
First-Order Logic (Predicate Logic)

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 14

Artificial Intelligence



Using FOL: Assertion and queries

• Let’s use FOL in some domains
• A domain is part of the world about which we want to express some knowledge

• To add an assertion in a KB, the TELL function can be used
• TELL(KB, King(John))
• TELL(KB,Person(King))
• TELL(KB, ∀x King(x) ⇒ Person(x))

• For queries or goals, the ASK interface can be used
• ASK(KB, King(John))

• Any query that is logically entailed by the KB should be answered affirmatively

• ASK(KB, ∃ x Person(x))
• If we want to know what value x makes the sentence true, we get two possible answers

• {x/John} and {x/Richard} 

• Substitution or binding list



The kinship domain

• The objects of the domain of family relationships are people

• Examples of facts
• Elizabeth is the mother of Charles
• Charles is the father of William

• Rules, e.g.
• One’s grandmother is the mother of one’s parent

• Predicates
• Unary: Female and Male
• Binary: Parent, Sibling, Brother, Sister, Child, Daughter; Spouse, Cousin, Aunt, Uncle, …
• Function: Mother, Father



Axioms in the Kinship Domain

• One’s husband is one’s male spouse
• ∀ 𝑤, ℎ 𝐻𝑢𝑠𝑏𝑎𝑛𝑑 ℎ, 𝑤 ⟺ 𝑀𝑎𝑙𝑒 ℎ ∧ 𝑆𝑝𝑜𝑢𝑠𝑒 ℎ, 𝑤

• Parent and child are inverse relations
• ∀ 𝑝, 𝑐 𝑃𝑎𝑟𝑒𝑛𝑡 𝑝, 𝑐 ⟺ 𝐶ℎ𝑖𝑙𝑑(𝑐, 𝑝)

• A grandparent is a parent of one’s parent
• ∀ 𝑔, 𝑐 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 𝑔, 𝑐 ⟺ ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡 𝑔, 𝑝 ∧ 𝑃𝑎𝑟𝑒𝑛𝑡 𝑝, 𝑐

• A sibling is another child of one’s parent
• ∀𝑥, 𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔 𝑥, 𝑦 ⟺ (𝑥 ≠ 𝑦) ∧ ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡 𝑝, 𝑥 ∧ 𝑃𝑎𝑟𝑒𝑛𝑡 𝑝, 𝑦

• Axioms provide the basic factual information from which useful conclusions 
can be derived
• A kind of definitions: ∀𝑥, 𝑦 𝑃 𝑥, 𝑦 ⟺…



Theorems

• Some sentences about a domain are theorems rather than axioms
• Entailed by axioms

• Example (assertion that siblinghood is symmetric):
• ∀𝑥, 𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔 𝑥, 𝑦 ⟺ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔 𝑦, 𝑥

• a theorem that follows logically from the axiom defining the siblinghood

• Not all axioms are definition
• Provide more general information about certain predicates without constituting a definition

• Axioms can also be plain facts
• Male(Jim) and Spouse(Jim, Laura)

• Note that, when the expected answers are not forthcoming, this is a sign that an 
axiom is missing
• From Spouse(Jim, Laura) one expects to infer    Spouse(George, Laura) but this does not occur¬



The Wumpus World

• The Wumpus agent receives a percept vector with five elements

• The corresponding sentence stored in the KB must include both the percept and the 
time it occurred
• The agent should know when it sees what
• Percept([Stench, Breeze, Glitter, None, None], 5)

• Percept is a binary predicate
• Stench, Breeze … are constant

• Actions can be represented by logical terms
• Turn(Right), Turn (Left), Forward, Shoot, Grab, Climb

• To determine which is the best the agent can ask
• ASK(KB, BestAction(a,5)) which returns a binding list such as {a/Grab}



KB for the Wumpus World

• The raw percept data implies certain facts about the current state
• ∀ b, g, t  Percept([Smell, b, g], t) ⇒ Smelt(t)
• ∀ s, b, t  Percept([s, b, Glitter], t) ⇒ Glitter(t)
• ∀ s, g, w, c, t Percept([s, Breeze, g, w, c], t) ⇒ Breeze(t)
• A simple reflex behavior can be expressed by quantified implication             
sentences, e.g.
• ∀ t Glitter(t) ⇒ BestAction(Grab, t)



The Wumpus World: Environment
• Objects

• Squares, pits, wumpus
• For squares , we can use the list term [x,y]

• The adjacency of any two squares can be defined as
• ∀ 𝑥, 𝑦, 𝑎, 𝑏 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 , 𝑎, 𝑏 ⟺

𝑥 = 𝑎 ∧ 𝑦 = 𝑏 − 1 ∨ 𝑦 = 𝑏 + 1 ∨ (𝑦 = 𝑏⋀ 𝑥 = 𝑎 − 1 ∨ 𝑥 = 𝑎 + 1 )

• We use a predicate Pit that is true for squares containing pits

• There is only one wumpus, so a constant Wumpus is enough

• The agent’s location changes over time
• At(Agent, s, t)

• The Wumpus is fixed to a specific location forever
• ∀ 𝑡 𝐴𝑡 𝑊𝑢𝑚𝑝𝑢𝑠, 1,3 , 𝑡

• An object can be at only one location at a time
• ∀ 𝑥, 𝑠1, 𝑠2, 𝑡 𝐴𝑡(x, s1, t) ∧ 𝐴𝑡(x, s2, t) ⇒ s1 = s2



Deciding Hidden Properties

• Given the current location and the properties of its current percept, the agent 
infers the properties of the square
• ∀ 𝑠, 𝑡 𝐴𝑡(Agent, s, t) ∧ 𝐵𝑟𝑒𝑒𝑧𝑒(t) ⇒ Breezy(s)

• No time with Breezy

• The agent infers the cause from the effect
• ∀	y	Breezy(y) ⇒ ∃	x	Pit(x) ∧	Adjacent(x,	y)

• … and the effect from the cause
• ∀ 𝑥, 𝑦 𝑃𝑖𝑡 𝑥 ∧	Adjacent(x,y)	⇒ Breezy(y)

• If the agent discovered which places are breezy (or smelly) and, not breezy (or 
not smelly), it can deduce where the pits are (and where the Wumpus is)
• ∀ 𝑠 Breezy(s)	⟺ ∃r Adjacent(r,s)	∧ Pit(r)



Exercise 1

• Write out the axioms required for reasoning about the Wumpus’s 
location, using a constant symbol Wumpus and a binary predicate 
At (Wumpus , Location )
• Remember that there is only one Wumpus



Solution to Exercise 1

• ∀s1 Smelly(s1) ⇔ ∃s2 Adjacent(s1,s2) ∧ At(Wumpus,s2) 

• ∃s1 At(Wumpus,s1) ∧ ∀s2 (s1 ≠ s2) ⇒ ¬At(Wumpus,s2)



Exercise 2

• Arithmetic assertions can be written in first-order logic with the 
predicate symbol <, the function symbols + and ×, and the 
constant symbols 0 and 1

• Additional predicates can also be defined with biconditionals
1. Represent the property “x is an even number.” 
2. Represent the property “x is prime.” 
3. Goldbach’s conjecture is the conjecture (unproven as yet) that "every 

even number is equal to the sum of two primes”
• Represent this conjecture as a logical sentence



Solutions to the Exercise 2

• “x is an even number.”
• ∀x Even(x) ⇔ ∃y x=y+y

• “x is prime.”
• ∀x Prime(x) ⇔ ∀y,z x=y×z ⇒ y=1 ∨ z=1

• “every even number is equal to the sum of two primes.”
• ∀x Even(x) ⇒ ∃y,z Prime(y) ∧ Prime(z) ∧ x=y+z



Exercise 3

Assuming predicates Parent(p,q) and Female(p) and constants Joan
and Kevin, with the obvious meanings, express each of the following 
sentences in first-order logic

• You may use the abbreviation ∃1 to mean “there exists exactly one.”

1. Joan has a daughter (possibly more than one, and possibly sons as well) 
2. Joan has exactly one daughter (but may have sons as well). 
3. Joan has exactly one child, a daughter
4. Joan and Kevin have exactly one child together
5. Joan has at least one child with Kevin, and no children with anyone else



Solutions to Exercise 3

• Joan has a daughter (possibly more than one, and possibly sons as well) 
• ∃x Parent(Joan,x) ∧ Female(x)

• Joan has exactly one daughter (but may have sons as well)
• ∃1x Parent(Joan,x) ∧ Female(x)

• Joan has exactly one child, a daughter
• ∃x Parent(Joan,x) ∧ Female(x) ∧ [∀y Parent(Joan,y) ⇒ y=x]

• Joan and Kevin have exactly one child together
• ∃1c Parent(Joan,c) ∧ Parent(Kevin,c)

• Joan has at least one child with Kevin, and no children with anyone else 
• ∃c Parent(Joan,c) ∧ Parent(Kevin,c) ∧ ∀d,p [Parent(Joan,d) ∧ Parent(p,d)] ⇒ [p=Joan ∨ p=Kevin] 



Knowledge Engineering

• Knowledge engineering is the process of constructing the KB
• It consists of investigating a specific domain, identifying the relevant concepts 

(knowledge acquisition), and formally representing them

• This requires the interaction between 
• a domain expert (DE) 
• a knowledge engineer (KE), who is an expert in knowledge representation and 

inference, but usually not in the domain of interest 

• A possible approach, suitable for special-purpose KBs (in predicate 
logic), is the following



Knowledge Engineering

1. Identify the task:
• what range of queries will the KB support? 
• what kind of facts will be available for each problem instance? 

2. Knowledge acquisition: eliciting from the domain expert the general 
knowledge about the domain (e.g., the rules of chess) 

3. Choice of a vocabulary: what concepts must be represented as objects, 
predicates, or functions?
• The result is the domain’s ontology, which affects the complexity of the representation 

and the inferences that can be made
• E.g., in the wumpus game, pits can be represented as objects or unary predicates on squares



Knowledge Engineering

4. Encoding the domain’s general knowledge acquired in step 2 (this may 
require revising the vocabulary of step 3)
• Axioms for all the vocabulary terms

5. Encoding a specific problem instance (e.g., a specific chess game) 
• Simple atomic sentences about instances of concepts from the ontology

6. Posing queries to the inference procedure and getting answers
• Inference procedure applied to axioms and facts to derive new facts one is interested in

7. Debugging the KB, based on the results of step 6
• Answers seldom correct on the first try, that is, if an axiom is missing some query won’t be 

answerable from the KB 



Knowledge Engineering in FOL
• The electronic circuits domain

1. Identify the questions
• Does the circuit in Figure 8.6 actually add properly? 
• If all the inputs are high, what is the output of gate A2? 
• Questions about the circuit’s structure are also interesting

• For example, what are all the gates connected to the first input terminal? 
• Does the circuit contain feedback loops?



Knowledge Engineering in FOL

2. Assemble the relevant knowledge
• Circuits composed of wires and gates

• Signals flow along wires to the input terminals of gates
• Each gate produces a signal on the output terminal that flows along another wire

• There are four types of gates: AND, OR, and XOR gates have two input terminals, and NOT gates 
have one



Knowledge Engineering in FOL

3. Decide on a vocabulary
• Choose functions, predicates, and constants to represent gates, terminals, signals, and circuits
• Each gate is represented as an object named by a constant, about which we assert that it is a gate 

with
• Gate(X1)
• The behavior of a gate is determined by its type: constants AND, OR, XOR, NOT
• A gate has one type; we use a function Type(X1)=XOR

• Circuit(C1)
• Terminal(x)
• A circuit has n>=1 input terminals and m>=1 output terminals

• In(1, X1) the first input terminal of X1 
• Out(n, c) is for output terminals

• The predicate Arity(c, i, j) means circuit c has i input and j output terminals
• Connected is a predicate for the connectivity between gates

• Connected(Out(1,X1), In(1,X2))

• Signal(t) is a function denoting the signal value for the terminal t
• We also introduce two objects for the signal value 0 (off) and 1 (on)



Knowledge Engineering in FOL
4. Encode general knowledge of the domain

• One sign for a good ontology is that we require only a few general rules clearly and 
concisely stated

• Example:
• If two terminals are connected, then they have the same signal:

• ∀ t1, t2 Terminal(t1) ∧ Terminal(t2) ∧ Connected(t1, t2) ⇒ Signal(t1)=Signal(t2)

• The signal at every terminal is either 1 or 0
• ∀ t Terminal(t) ⇒ Signal(t) = 1 ∨ Signal(t) = 0

• Connected is commutative
• ∀ t1, t2 Connected(t1, t2) ⟺ Connected(t2, t1) 

• There are four types of gates
• ∀ g Gate(g) ∧ k=Type(g) ⇒ k = AND ∨ k = OR ∨ k = XOR ∨ k = NOT 

• A NOT gate’s output is different from its input
• ∀ g Gate(g) ∧ Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

• An XOR gate’s output is 1 iff its inputs are different
• ∀ g Gate(g) ∧ Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⟺ Signal(In(1,g)) ≠ Signal(In(2,g)) 



Knowledge Engineering in FOL

5. Encode the specific problem instance
• Categorize the circuit and its component gates 
• Circuit(C1) ∧ Arity(C1, 3, 2)
• …
• Show the connections:

• Connected(Out(1,X1), In(1,X2))  
• …
• Connected(In(1,C1); In(1,X1))
• …



Knowledge Engineering in FOL
6. Pose queries to the inference procedure

• What combinations of inputs would cause the first output of C1 (the sum bit) to be 0 and the second output 
(the carry bit) to be 1?

∃𝑖1, 𝑖2, 𝑖3 𝑆𝑖𝑔𝑛𝑎𝑙(𝐼𝑛 1, 𝐶1 ) = 𝑖1 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 2, 𝐶1 = 𝑖2 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 3, 𝐶1 = 𝑖3 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 1, 𝐶1 = 0 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 2, 𝐶1 = 1
• ASK will return the substitutions that give the sentence entailed by the KB

• {i1/1, i2/1, i3/0}, {i1/1, I2/0, i3/1}, {i1/0, i2/1, i3/1}

• What are the possible sets of values of all the terminals for the adder circuit?
∃𝑖1, 𝑖2, 𝑖3, 𝑜1, 𝑜2 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 1, 𝐶1 = 𝑖1 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 2, 𝐶1 = 𝑖2 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 3, 𝐶1 = 𝑖3 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 1, 𝐶1 = 𝑜1
∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 2, 𝐶1 = o2
• This final query will return a complete input–output table for the device to check that it adds its input correctly



Knowledge Engineering in FOL

7. Debug the knowledge base
• We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors emerge

• Example if no assertion 1 ≠ 0 
• Suppose that the system is unable to prove any outputs for the circuits, except for the input cases 000 and 110

• We can try to identify the problem by asking for the output of each gate, for instance

• ∃𝑖1, 𝑖2, 𝑜 𝑆𝑖𝑔𝑛𝑎𝑙(𝐼𝑛 1, 𝐶1 ) = 𝑖1 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 2, 𝐶1 = 𝑖2 ∧ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 1, 𝑋1 = 𝑜
• It reveals that no outputs are known at X1 for the input cases 10 and 01
• Then, looking at axiom for XOR gates, as applied to X1:

• 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 1, 𝑋1 = 1⟺ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 1, 𝑋1 ≠ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛 2, 𝑋1
• If the inputs are known to be 1 and 0, for instance, then this reduces to

• 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 1, 𝑋1 = 1⟺ 1 ≠ 0, 

• the system is unable to infer that 𝑆𝑖𝑔𝑛𝑎𝑙 𝑂𝑢𝑡 1, 𝑋1 = 1
We need to tell it that 1 ≠ 0 


