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Insurance data Modeling

Models connect variables, and the art of connecting variables requires an
understanding of the nature of the variables. Variables come in different
forms: discrete or continuous, nominal, ordinal, categorical, and so on.

A model is only as good as the data underlying it. Consequently a good
understanding of the data is an essential starting point for modeling. A
significant amount of time is spent on cleaning and exploring the data.

It is important to distinguish between different types of variables, as the way
that they can reasonably enter a model depends on their type.
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Insurance data is usually organized in a two-way array according to cases and
variables. Variables can be quantitative or qualitative. Some example are:

Claim amount is an example of what is commonly regarded as
continuous.

Legal representation is a categorical variable with two levels ’no’ or ’yes.’

Injury code is a categorical variable, also called qualitative.

The distribution of settlement delay is in the final panel. This is another
example of a continuous variable, which in practical terms is confined to
an integer number of months or days.
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Figure: Graphical representation of personal injury insurance data.
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Sometimes a better understanding of the data and the relationship among the
variables can be obtained using mathematical transformations:

Histogram of log claim size. The top left panel displays the histogram
of log claim size. Compared to the histogram of actual claim size, the
logarithm is roughly symmetric and indeed almost normal.

Claim size versus settlement delay. The top right panel does not reveal
a clear picture of the relationship between claim sizes and settlement
delay.

Claim size versus operational time. The bottom left panel displays
claim size versus the percentile rank of the settlement delay.Note that
both the mean and variability of claim size appear to increase with
operational time.

Log claim size versus operational time. Log claim size increases
virtually linearly with operational time. The log transform has stabilized
the variance.
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Figure: Relationships between variables in personal injury insurance data set.
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The aim of transformations is to make variables more easily amenable to
model, and to tease out trends and effects. Commonly used transformations
include:

Logarithms. The log transform applies to positive variables.

Powers. The power transform of a variable y is yp.

Percentile ranks and quantiles. The percentile rank of a case is the
percentage of cases having a value less than the given case.

z-score. Given a variable y , the z-score of a case is the number of
standard deviations the value of y for the given case is away from the
mean.

Logits. If y is between 0 and 1 then the logit of y is log y/(1− y).
Logits lie between minus and plus infinity, and are used to transform a
variable in the (0, 1) interval to one over the whole real line.
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Data exploration using appropriate graphical displays and tabulations is a first
step in model building.

It makes for an overall understanding of relationships between variables, and it
permits basic checks of the validity and appropriateness of individual data
values, the likely direction of relationships and the likely size of model
parameters.

Data exploration is also used to examine:

relationships between the response and potential explanatory variables;

relationships between potential explanatory variables.

Data displays differ fundamentally, depending on whether the variables are
continuous or categorical.
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The relationship between two continuous variables is explored with a
scatterplot. A scatterplot is sometimes enhanced with the inclusion of a third,
categorical, variable using color and/or different symbols.

Figure: Scatterplot for personal injury data.
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Scatterplot smoothers are useful for uncovering relationships between
variables. These are similar in spirit to weighted moving average curves, albeit
more sophisticated. Splines are commonly used scatterplot smoothers.

Figure: Scatterplots with splines for vehicle insurance data.
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Categorical by categorical

The relationship between two categorical variables can be explored with a
frequency table or a Mosaic plots.

Figure: Mosaic plots
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Boxplots are appropriate for examining a continuous variable against a
categorical variable.

Figure: Personal injury claim sizes by injury code and legal representation.
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Assessing distributions

Statistical modeling, including generalized linear modeling, usually makes
assumptions about the random process generating the data. For example it
may be assumed that the logarithm of a variable is approximately normally
distributed.
Distributional assumptions are checked by comparing empirical percentile
ranks to those computed on the basis of the assumed distribution.

Figure: pp-plots for personal injury claim sizes.
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Multiple linear regression models response variable yi with i = 1, . . . , n, as a
linear function of predictor variables xij , often called explanatory variables, plus
a constant β0:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi

The k ∈ N predictor variables are given, nonrandom variables whose values
can change with i .
The error term ϵi are the differences between the response variables and their
predicted values:

ϵi = yi − (β0 + β1xi1 + β2xi2 + · · ·+ βkxik).

Two key assumptions are that error terms ϵi have expected value 0, E[ϵi ] = 0,
and the variance of ϵi is constant and does not change across observations i , a
property referred to as homoskedasticity: Var [ϵ] = σ2. The error term ϵi are
usually assumed to be independent and normally distributed.
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Taking the variance of both sides Var [Yi ] = Var [ϵi ] = σ2. The normality of
error terms implies that response variable Yi are normally distributed about
their respective means E[Yi ].

The coefficients in the linear model are estimated by the method of least
squares. Normality is not a requirement to construct a linear model using least
squares, but is important for hypothesis testing and constructing confidence
intervals. Linear models have shown their value in modeling, but in many
situations linear models need to be generalized as demonstrated in the
following.

Dr. S. Scognamiglio 15 / 35



Introduction

Insurance
data
Modeling

Generalized
Linear
Models

Generalized Linear Model

Suppose that Yi represents the number of claims for risk i in a portfolio of n
risks. The actuary may want to predict the expected number of claims for
each risk i , E[Yi ], based on k risk characteristics xi1, xi2, . . . , xik .
Multiple linear regression may not be the best tool for this job.
Here are three problems with applying the standard linear model:

The Poisson is commonly used to model the number of claims.

When modeling the expected number of claims, the left-hand side of
equation needs to be non-negative, but this cannot be guaranteed in the
linear model.

Rather than building an additive model where the contributions of risk
characteristics xi1, xi2, . . . , xik are added, perhaps a multiplicative model is
more appropriate.

Some of the complications arising from predicting the number of claims with
linear models can be addressed by moving on to generalized linear models.
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Generalized linear models (GLMs) generalize linear regression in two important
ways:

The independent response variables Yi can be linked to a linear function
of predictor variables xij with a nonlinear link function.

The variance in the response variables Yi is not required to be constant
across risks, but can be a function of Yi ’s expected value.

The GLM predictive equation for response random variables Yi is

g(E[Yi ]) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

The link function g(·) can be a nonlinear function. In classic linear regression,
g(·) is just the identity function g(x) = x . There is a restriction on link
function g(·) that it be differentiable and strictly monotonic.
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Because it is strictly monotonic, its inverse function exists, and the previous
equation can be rewritten as

E[Yi ] = g−1(β0 + β1xi1 + β2xi2 + · · ·+ βkxik)

The predictor variables xij are still combined into a linear function, but the
response variable E[Yi ] can be a nonlinear function of this linear combination.
The linear function of predictor variables is often assigned the symbol η:

ηi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik .

Letting µi = E[Yi ] yields a shorthand equation

µi = g−1(ηi ).

The other important GLM assumption is that random variables Yi can be
members of a linear exponential family of distributions.
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For GLMs, response variable is assumed to have a probability distribution
function that can be written as:

f (y ; θ, ϕ) = exp

[
yθ − b(θ)

a(ϕ)
+ c(y , ϕ)

]
.

Note that function c(y , ϕ) does not include parameter θ.
Parameter θ is often refereed to as the canonical parameter, or natural
parameter, or parameter of interest.
Parameter ϕ is called the dispersion parameter or, sometimes, nuisance
parameter because the mean of the distributon does not depend directly on ϕ.
The function b(θ), a(ϕ) and c(y , ϕ) determine the type of distribution.
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The mean and variance of the distribution are simply

E[Y ] = b′(θ),

Var [Y ] = a(ϕ)b′′(θ),

where b′(θ) is the first derivative with respect to θ and b′′(θ) is the second
derivative.
Distributions in this exponential family include the normal, binomial, Poisson,
exponential, gamma, inverse-Gaussian and the compound Poisson-gamma.
With a little algebra the common forms of these distribution can be rewritten
in exponential family form.
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The Poisson Distribution

The Poisson distribution is a member of the exponential family with
probability mass function

f (y ;λ) =
λye−λ

y !

= exp

[
log

(
λye−λ

y !

)]
= exp

[
y log λ− λ

1
− log y !

]
Making the substitution θ = log λ produces

f (y ; θ) = exp

[
yθ − eθ

1
− log y !

]
.

Note that b(θ) = eθ and c(y , ϕ) = − log y !. We can let a(ϕ) = ϕ = 1,
calculating the mean and the variance of the distribution

E[Y ] = b′(θ) = eθ = λ

Var [Y ] = a(ϕ)b′′(θ) = eθ = λ.
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If a random variable has the Poisson distribution, its expected value and
variance are equal.
Real data that might be plausibly modelled by the Poisson distribution often
have a larger variance and are said to be overdispersed, and the model may
have to be adapted to reflect this feature.
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Suppose that Y ∼ N(µ, σ2). The normal distribution is a member of the
exponential family:

f (y ;µ, σ2) =
1√
2πσ2

exp

[
− (y − µ)2

2σ2

]
= exp

[
log

(
1√
2πσ2

)]
exp

[
−y 2 − 2yµ+ µ2

2σ2

]
= exp

[
yµ− µ2/2

σ2
−

(
y 2

2σ2
+ log(

√
2πσ2)

)]
The parameter µ corresponds to θ and ϕ = σ2. Making the substitutions we
can rewrite the pdf

f (y ; θ, ϕ) = exp

[
yθ − θ2/2

ϕ
−

(
y

2ϕ
+ log(

√
2πϕ)

)]
.

So, b(θ) = θ2/2, a(ϕ) = ϕ, and c(y , ϕ) = −(y 2/2ϕ2 + log(
√
2πϕ) and

E[Y ] = b′(θ) =
d(θ2/2)

dθ
= θ = µ,

Var [Y ] = a(ϕ)b′′(θ) = ϕ
d2(θ2/2)

dθ2
= ϕ = σ2.
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The Normal Distribution

The Normal distribution is widely used for three main reasons.

1 First, many naturally occurring phenomena are well described by the
Normal distribution; for example, height or blood pressure of people.

2 Second, even if data are not Normally distributed (e.g., if their
distribution is skewed) the average or total of a random sample of values
will be approximately Normally distributed; this result is proved in the
Central Limit Theorem.

3 Third, there is a great deal of statistical theory developed for the Normal
distribution, including sampling distributions derived from it and
approximations to other distributions.

For these reasons, if continuous data y are not Normally distributed it is often
worthwhile trying to identify a transformation, such as y ′ = log y or y ′ =

√
y

which produces data y ′ that are approximately Normal.
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Figure: Exponential Family Form.
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The Link Function

The link function must be differentiable and strictly monotonic-either strictly
increasing or strictly decreasing - so that its inverse exist:

g(µi ) = ηi ,

µi = g−1(ηi ).

where
ηi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik .

The modeler has a choice of link functions, but some links may be more
appropriate than others for a model. For example, an important consideration
is selecting the link function is the range of µi = E[Yi ].
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Response Variable Yi is Number of Claims

The expected number of claims µi has range (0,∞). The linear predictor ηi
may have range (−∞,∞).
It may be that ηi < 0 for possible combinations of predictors xij . A solution to
this contradiction is a log-link function. The log link is g(µ) = log(µ):

log(µ) : (0,∞) → (−∞,∞).

The inverse of log link g−1(η) = eη maps (−∞,∞) onto (0,∞).
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µi is Probability of an Event

The GLM may model probability of events such as customer renewing policies
or claims being fraudulent.
The response variable Y will take on values of 1 or 0 depending on whether
the event happens or not and µi will be the probability of the event.
Probabilities µi have range [0, 1]. As discuss earlier, ηi has possible range
(−∞,∞). An appropriate link function can be costructed in two steps. If p is
the probability of an event, then the odds-ratio is p/(1− p):

p/(1− p) : (0, 1) → (0,∞).

Next take the log of the odds-ratio:

log(p/(1− p)) : (0, 1) → (−∞,∞).

Link g(µ) = log(µ/(1− µ)) is called logit link. Two other common link for
this mapping are:

Probit: g(µ) = Φ−1(µ) where Φ−1(·) is the inverse standard cumulative
normal distribution.

Complementary log-log: g(µ) = log(− log(1− µ)).

Dr. S. Scognamiglio 28 / 35



Introduction

Insurance
data
Modeling

Generalized
Linear
Models

Link Functions

Figure: Some link functions.
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Maximum Likelihood Estimation

The coefficients β = (β0, . . . , βk)
′ for the GLM are estimated from the data

using maximum likelihodd estimation (MLE). Choosing a distribution to model
random variables Yi allows one to apply MLE. The likelihood function is

L(y ;β) =
n∏

i=1

exp

[
yiθi − b(θi )

ai (ϕ)
+ ci (yi , ϕ)

]
.

The left-hand side shows that the likelihood is a function of the n observations
y1, . . . , yn and the parameters β. It is easier to maximise the log-likelihood:

l(y ;β) =
n∑

i=1

[
yiθi + b(θi )

ai (ϕ)
+ ci (yi , ϕ)

]
.

The log-likelihood can be maximized by calculating partial derivatives with
respect to the βi ’s and setting them equal to zero.

δl(y ;β)
δβj

=
n∑

i=1

δ

δβj

[
yiθi − b(θi )

ai (ϕ)
+ ci (yi , ϕ)

]
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Maximum Likelihood Estimation

Statistical packages have numerical methods to maximize the log-likelihood
function. A technique commonly used is referred to as iteratively reweighted
least squares. One also sees the name Fisher Scoring algorithm. For those
interested in the details of these numerical techniques, see Dobson and
Barnett (2008); Gill (2000); McCullagh and Nelder (1997); and Nelder and
Wedderburn (1972).

Dr. S. Scognamiglio 31 / 35



Introduction

Insurance
data
Modeling

Generalized
Linear
Models

Generalized Linear Model: a summary

Summarizing:

Response variables Yi have a distribution from the exponential family and
are independently distributed.

Predictor variables xij are combined into linear predictors plus a constant

ηi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik .

Link function g(x) is strictly monotonic and differentiable with inverse
function g−1(x).

The expected values of Yi , µi = E[Yi ], are predicted by the equations

g(µi ) = ηi or µi = g−1(ηi ) for i = 1, . . . , n.

Coefficient β0, β1, . . . , βk are estimated from data using maximum
likelihood estimation.

The modeler must choose the distribution and link function appropriate
for the model.
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Comparing Models

A statistical measure called deviance is commonly used to evaluate and
compare GLMs and it is based on log-likelihoods. The log-likelihood function
for linear exponential family distributions is

l(y ;θ) =
n∑

i=1

[
yiθi − b(θi )

ai (ϕ)
+ ci (yi , ϕ)

]
When a particular GLM is constructed - let’s call it model M - coefficients βj

are calculated to maximize the log-likelihood. The canonical parameters can
be computed using these coefficients and predictive variables for the chosen
distribution and link function.
Let l(y ;θM) denote the value of the log-likelihood for these parameters θ̂i

M
.

One way of assessing the fit of a given model is to compare it to the model
with the best possible fit. The best fit will be obtained when there are as
many parameters as observations: this is called a saturated model. A
saturated model S will ensure there is complete flexibility in fitting θi = yi .
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The difference between the log-likelihoods of the saturated model S and
model M is

l(y ; θ̂
S
)− l(y ; θ̂

M
) =

n∑
i=1

[
yi (θ̂

S
i − θ̂Mi )− b(θ̂Si ) + b(θ̂Mi )

ai (ϕ)

]
.

If ai (ϕ) = ϕ, the Deviance of M from S is defined

D(y ; θ̂
M
) = 2ϕ[l(y ; θ̂

S
)− (y ; θ̂

M
)]

= 2
n∑

i=1

[yi (θ̂
S
i − θ̂Mi )− b(θ̂Si ) + b(θ̂Si )].

We observe that D(y ; θ̂
M
) > 0 and D(y ; θ̂

S
) = 0.
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