

Course of "Automatic Control Systems" 2023/24

Classification of closed loop systems w.r.t a proportional control action

Prof. Francesco Montefusco

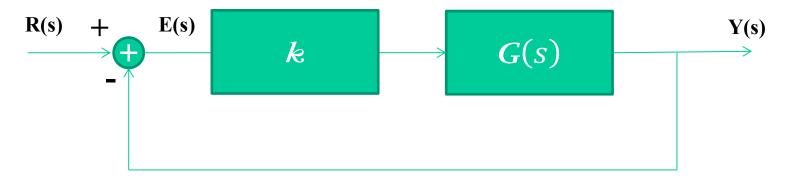
Department of Economics, Law, Cybersecurity, and Sports Sciences

Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

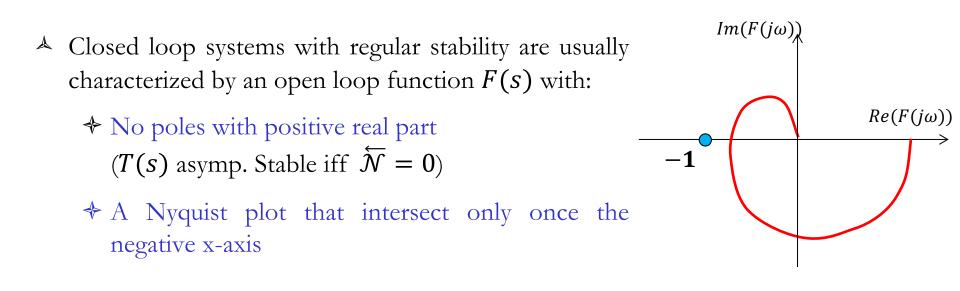
Team code: mfs9zfr

\checkmark Let us consider a closed loop system with a proportional control action



▲ In the following we will classify the closed loop systems depending on their stability behavior when k varies from 0 to $+\infty$

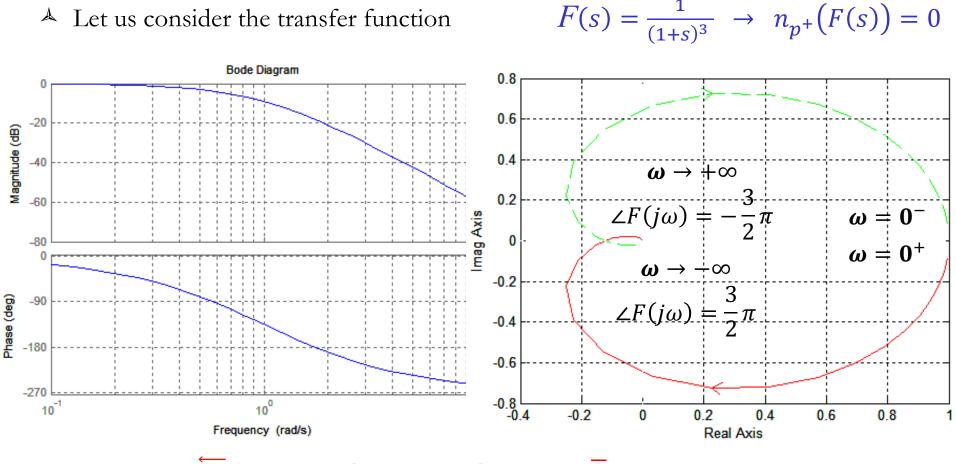
- \checkmark The stability of a closed loop system T(s) is said to be regular when
 - T(s) is unstable for high values of the proportional gain k
 - T(s) is asymptotically stable for low values of the proportional gain k



There exists a critical gain \overline{k} such that the closed loop system is unstable for $\underline{k} > \overline{k}$

 \mathbf{A}

Regular stability of closed loop systems



 $\widetilde{\mathcal{N}} = 0$, the critical gain is $\overline{k} \approx 8$

T(s) asymptotically stable for k < 8

T(s) unstable for k > 8

The stability of a closed loop system T(s) is said to be inherent when
 T(s) is asymptotically stable for all possible k

- Inherently stable closed loop systems are usually characterized by an open loop function F(s) with: Im(F(jω))
 No poles with positive real part
 - $(T(s) \text{ asymp. Stable iff } \widetilde{\mathcal{N}} = 0)$

A Nyquist plot that doesn't intersect the negative x-axis

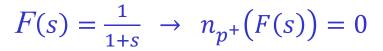
The closed loop system is asymptotically stable regardless the value of the proportional gain

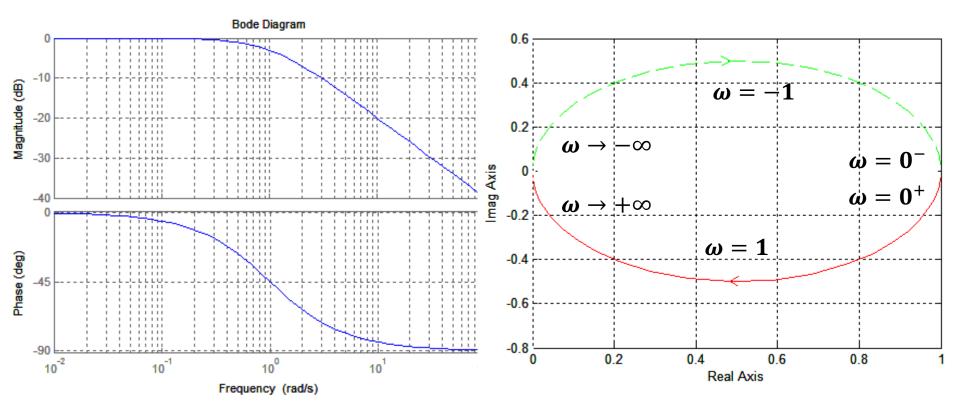
-1

 $Re(F(j\omega))$

Inherent stability of closed loop systems

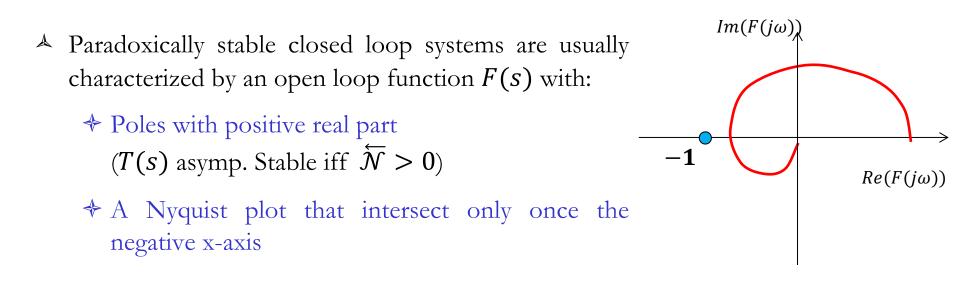
\checkmark Let us consider the transfer function





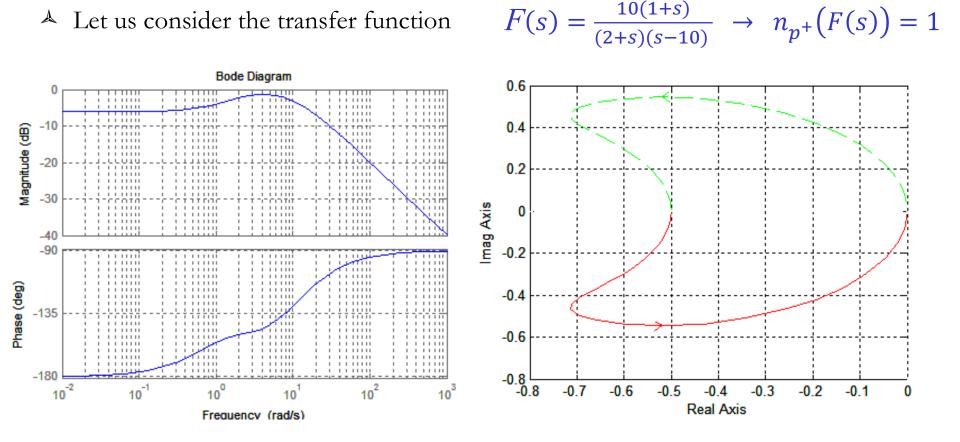
 $\mathcal{N} = 0$ for all possible values of k

- ▲ *The stability* of a closed loop system T(s) *is said to be paradoxical* when \Rightarrow T(s) *is unstable for low* values of the proportional gain *k*
 - T(s) is asymptotically stable for high values of the proportional gain k



There exists a <u>critical gain \overline{k} </u> after which the closed loop system becomes asymptotically stable

Paradoxical stability of closed loop systems



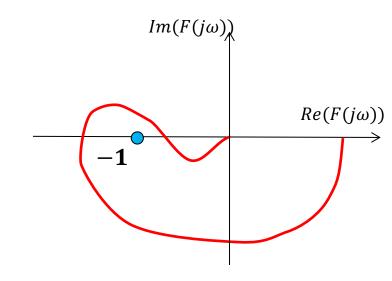
 $\overline{\mathcal{N}} = 1$ for k greater that the critical gain $\overline{k} = 2$

T(s) asymptotically stable for k > 2

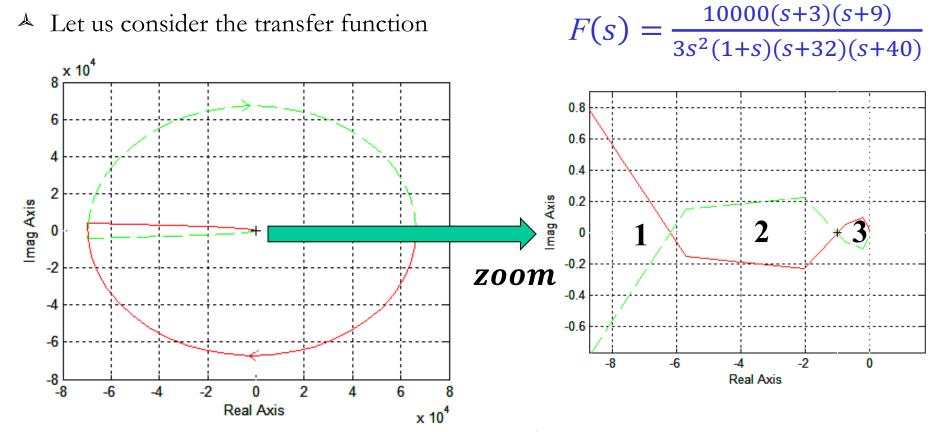
T(s) unstable for k < 2

The stability of a closed loop system T(s) is said to be conditioned when
 T(s) is asymptotically stable for a limited interval of k

- ▲ Conditionally stable closed loop systems are usually characterized by an open loop function F(s) with:
 - * No poles with positive real part (*T*(*s*) asymp. Stable iff $\overleftarrow{\mathcal{N}} = 0$)
 - A Nyquist plot that intersect the negative x-axis more than one time



Conditional stability of closed loop systems



▲ For $k \le k_1$ the critical point moves in the first circle $\tilde{N} = -2 \rightarrow T(s)$ unstable

For $k_1 < k < k_2$ the critical point moves in the second circle $\overleftarrow{\mathcal{N}} = 0 \rightarrow T(s)$ asymp. stab.

For $k > k_2$ the critical point moves in the third circle $\overleftarrow{\mathcal{N}} = -2 \rightarrow T(s)$ unstable

Conditional stability of closed loop systems

