutions that are required to allow inferences to proceed

Horn Clauses in FOL

• GMP allows the Forward Chaining (FC) and Backward Chaining (BC) inference
algorithms to first-order logic
• This in turn requires the concept of Horn clause

• A Horn clause in FOL is an implication 𝛼 ⇒ 𝛽 in which:
• 𝛼 is a conjunction of non-negated predicates
• 𝛽 is a single non-negated predicate
• all variables (if any) are universally quantified, and the quantifier appears at the beginning

of the sentence

• Example: ∀x (P(x) ∧ Q(x)) ⇒ R(x)

• Also, single predicates (possibly negated) are Horn clauses:
• P(t1,...,tn) equivalent to (True ⇒ P(t1,...,tn))
• ¬P(t1, ..., tn) equivalent to (P(t1, ..., tn) ⇒ False)

Exercise: FOL for GMP
• Write down logical representations for the following sentences, suitable for

use with Generalized Modus Ponens:

• Horses, cows, and pigs are mammals

• An offspring of a horse is a horse

• Bluebeard is a horse

• Bluebeard is Charlie’s parent

• Offspring and parent are inverse relations

• Every mammal has a parent

Horse(x) ⇒ Mammal(x) Cow(x) ⇒ Mammal(x) Pig(x) ⇒ Mammal(x)

Offspring(x,y) ∧ Horse(y) ⇒ Horse(x)

Horse(Bluebeard)

Parent(Bluebeard, Charlie)

Offspring(x, y) ⇒ Parent(y, x), Parent(x, y) ⇒ Offspring(y, x)

Mammal(x) ⇒ Parent(G(x), x), G Skolem function

Forward Chaining in FOL

• Forward Chaining (FC) consists of repeatedly applying GMP in all
possible ways, adding to the initial KB all newly derived atomic
sentences until no new sentence can be derived

• FC is normally triggered by the addition of new sentences into the
KB, to derive all their consequences

• For instance, it can be used in the Wumpus game when new
percepts are added to the KB, after each agent’s move

Forward Chaining in FOL

• A simple (but inefficient) implementation of FC
function Forward-chaining (KB)

local variable: new
repeat

new ← ∅ (the empty set)

for each sentence s = (p1 ∧...∧ pn ⇒q)in KB do

for each θ such that Subst(θ, p1 ∧ . . . ∧ pn) =
Subst(θ,p1′ ∧...∧ pn′)for some p1′,...,pn′ ∈ KB do

q′ ← Subst(θ, q)

if q′ ∉ KB and q′ ∉ new then add q′ to new

add new to KB

until new is empty

return KB

Example

• The law says that it is a crime for an American to sell weapons to hostile nations. The
country Nono, an enemy of America, has some missiles, and all of its missiles were
sold to it by Colonel West, who is American
• We aim to derive Criminal(West)

• We need to represent these facts as FOL Horn clauses
• . . . it is a crime for an American to sell weapons to hostile nations”

• American(x)∧Weapon(y)∧Sells(x,y, z)∧Hostile(z) ⇒ Criminal(x)

• “Nono . . . has some missiles.”
• The sentence ∃x Owns(Nono,x) ∧ Missile(x) is transformed into two definite clauses by Existential Instantiation, introducing

a new constant M

• Owns(Nono,M)

• Missile(M)

• “All of its missiles were sold to it by Colonel West”
• Missile(x)∧Owns(Nono,x) ⇒ Sells(West,x,Nono)

Example

• We will also need to know that missiles are weapons:
• Missile(x) ⇒Weapon(x)

• and we must know that an enemy of America counts as “hostile”
• Enemy(x,America) ⇒ Hostile(x)

• “West, who is American . . .”
• American(West)

• “The country Nono, an enemy of America . . .”
• Enemy(Nono, America)

Forward Chaining Example

• Summarizing (the universal quantifiers are not shown to keep the notation
uncluttered)

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Forward Chaining Example

• The FC algorithm carries out two repeat-until loops on the above KB

• No new sentences can be derived after the second loop

• First iteration

• Second iteration

136

Forward Chaining: an example

The FC algorithm carries out two repeat-until loops on the
above KB. No new sentences can be derived after the second loop.

First iteration:
– GMP to (2), (7) and (8), with {x/M}:

Sells(West, Nono, M)
– GMP to (3) and (6), with {x/Nono, y/America}:

(10) Hostile(Nono)
– GMP to (4) and (8), with {x/M}:

(11) Weapon(M)
Second iteration:

– GMP to (1), (5), (10), (11) and (9), with
{x/West, y/Nono, z/M}:
(12) Criminal(West)

136

Forward Chaining: an example

The FC algorithm carries out two repeat-until loops on the
above KB. No new sentences can be derived after the second loop.

First iteration:
– GMP to (2), (7) and (8), with {x/M}:

Sells(West, Nono, M)
– GMP to (3) and (6), with {x/Nono, y/America}:

(10) Hostile(Nono)
– GMP to (4) and (8), with {x/M}:

(11) Weapon(M)
Second iteration:

– GMP to (1), (5), (10), (11) and (9), with
{x/West, y/Nono, z/M}:
(12) Criminal(West)

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

136

Forward Chaining: an example

The FC algorithm carries out two repeat-until loops on the
above KB. No new sentences can be derived after the second loop.

First iteration:
– GMP to (2), (7) and (8), with {x/M}:

Sells(West, Nono, M)
– GMP to (3) and (6), with {x/Nono, y/America}:

(10) Hostile(Nono)
– GMP to (4) and (8), with {x/M}:

(11) Weapon(M)
Second iteration:

– GMP to (1), (5), (10), (11) and (9), with
{x/West, y/Nono, z/M}:
(12) Criminal(West)

Backward Chaining in FOL

• The first-order Backward Chaining (BC) algorithm starts from a
sentence (query) to be proven and recursively applies GMP
backward

• Note that every substitution that is made to unify an atomic
sentence with the consequent of an implication must be
propagated back to every antecedent

• If the consequent of an implication unifies with more than one
atomic sentence, at least one unification must allow the
consequent to be proven

Backward Chaining Example

• A proof by BC can be represented as an And-Or graph

• The following graph (which should be read depth-first, left to right) shows the proof of the
query Criminal(West) using the previous sentences (1)–(8) as the KB

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M)Missile(M1)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M,z)American(West)

{ y/M} {}{}{}

{ z/Nono}{}

{x/West, y/M, z/Nono}

Backward Chaining Example

Criminal(West)

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Backward Chaining Example

Criminal(West)

Weapon(y)American(x) Sells(x,y,z) Hostile(z)

{x/West}

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Backward Chaining Example

Criminal(West)

Weapon(y) Sells(x,y,z) Hostile(z)

{x/West}

{}
American(West)

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Backward Chaining Example

Hostile(Nono)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M1,z)American(West)
{}

Sells(x,y,z) Hostile(z)

{x/West}

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Backward Chaining Example

Hostile(Nono)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M1,z)American(West)
{}

Sells(x,y,z) Hostile(z)

{ y/M}

{x/West, y/M1}

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Backward Chaining Example

Owns(Nono,M)Missile(M)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M,z)American(West)

{y/M}

{ z/Nono}{}
Hostile(z)

{x/West, y/M, z/Nono}

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

Backward Chaining Example

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M)Missile(M1)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M,z)American(West)

{ y/M} {}{}{}

{ z/Nono}{}

{x/West, y/M, z/Nono}

135

Forward Chaining: an example

The sentences in the exercise about Colonel West can be written as Horn
clauses, after applying Existential Instantiation and then And Elimination
to ÷x Missile(x) · Owns(Nono, x) (the predicate Country is omitted for
the sake of simplicity; the universal quantifiers are not shown to keep the
notation uncluttered):

(American(x) · Hostile(y)·
Weapon(z) · Sells(x , y , z)) ∆ Criminal(x) (1)

(Missile(x) · Owns(Nono, x)) ∆ Sells(West, Nono, x) (2)
Enemy(x , America) ∆ Hostile(x) (3)
Missile(x) ∆ Weapon(x) (4)
American(West) (5)
Enemy(Nono, America) (6)
Owns(Nono, M) (7)
Missile(M) (8)

