Artificial Intelligence

First-Order Logic (Predicate Logic)

LESSON 14

Using FOL: Assertion and queries

- Let's use FOL in some domains
- A domain is part of the world about which we want to express some knowledge
- To add an assertion in a KB, the TELL function can be used
- TELL(KB, King(John))
- TELL(KB,Person(King))
- TELL(KB, $\forall x \operatorname{King}(x) \Rightarrow$ Person $(x))$
- For queries or goals, the ASK interface can be used
- ASK(KB, King(John))
- Any query that is logically entailed by the KB should be answered affirmatively
- ASK(KB, $\exists \times$ Person $(x))$
- If we want to know what value x makes the sentence true, we get two possible answers
- $\{x / J o h n\}$ and $\{x /$ Richard $\}$
- Substitution or binding list

The kinship domain

- The objects of the domain of family relationships are people
- Examples of facts
- Elizabeth is the mother of Charles
- Charles is the father of William
- Rules, e.g.
- One's grandmother is the mother of one's parent
- Predicates
- Unary: Female and Male
- Binary: Parent, Sibling, Brother, Sister, Child, Daughter; Spouse, Cousin, Aunt, Uncle, ...
- Function: Mother, Father

Axioms in the Kinship Domain

- One's husband is one's male spouse
- $\forall w, h$ Husband $(h, w) \Leftrightarrow \operatorname{Male}(h) \wedge \operatorname{Spouse}(h, w)$
- Parent and child are inverse relations
- $\forall p, c \operatorname{Parent}(p, c) \Leftrightarrow \operatorname{Child}(c, p)$
- A grandparent is a parent of one's parent
- $\forall g, c \operatorname{Grandparent}(g, c) \Leftrightarrow \exists p \operatorname{Parent}(g, p) \wedge \operatorname{Parent}(p, c)$
- A sibling is another child of one's parent
- $\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow(x \neq y) \wedge \exists p \operatorname{Parent}(p, x) \wedge \operatorname{Parent}(p, y)$
- Axioms provide the basic factual information from which useful conclusions can be derived
- A kind of definitions: $\forall x, y P(x, y) \Leftrightarrow \ldots$

Theorems

- Some sentences about a domain are theorems rather than axioms
- Entailed by axioms
- Example (assertion that siblinghood is symmetric):
- $\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$
- a theorem that follows logically from the axiom defining the siblinghood
- Not all axioms are definition
- Provide more general information about certain predicates without constituting a definition
- Axioms can also be plain facts
- Male(Jim) and Spouse(Jim, Laura)
- Note that, when the expected answers are not forthcoming, this is a sign that an axiom is missing
- From Spouse(Jim, Laura) one expects to infer \neg Spouse(George, Laura) but this does not occur

The Wumpus World

- The Wumpus agent receives a percept vector with five elements
- The corresponding sentence stored in the KB must include both the percept and the time it occurred
- The agent should know when it sees what
- Percept([Stench, Breeze, Glitter, None, None], 5)
- Percept is a binary predicate
- Stench, Breeze ... are constant
- Actions can be represented by logical terms
- Turn(Right), Turn (Left), Forward, Shoot, Grab, Climb
- To determine which is the best the agent can ask
- ASK(KB, BestAction(a,5)) which returns a binding list such as \{a/Grab\}

KB for the Wumpus World

- The raw percept data implies certain facts about the current state
- $\forall \mathrm{b}, \mathrm{g}, \mathrm{t} \operatorname{Percept([Smell,~b,~g],~t)~} \Rightarrow$ Smelt(t)
- $\forall \mathrm{s}, \mathrm{b}, \mathrm{t}$ Percept([s, b, Glitter], t) \Rightarrow Glitter (t)
- $\forall s, g, w, c, t$ Percept([s, Breeze, g, w, c], t) \Rightarrow Breeze(t)
- A simple reflex behavior can be expressed by quantified implication sentences, e.g.
- \forall t Glitter(t) \Rightarrow BestAction(Grab, t)

The Wumpus World: Environment

- Objects
- Squares, pits, wumpus
- For squares, we can use the list term $[x, y]$
- The adjacency of any two squares can be defined as
- $\forall x, y, a, b \operatorname{Adjacent}([x, y],[a, b]) \Leftrightarrow$

$$
(x=a \wedge(y=b-1 \vee y=b+1)) \vee(y=b \wedge(x=a-1 \vee x=a+1))
$$

- We use a predicate Pit that is true for squares containing pits
- There is only one wumpus, so a constant Wumpus is enough
- The agent's location changes over time
- At(Agent, s, t)
- The Wumpus is fixed to a specific location forever
- $\forall t$ At(Wumpus, $[1,3], t$)
- An object can be at only one location at a time
- $\forall x, s_{1}, s_{2}, t \operatorname{At}\left(\mathrm{x}, \mathrm{s}_{1}, \mathrm{t}\right) \wedge \operatorname{At}\left(\mathrm{x}, \mathrm{s}_{2}, \mathrm{t}\right) \Rightarrow \mathrm{s}_{1}=\mathrm{s}_{2}$

Deciding Hidden Properties

- Given the current location and the properties of its current percept, the agent infers the properties of the square
- $\forall s, t \operatorname{At}(A g e n t, \mathrm{~s}, \mathrm{t}) \wedge \operatorname{Breeze}(\mathrm{t}) \Rightarrow \operatorname{Breezy}(\mathrm{s})$
- No time with Breezy
- The agent infers the cause from the effect
- $\forall y \operatorname{Breezy}(\mathrm{y}) \Rightarrow \exists x \operatorname{Pit}(\mathrm{x}) \wedge \operatorname{Adjacent}(\mathrm{x}, \mathrm{y})$
- ... and the effect from the cause
- $\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(\mathrm{x}, \mathrm{y}) \Rightarrow \operatorname{Breezy}(\mathrm{y})$
- If the agent discovered which places are breezy (or smelly) and, not breezy (or not smelly), it can deduce where the pits are (and where the Wumpus is)
- $\forall s$ Breezy $(\mathrm{s}) \Leftrightarrow \exists \mathrm{r} \operatorname{Adjacent}(\mathrm{r}, \mathrm{s}) \wedge \operatorname{Pit}(\mathrm{r})$

Exercise 1

- Write out the axioms required for reasoning about the Wumpus's location, using a constant symbol Wumpus and a binary predicate At (Wumpus, Location)
- Remember that there is only one Wumpus

Solution to Exercise 1

- $\forall s_{1} \operatorname{Smelly}\left(s_{1}\right) \Leftrightarrow \exists s_{2} \operatorname{Adjacent}\left(s_{1}, s_{2}\right) \wedge \operatorname{At}\left(\right.$ Wumpus, $\left.s_{2}\right)$
- $\exists s_{1} \operatorname{At}\left(\right.$ Wumpus, $\left.s_{1}\right) \wedge \forall s_{2}\left(s_{1} \neq s_{2}\right) \Rightarrow \neg A t\left(\right.$ Wumpus, $\left.s_{2}\right)$

Exercise 2

- Arithmetic assertions can be written in first-order logic with the predicate symbol $<$, the function symbols + and \times, and the constant symbols 0 and 1
- Additional predicates can also be defined with biconditionals

1. Represent the property " x is an even number."
2. Represent the property " x is prime."
3. Goldbach's conjecture is the conjecture (unproven as yet) that "every even number is equal to the sum of two primes"

- Represent this conjecture as a logical sentence

Solutions to the Exercise 2

- "x is an even number."
- $\forall x \operatorname{Even}(x) \Leftrightarrow \exists y x=y+y$
-"x is prime."
- $\forall x \operatorname{Prime}(x) \Leftrightarrow \forall y, z \quad x=y \times z \Rightarrow y=1 \vee z=1$
- "every even number is equal to the sum of two primes."
- $\forall x \operatorname{Even}(x) \Rightarrow \exists y, z \operatorname{Prime}(y) \wedge \operatorname{Prime}(z) \wedge x=y+z$

Exercise 3

Assuming predicates Parent (p, q) and Female(p) and constants Joan and Kevin, with the obvious meanings, express each of the following sentences in first-order logic

- You may use the abbreviation \exists^{1} to mean "there exists exactly one."

1. Joan has a daughter (possibly more than one, and possibly sons as well)
2. Joan has exactly one daughter (but may have sons as well).
3. Joan has exactly one child, a daughter
4. Joan and Kevin have exactly one child together
5. Joan has at least one child with Kevin, and no children with anyone else

Solutions to Exercise 3

- Joan has a daughter (possibly more than one, and possibly sons as well)
- $\exists x$ Parent(Joan,x) \wedge Female(x)
- Joan has exactly one daughter (but may have sons as well)
- $\exists^{11 x}$ Parent(Joan,x) ^ Female(x)
- Joan has exactly one child, a daughter
- $\exists x$ Parent (Joan, x) \wedge Female $(x) \wedge[\forall y$ Parent $(J o a n, y) \Rightarrow y=x]$
- Joan and Kevin have exactly one child together
- $\exists{ }^{1} \mathrm{c}$ Parent(Joan, c) \wedge Parent(Kevin,c)
- Joan has at least one child with Kevin, and no children with anyone else
- $\exists c$ Parent(Joan, c) $\wedge \operatorname{Parent(Kevin,c)~} \wedge \forall d, p[$ Parent(Joan,d) \wedge Parent(p,d)] $\Rightarrow[p=J o a n \vee p=K e v i n]$

Knowledge Engineering

- Knowledge engineering is the process of constructing the KB
- It consists of investigating a specific domain, identifying the relevant concepts (knowledge acquisition), and formally representing them
- This requires the interaction between
- a domain expert (DE)
- a knowledge engineer (KE), who is an expert in knowledge representation and inference, but usually not in the domain of interest
- A possible approach, suitable for special-purpose KBs (in predicate logic), is the following

Knowledge Engineering

1. Identify the task:

- what range of queries will the KB support?
- what kind of facts will be available for each problem instance?

2. Knowledge acquisition: eliciting from the domain expert the general knowledge about the domain (e.g., the rules of chess)
3. Choice of a vocabulary: what concepts must be represented as objects, predicates, or functions?

- The result is the domain's ontology, which affects the complexity of the representation and the inferences that can be made
- E.g., in the wumpus game, pits can be represented as objects or unary predicates on squares

Knowledge Engineering

4. Encoding the domain's general knowledge acquired in step 2 (this may require revising the vocabulary of step 3)

- Axioms for all the vocabulary terms

5. Encoding a specific problem instance (e.g., a specific chess game)

- Simple atomic sentences about instances of concepts from the ontology

6. Posing queries to the inference procedure and getting answers

- Inference procedure applied to axioms and facts to derive new facts one is interested in

7. Debugging the $K B$, based on the results of step 6

- Answers seldom correct on the first try, that is, if an axiom is missing some query won't be answerable from the KB

Knowledge Engineering in FOL

- The electronic circuits domain

1. Identify the questions

- Does the circuit in Figure 8.6 actually add properly?
- If all the inputs are high, what is the output of gate A2?
- Questions about the circuit's structure are also interesting
- For example, what are all the gates connected to the first input terminal?
- Does the circuit contain feedback loops?

Figure 8.6 A digital circuit C_{1}, purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Knowledge Engineering in FOL

2. Assemble the relevant knowledge

- Circuits composed of wires and gates
- Signals flow along wires to the input terminals of gates
- Each gate produces a signal on the output terminal that flows along another wire
- There are four types of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one

Knowledge Engineering in FOL

3. Decide on a vocabulary

- Choose functions, predicates, and constants to represent gates, terminals, signals, and circuits
- Each gate is represented as an object named by a constant, about which we assert that it is a gate with
- Gate(X1)
- The behavior of a gate is determined by its type: constants AND, OR, XOR, NOT
- A gate has one type; we use a function Type(X1)=XOR
- Circuit(C1)
- Terminal(x)
- A circuit has $n>=1$ input terminals and $m>=1$ output terminals
- $\operatorname{In}(1, X 1)$ the first input terminal of X1
- Out(n, c) is for output terminals
- The predicate Arity (c, i, j) means circuit chas input and joutput terminals
- Connected is a predicate for the connectivity between gates
- Connected(Out(1, X1), In(1,X2))
- Signal(t) is a function denoting the signal value for the terminal t
- We also introduce two objects for the signal value 0 (off) and 1 (on)

Knowledge Engineering in FOL

4. Encode general knowledge of the domain

- One sign for a good ontology is that we require only a few general rules clearly and concisely stated
- Example:
- If two terminals are connected, then they have the same signal:
- $\forall t_{1}, t_{2}$ Terminal $\left(t_{1}\right) \wedge$ Terminal($\left.t_{2}\right) \wedge$ Connected $\left(t_{1}, t_{2}\right) \Rightarrow$ Signal $\left(t_{1}\right)=$ Signal $\left(t_{2}\right)$
- The signal at every terminal is either 1 or 0
- $\forall \mathrm{t}$ Terminal $(\mathrm{t}) \Rightarrow$ Signal $(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$
- Connected is commutative
- $\forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Leftrightarrow$ Connected $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$
- There are four types of gates
- $\forall \mathrm{g}$ Gate $(\mathrm{g}) \wedge \mathrm{k}=$ Type $(\mathrm{g}) \Rightarrow \mathrm{k}=\mathrm{AND} \vee \mathrm{k}=\mathrm{OR} \vee \mathrm{k}=\mathrm{XOR} \vee \mathrm{k}=\mathrm{NOT}$
- A NOT gate's output is different from its input
- $\forall \mathrm{g}$ Gate $(\mathrm{g}) \wedge$ Type $(\mathrm{g})=\mathrm{NOT} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g})) \neq \operatorname{Signal}(\ln (1, \mathrm{~g}))$

- An XOR gate's output is 1 iff its inputs are different
- $\forall \mathrm{g}$ Gate $(\mathrm{g}) \wedge \operatorname{Type}(\mathrm{g})=\mathrm{XOR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, g))=1 \Leftrightarrow \operatorname{Signal}(\ln (1, g)) \neq \operatorname{Signal}(\ln (2, g))$

Knowledge Engineering in FOL

5. Encode the specific problem instance

- Categorize the circuit and its component gates
- Circuit $\left(C_{1}\right) \wedge \operatorname{Arity}\left(C_{1}, 3,2\right)$
- ...
- Show the connections:
- Connected(Out(1,X1), In(1,X2))
- ...
- Connected($\ln (1, \mathrm{C} 1) ; \ln (1, \mathrm{X} 1))$
- ...

Knowledge Engineering in FOL

6. Pose queries to the inference procedure

- What combinations of inputs would cause the first output of C1 (the sum bit) to be 0 and the second output (the carry bit) to be 1?
$\exists i_{1}, i_{2}, i_{3} \operatorname{Signal}\left(\operatorname{In}\left(1, C_{1}\right)\right)=i_{1} \wedge \operatorname{Signal}\left(\operatorname{In}\left(2, C_{1}\right)\right)=i_{2} \wedge \operatorname{Signal}\left(\operatorname{In}\left(3, C_{1}\right)\right)=i_{3} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, C_{1}\right)\right)=0 \wedge \operatorname{Signal}\left(\operatorname{Out}\left(2, C_{1}\right)\right)=1$
- ASK will return the substitutions that give the sentence entailed by the KB
- $\left\{i_{1} / 1, i_{2} / 1, i_{3} / 0\right\},\left\{i_{1} / 1, I_{2} / 0, i_{3} / 1\right\},\left\{i_{1} / 0, i_{2} / 1, i_{3} / 1\right\}$
- What are the possible sets of values of all the terminals for the adder circuit?
$\exists i_{1}, i_{2}, i_{3}, o_{1}, o_{2} \operatorname{Signal}\left(\operatorname{In}\left(1, C_{1}\right)\right)=i_{1} \wedge \operatorname{Signal}\left(\operatorname{In}\left(2, C_{1}\right)\right)=i_{2} \wedge \operatorname{Signal}\left(\operatorname{In}\left(3, C_{1}\right)\right)=i_{3} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, C_{1}\right)\right)=o_{1}$
$\wedge \operatorname{Signal}\left(\operatorname{Out}\left(2, C_{1}\right)\right)=0_{2}$
- This final query will return a complete input-output table for the device to check that it adds its input correctly

Knowledge Engineering in FOL

7. Debug the knowledge base

- We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors emerge
- Example if no assertion $1 \neq 0$
- Suppose that the system is unable to prove any outputs for the circuits, except for the input cases 000 and 110
- We can try to identify the problem by asking for the output of each gate, for instance
- $\exists i_{1}, i_{2}, o \operatorname{Signal}\left(\operatorname{In}\left(1, C_{1}\right)\right)=i_{1} \wedge \operatorname{Signal}\left(\operatorname{In}\left(2, C_{1}\right)\right)=i_{2} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, X_{1}\right)\right)=0$
- It reveals that no outputs are known at $\mathrm{X1}$ for the input cases 10 and 01
- Then, looking at axiom for XOR gates, as applied to X1:
- $\operatorname{Signal}\left(\operatorname{Out}\left(1, X_{1}\right)\right)=1 \Leftrightarrow \operatorname{Signal}\left(\operatorname{In}\left(1, X_{1}\right)\right) \neq \operatorname{Signal}\left(\operatorname{In}\left(2, X_{1}\right)\right)$
- If the inputs are known to be 1 and 0 , for instance, then this reduces to
- $\operatorname{Signal}\left(\operatorname{Out}\left(1, X_{1}\right)\right)=1 \Leftrightarrow 1 \neq 0$,
- the system is unable to infer that $\operatorname{Signal}\left(\operatorname{Out}\left(1, X_{1}\right)\right)=1$

We need to tell it that $1 \neq 0$

