

Artificial Intelligence

First-Order Logic (Predicate Logic)

LESSON 14

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Using FOL: Assertion and queries

- Let's use FOL in some domains
 - A domain is part of the world about which we want to express some knowledge
- To add an assertion in a KB, the TELL function can be used
 - TELL(KB, King(John))
 - TELL(KB,Person(King))
 - TELL(KB, $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$)
- For queries or goals, the ASK interface can be used
 - ASK(KB, King(John))
 - Any query that is logically entailed by the KB should be answered affirmatively
 - ASK(KB, 3 x Person(x))
 - If we want to know what value x makes the sentence true, we get two possible answers
 - {x/John} and {x/Richard}
 - Substitution or binding list

The kinship domain

- The objects of the domain of family relationships are people
- Examples of facts
 - Elizabeth is the mother of Charles
 - Charles is the father of William
- Rules, e.g.
 - One's grandmother is the mother of one's parent
- Predicates
 - Unary: Female and Male
 - Binary: Parent, Sibling, Brother, Sister, Child, Daughter; Spouse, Cousin, Aunt, Uncle, ...
 - Function: Mother, Father

Axioms in the Kinship Domain

- One's husband is one's male spouse
 - $\forall w, h Husband(h, w) \iff Male(h) \land Spouse(h, w)$
- Parent and child are inverse relations
 - $\forall p, c Parent(p, c) \Leftrightarrow Child(c, p)$
- A grandparent is a parent of one's parent
 - $\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$
- A sibling is another child of one's parent
 - $\forall x, y \ Sibling(x, y) \iff (x \neq y) \land \exists p \ Parent(p, x) \land Parent(p, y)$
- Axioms provide the basic factual information from which useful conclusions can be derived
 - A kind of definitions: $\forall x, y P(x, y) \Leftrightarrow \dots$

Theorems

- Some sentences about a domain are theorems rather than axioms
 - Entailed by axioms
- Example (assertion that siblinghood is symmetric):
 - $\forall x, y \ Sibling(x, y) \iff Sibling(y, x)$
 - a theorem that follows logically from the axiom defining the siblinghood
- Not all axioms are definition
 - Provide more general information about certain predicates without constituting a definition
- Axioms can also be plain facts
 - Male(Jim) and Spouse(Jim, Laura)
- Note that, when the expected answers are not forthcoming, this is a sign that an axiom is missing
 - From Spouse(Jim, Laura) one expects to infer ¬Spouse(George, Laura) but this does not occur

The Wumpus World

- The Wumpus agent receives a percept vector with five elements
- The corresponding sentence stored in the KB must include both the percept and the time it occurred
 - The agent should know when it sees what
 - Percept([Stench, Breeze, Glitter, None, None], 5)
 - Percept is a binary predicate
 - Stench, Breeze ... are constant
- Actions can be represented by logical terms
 - Turn(Right), Turn (Left), Forward, Shoot, Grab, Climb
- To determine which is the best the agent can ask
 - ASK(KB, BestAction(a,5)) which returns a binding list such as {a/Grab}

KB for the Wumpus World

- The raw percept data implies certain facts about the current state
 - ∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)
 - ∀ s, b, t Percept([s, b, Glitter], t) ⇒ Glitter(t)
 - ∀ s, g, w, c, t Percept([s, Breeze, g, w, c], t) ⇒ Breeze(t)
- A simple reflex behavior can be expressed by quantified implication sentences, e.g.
 - ∀ t Glitter(t) ⇒ BestAction(Grab, t)

The Wumpus World: Environment

- Objects
 - Squares, pits, wumpus
 - For squares , we can use the list term $\left[x,y\right]$
- The adjacency of any two squares can be defined as
 - $\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow$

 $(x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))$

- We use a predicate Pit that is true for squares containing pits
- There is only one wumpus, so a constant Wumpus is enough
- The agent's location changes over time
 - At(Agent, s, t)
- The Wumpus is fixed to a specific location forever
 - $\forall t At(Wumpus, [1,3], t)$
- An object can be at only one location at a time
 - $\forall x, s_1, s_2, t At(x, s_1, t) \land At(x, s_2, t) \Rightarrow s_1 = s_2$

Deciding Hidden Properties

- Given the current location and the properties of its current percept, the agent infers the properties of the square
 - $\forall s, t At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$
 - No time with Breezy
- The agent infers the cause from the effect
 - $\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \land \operatorname{Adjacent}(x, y)$
- ... and the effect from the cause
 - $\forall x, y Pit(x) \land Adjacent(x,y) \Rightarrow Breezy(y)$
- If the agent discovered which places are breezy (or smelly) and, not breezy (or not smelly), it can deduce where the pits are (and where the Wumpus is)
 - $\forall s \textit{ Breezy}(s) \Leftrightarrow \exists r \textit{ Adjacent}(r,s) \land \textit{Pit}(r)$

Exercise 1

- Write out the axioms required for reasoning about the Wumpus's location, using a constant symbol Wumpus and a binary predicate At (Wumpus, Location)
 - Remember that there is only one Wumpus

Solution to Exercise 1

- $\forall s_1 \text{ Smelly}(s_1) \Leftrightarrow \exists s_2 \text{ Adjacent}(s_1, s_2) \land \text{ At}(\text{Wumpus}, s_2)$
- $\exists s_1 At(Wumpus, s_1) \land \forall s_2 (s_1 \neq s_2) \Rightarrow \neg At(Wumpus, s_2)$

Exercise 2

- Arithmetic assertions can be written in first-order logic with the predicate symbol <, the function symbols + and ×, and the constant symbols 0 and 1
- Additional predicates can also be defined with biconditionals
 - 1. Represent the property "x is an even number."
 - 2. Represent the property "x is prime."
 - 3. Goldbach's conjecture is the conjecture (unproven as yet) that "every even number is equal to the sum of two primes"
 - Represent this conjecture as a logical sentence

Solutions to the Exercise 2

- "x is an even number."
 - $\forall x Even(x) \Leftrightarrow \exists y x=y+y$
- "x is prime."
 - $\forall x \text{ Prime}(x) \Leftrightarrow \forall y, z \ x=y \times z \Rightarrow y=1 \lor z=1$
- "every even number is equal to the sum of two primes."
 - $\forall x \text{ Even}(x) \Rightarrow \exists y, z \text{ Prime}(y) \land \text{ Prime}(z) \land x=y+z$

Exercise 3

Assuming predicates *Parent(p,q)* and *Female(p)* and constants Joan and Kevin, with the obvious meanings, express each of the following sentences in first-order logic

- You may use the abbreviation \exists^1 to mean "there exists exactly one."
- 1. Joan has a daughter (possibly more than one, and possibly sons as well)
- 2. Joan has exactly one daughter (but may have sons as well).
- 3. Joan has exactly one child, a daughter
- 4. Joan and Kevin have exactly one child together
- 5. Joan has at least one child with Kevin, and no children with anyone else

Solutions to Exercise 3

- Joan has a daughter (possibly more than one, and possibly sons as well)
 - ∃x Parent(Joan,x) ∧ Female(x)
- Joan has exactly one daughter (but may have sons as well)
 - ∃¹x Parent(Joan,x) ∧ Female(x)
- Joan has exactly one child, a daughter
 - $\exists x \operatorname{Parent}(\operatorname{Joan}, x) \land \operatorname{Female}(x) \land [\forall y \operatorname{Parent}(\operatorname{Joan}, y) \Rightarrow y=x]$
- Joan and Kevin have exactly one child together
 - ∃¹c Parent(Joan,c) ∧ Parent(Kevin,c)
- Joan has at least one child with Kevin, and no children with anyone else
 - ∃c Parent(Joan,c) ∧ Parent(Kevin,c) ∧ ∀d,p [Parent(Joan,d) ∧ Parent(p,d)] ⇒ [p=Joan ∨ p=Kevin]

Knowledge Engineering

- Knowledge engineering is the process of constructing the KB
 - It consists of investigating a specific domain, identifying the relevant concepts (knowledge acquisition), and formally representing them

• This requires the interaction between

- a domain expert (DE)
- a knowledge engineer (KE), who is an expert in knowledge representation and inference, but usually not in the domain of interest
- A possible approach, suitable for special-purpose KBs (in predicate logic), is the following

Knowledge Engineering

1. Identify the task:

- what range of queries will the KB support?
- what kind of facts will be available for each problem instance?
- 2. Knowledge acquisition: eliciting from the domain expert the general knowledge about the domain (e.g., the rules of chess)
- 3. Choice of a vocabulary: what concepts must be represented as objects, predicates, or functions?
 - The result is the domain's ontology, which affects the complexity of the representation and the inferences that can be made
 - E.g., in the wumpus game, pits can be represented as objects or unary predicates on squares

Knowledge Engineering

- 4. Encoding the domain's general knowledge acquired in step 2 (this may require revising the vocabulary of step 3)
 - Axioms for all the vocabulary terms
- 5. Encoding a specific problem instance (e.g., a specific chess game)
 - Simple atomic sentences about instances of concepts from the ontology
- 6. Posing queries to the inference procedure and getting answers
 - Inference procedure applied to axioms and facts to derive new facts one is interested in
- 7. Debugging the KB, based on the results of step 6
 - Answers seldom correct on the first try, that is, if an axiom is missing some query won't be answerable from the KB

- The electronic circuits domain
 - 1. Identify the questions
 - Does the circuit in Figure 8.6 actually add properly?
 - If all the inputs are high, what is the output of gate A2?
 - Questions about the circuit's structure are also interesting
 - For example, what are all the gates connected to the first input terminal?
 - Does the circuit contain feedback loops?

Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

2. Assemble the relevant knowledge

- Circuits composed of wires and gates
- Signals flow along wires to the input terminals of gates
- Each gate produces a signal on the output terminal that flows along another wire
- There are four types of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one

3. Decide on a vocabulary

- Choose functions, predicates, and constants to represent gates, terminals, signals, and circuits
- Each gate is represented as an object named by a constant, about which we assert that it is a gate with
 - Gate(X1)
 - The behavior of a gate is determined by its type: constants AND, OR, XOR, NOT
 - A gate has one type; we use a function Type(X1)=XOR
- Circuit(C1)
- Terminal(x)
- A circuit has n>=1 input terminals and m>=1 output terminals
 - In(1, X1) the first input terminal of X1
 - Out(n, c) is for output terminals
- The predicate Arity(c, i, j) means circuit c has i input and j output terminals
- Connected is a predicate for the connectivity between gates
 - Connected(Out(1,X1), In(1,X2))
- Signal(t) is a function denoting the signal value for the terminal t
 - We also introduce two objects for the signal value 0 (off) and 1 (on)

PARTHENOPE

4. Encode general knowledge of the domain

- One sign for a good ontology is that we require only a few general rules clearly and concisely stated
- Example:
 - If two terminals are connected, then they have the same signal:
 - $\forall t_1, t_2 \text{ Terminal}(t_1) \land \text{Terminal}(t_2) \land \text{Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1)=\text{Signal}(t_2)$
 - The signal at every terminal is either 1 or 0
 - \forall t Terminal(t) \Rightarrow Signal(t) = 1 \lor Signal(t) = 0
 - Connected is commutative
 - $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Leftrightarrow \text{Connected}(t_2, t_1)$
 - There are four types of gates
 - \forall g Gate(g) \land k=Type(g) \Rightarrow k = AND v k = OR v k = XOR v k = NOT
 - A NOT gate's output is different from its input
 - \forall g Gate(g) \land Type(g) = NOT \Rightarrow Signal(Out(1,g)) \neq Signal(In(1,g))
 - An XOR gate's output is 1 iff its inputs are different
 - \forall g Gate(g) \land Type(g) = XOR \Rightarrow Signal(Out(1,g)) = 1 \Leftrightarrow Signal(In(1,g)) \neq Signal(In(2,g))

5. Encode the specific problem instance

- Categorize the circuit and its component gates
- Circuit(C₁) ∧ Arity(C₁, 3, 2)
- ...
- Show the connections:
 - Connected(Out(1,X1), In(1,X2))
 - ...
 - Connected(In(1,C1); In(1,X1))
 - ...

6. Pose queries to the inference procedure

• What combinations of inputs would cause the first output of C1 (the sum bit) to be 0 and the second output (the carry bit) to be 1?

 $\exists i_1, i_2, i_3 Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3 \land Signal(Out(1, C_1)) = 0 \land Signal(Out(2, C_1)) = 1$

- ASK will return the substitutions that give the sentence entailed by the KB
 - $\bullet \quad \{i_1/1,\,i_2/1,\,i_3/0\},\,\{i_1/1,\,l_2/0,\,i_3/1\},\,\{i_1/0,\,i_2/1,\,i_3/1\}$
- What are the possible sets of values of all the terminals for the adder circuit? $\exists i_1, i_2, i_3, o_1, o_2 Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3 \land Signal(Out(1, C_1)) = o_1 \land Signal(Out(2, C_1)) = o_2$
- This final query will return a complete input-output table for the device to check that it adds its input correctly

7. Debug the knowledge base

- We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors emerge
- Example if no assertion $1 \neq 0$
- Suppose that the system is unable to prove any outputs for the circuits, except for the input cases 000 and 110
- We can try to identify the problem by asking for the output of each gate, for instance
 - $\exists i_1, i_2, o Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(Out(1, X_1)) = o$
 - It reveals that no outputs are known at X1 for the input cases 10 and 01
 - Then, looking at axiom for XOR gates, as applied to X1:
 - $Signal(Out(1, X_1)) = 1 \iff Signal(In(1, X_1)) \neq Signal(In(2, X_1))$
 - If the inputs are known to be 1 and 0, for instance, then this reduces to
 - $Signal(Out(1, X_1)) = 1 \Leftrightarrow 1 \neq 0,$
 - the system is unable to infer that $Signal(Out(1, X_1)) = 1$ We need to tell it that $1 \neq 0$

