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Phase variation formula

A 'The previous lesson the concept of phase variation has been introduced.

A The phase variation is related to the number and sign of poles/zeros of the
transfer function F(S)|s=je-

Given a transfer function F(s)|s=j,,, said:

* N the total number of poles
* M the total number of eros

* Ny, (Ny,) the number of poles with positive (negative) real part

* my, (M) the total number of eros with positive (negative) real part

n=n,+n, m=m, +m,
P
AszF(jw) = m(m, —n,) — n(mp — np)

RO P n(m—n) — 2n(m, —ny)
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Phase variation formula

A The previous phase variation formula doesn’t consider the case of poles and zeros
on the imaginary axis.

A Indeed, in case of poles and zeros on the imaginary axis the phase variation can
not be defined

A In the following slides we will consider these two critical cases and we will
llustrate how to extend the definition of phase variation
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Phase variation with poles on the imaginary axis

A Open loop poles on the imaginary axis (null real part), can be due to:

4+ One or more integrators  1/s"

4 Resonance 1/(1 + Sz/a)rzl)h

A In both the cases we have a discontinuity in the phase margin:
+ Integrator: passing from 1/2 to —1 /2 with infinite magnitude az @ = 0

<+ Resonance: passing from 0 to —1 with infinity magnitude af @ = w, and

from Tt to 0 with infinity magnitude at W = —w,,
w=0"M
1 w|= -0
F(s) = >
¥ =71 g E—
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Phase variation with poles on the imaginary axis

A In otrder to obtain a closed polar plot and to extend the definition of phase
variation, we introduce the closures at infinity.

A The closures at infinity consists in rotating clockwise the Nyquist plot of the
F(jw) in the discontinuity frequency with an infinite radius.

A With this manipulation, the contribution to the phase variation of poles on the
imaginary axis will be the same as the poles with negative real part.

w =0 M w = 0" “ closure
.. at infinity
S(S —I— 1) w p— —|»— oD ',m
W = O+ W = O+ ---- g
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A Transfer function with resonance F ( S) —

Bode Diagram
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Phase variation with zeros on the imaginary axis

A Open loop zeros on the imaginary axis (null real part), can be due to:

4 One or more derivative s™

4+ Anti-resonance (1 + s?/ w,%)h

In both the cases we have a discontinuity in the phase margin:
+ Derivate: passing from —1 /2 to 1/2 with zero magnitude at w = 0

<+ Anti-Resonance: passing from 0 to T with zero magnitude az w = w, and
from —1r to 0 with zero magnitude at @ = —w,,

Bode Diagram
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Phase variation with zeros on the imaginary axis

A In order to extend the definition of phase variation, we will assume that iz @ = 0
and @ = w, the Nyquist plot of the frequency response F(jw) will rotate
counterclockwise with infinitesimal magnitude.

A With this manipulation, the contribution to the phase variation of zeros on the
imaginary axis will be the same as the zeros with negative real part.

F(s) = ; ;
(s) 1+s :
z O
T £z 5
—00 @ 0 i
03! : : i :
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Phase variation with poles and zeros on the

Imaginary axis

10s

A Transfer function with resonance F(S) —
(14 5s5)(1 + s52)
Bode Diagram
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Stability of the closed loop system

A Let us consider the R(s) = Y (S) closed loop system
R(s) + E(s)
O F(s)

A Assume that the hidden modes of the open loop function F(s) = K(s)G(s) are
asymptotically stable

Y(s)

A The stability of the closed loop system depends on the poles of the transfer
function

F(s)
1+F(s)

T(s) =
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Stability of the closed loop system

A Indicate with Ng(s) and Dg(s) the numerator and the denominator of the open
loop function

Np(s) _ Nk(s)Ng(s)

F(S) = 505 = Dxo)Dg(s)

A The closed loop function can be written as

iR ()
. DF(S) . NF S
T(s) = 1 + NFGS)  Dp(s)+Np(s)
DE(s)

A The denominator of T(S) is given by the sum of Nr(s) and Dr(s); therefore, the
design problem of a controller able to guarantee the stability of the closed loop
system 1s to be very demanding.

A By means of the Nyquist plots and the Nyquist criteria, we ate going to determine
the stability of the closed loop system from the open loop system features

Prof. Francesco Montefusco Automatic Control Svstems 2023 /24



Nyquist Stability Criterion

Let us consider a strictly proper open-loop function F(S) and assume that the
Nyquist diagram of F(s) doesn’t intersect the critical point —1 + jO .

Said

+ NV the number of counter-clockwise encirclements of the critical point —1 + jO
of the Nyquist plot of F(s)

+ ny+ (F(S)) the number of unstable poles of F(s)

the closed loop function T(S) is asymptotically stable if and only if
N =1y, (F(s)).

Moreover, if N = Ny,+, the number of unstable poles of the closed loop function
T(s) s equal to n,+(F(s)) — N.
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Nyquist Stability Criterion: proof

A Let us define the so-called Difference Function

Ng(s) + Dp(s)

D(s)=1+4+F(s) = D (s)

A Tt is straightforward to notice that :

+ The poles of D(s) are the open loop control system poles , i.e. Dp(s) =
Dr(s)

+ The zeros of D(S) are the closed loop control system poles, i.e. Np(s) =
Dr(s)
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Nyquist Stability Criterion: proof

A n,(D(s)) the number of poles of D(s)
A M+ (D(s)) the number of poles with positive real part of D(s)

A n,(D(s)) the number of zeros of D(s)
A n_+(D(s)) the number of zeros with positive real part of D(s)

The phase variation of the difference function 1s

DS
ALD(jw) = m(n,(D(s)) — n,(D(s))) — 27 (n,+(D(s)) — ny+(D(s)))

—00 () OO
N~ 7
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Nyquist Stability Criterion: proof

A Howevet,

Nfr(s)+Dpg(s)
Dfg(s)

1. F(s) strictly proper = D(s) =14+ F(s) = proper and than

np(D(s))=n,(D(s))

2. Taking into account that Np(s) = Dy (s) and it is required the closed loop
stability of the system, than

n,+ (D (S)) =0

A Hence the phase variation of the difference function is

N
ALD(jw) = 21 - ny+(D(s)) = 21 - ny+ (F(s))

—00 () OO0
N 7
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Nyquist Stability Criterion: proof

A The function D(s) will encircle counter-clockwise the origin of the Nyquist plane a
number of times given by

n,+ (F(S))

A The proof is concluded taking into account that the encirclements of the origin of

the D(s) Nyquist plot correspond to the encirclements of the critical point —1 + jO
of the F(s) Nyquist plot

I'm(F(s))

F(s)=D(s)—1

Re(F(s))
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Bode Diagram

0.6, T T T T
a 1
=
o
e
=
c
o
L)
=
w
>
<
o
©
0 rrTrrrrm al b e B e B B | E
G 1
0 1 1 1] L I I N UL
© 45f----t--t-t--titd 1
w ' [ EEEL 'R
() ‘NN
L = ‘TN
& H
O0bs==cc-cc-ro-rer o R R U R AU A L 0.8 | ] | |
10-: 0" 100 20" 0.2 0.4 0.6 0.8 1
Real Axis

Frequency (rad/s)

N = n,, (F (s)) = 0 - asymptotically stable closed loop function
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N = n,, (F (s)) = 0 - asymptotically stable closed loop function

However the two examples have an important dif ference
in terms of robust stability ....
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