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Phase variation formula

ñ The previous lesson the concept of phase variation has been introduced.

ñ The phase variation is related to the number and sign of poles/zeros of the 
transfer function 𝐹 𝑠 |!"#$. 

Given a transfer function 𝐹 𝑠 |!"#$, said:

• 𝒏 the total number of poles 

• 𝒎  the total number of zeros

• 𝒏𝒑 (𝒏𝒏) the number of poles with positive (negative) real part 

• 𝒎𝒑 (𝒎𝒏) the total number of zeros with positive (negative) real part

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 𝜋 𝑚! − 𝑛! − 𝜋 𝑚" − 𝑛"
= 𝜋 𝑚 − 𝑛 − 2𝜋(𝑚" − 𝑛")

𝒏 = 𝒏𝒏 + 𝒏𝒑 𝒎 = 𝒎𝒏 +𝒎𝒑
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Phase variation formula

ñ The previous phase variation formula doesn’t consider the case of poles and zeros 
on the imaginary axis.

ñ Indeed, in case of poles and zeros on the imaginary axis the phase variation can 
not be defined

ñ In the following slides we will consider these two critical cases and we will 
illustrate how to extend the definition of phase variation  
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Phase variation with poles on the imaginary axis

ñ Open loop poles on the imaginary axis (null real part), can be due to:

ò One or more integrators ⁄1 𝑠'

ò Resonance    ⁄1 1 + ⁄𝑠( 𝜔)( '

ñ In both the cases we have a discontinuity in the phase margin:

ò Integrator: passing from ⁄𝝅 𝟐 to ⁄−𝝅 𝟐 with infinite magnitude at  𝝎 = 𝟎

ò Resonance: passing from 𝟎 to −𝝅 with infinity magnitude at 𝝎 = 𝝎𝒏 and 
from 𝝅  to 𝟎 with infinity magnitude at  𝝎 = −𝝎𝒏



Prof. Francesco Montefusco                                            Automatic Control Systems 2023/245

Phase variation with poles on the imaginary axis

ñ In order to obtain a closed polar plot and to extend the definition of phase 
variation, we introduce the closures at infinity.

ñ The closures at infinity consists in rotating clockwise the Nyquist plot of the 
𝐹(𝑗𝜔) in the discontinuity frequency with an infinite radius.

ñ With this manipulation, the contribution to the phase variation of  poles on the 
imaginary axis will be the same as the poles with negative real part.
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Phase variation with poles on the imaginary axis

ñ Transfer function with resonance 𝐹 𝑠 =
1 + 0.1𝑠
1 + 𝑠%

𝝎 = 𝟎!
𝝎 = 𝟎"

𝝎 = +∞

𝝎 = −∞
𝝎 = 𝝎𝒏

!

𝝎 = 𝝎𝒏
" 𝝎 = −𝝎𝒏

"

𝝎 = −𝝎𝒏
!

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 𝜋 𝑚 − 𝑛 − 2𝜋 𝑚* − 𝑛* = 𝜋 1 − 2 = −𝜋
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Phase variation with zeros on the imaginary axis

ñ Open loop zeros on the imaginary axis (null real part), can be due to:

ò One or more derivative  𝑠'

ò Anti-resonance 1 + ⁄𝑠( 𝜔)( '

ñ In both the cases we have a discontinuity in the phase margin:

ò Derivate: passing from ⁄−𝝅 𝟐 to ⁄𝝅 𝟐 with zero magnitude at  𝝎 = 𝟎

ò Anti-Resonance: passing from 𝟎 to 𝝅 with zero magnitude at 𝝎 = 𝝎𝒏 and 
from−𝝅  to 𝟎 with zero magnitude at  𝝎 = −𝝎𝒏

𝑭 𝒔 =
𝒔

𝟏 + 𝒔 𝝎 = 𝟎!

𝝎 = 𝟎"
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Phase variation with zeros on the imaginary axis

ñ In order to extend the definition of phase variation, we will assume that in 𝝎 = 𝟎 
and 𝝎 = 𝝎𝒏 the Nyquist plot of the frequency response 𝐹(𝑗𝜔) will rotate 
counterclockwise with infinitesimal magnitude. 

ñ With this manipulation, the contribution to the phase variation of zeros on the 
imaginary axis will be the same as the zeros with negative real part.

𝑭 𝒔 =
𝒔

𝟏 + 𝒔

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 0

𝝎 = +∞

𝝎 = −∞𝝎 = 𝟎!

𝝎 = 𝟎"



Prof. Francesco Montefusco                                            Automatic Control Systems 2023/249

Phase variation with poles and zeros on the 
imaginary axis

ñ Transfer function  with resonance 𝐹 𝑠 =
10𝑠

(1 + 5𝑠)(1 + 𝑠%)

𝝎 = 𝟎!

𝝎 = 𝟎"

𝝎 = +∞

𝝎 = −∞
𝝎 = 𝝎𝒏

!

𝝎 = 𝝎𝒏
" 𝝎 = −𝝎𝒏

"

𝝎 = −𝝎𝒏
!

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 𝜋 𝑚 − 𝑛 − 2𝜋 𝑚* − 𝑛* = 𝜋 1 − 3 = −2𝜋



Prof. Francesco Montefusco                                            Automatic Control Systems 2023/2410

Stability of the closed loop system

ñ Let us consider the 𝑅 𝑠 → 𝑌(𝑠)	closed loop system 

ñ Assume that the hidden modes of the open loop function 𝐹 𝑠 = 𝐾 𝑠 𝐺(𝑠) are 
asymptotically stable

ñ The stability of the closed loop system depends on the poles of the transfer 
function   

F 𝑠+
+
-

Y(s)R(s) E(s)

T 𝑠 = + !
,-+ !
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Stability of the closed loop system

ñ Indicate with 𝑁+ 𝑠  and 𝐷+ 𝑠  the numerator and the denominator of the open 
loop function

F 𝒔 = 𝑵𝑭 𝒔
𝑫𝑭 𝒔

= 𝑵𝑲 𝒔 𝑵𝑮 𝒔
𝑫𝑲 𝒔 𝑫𝑮 𝒔

,

ñ The closed loop function can be written as

T 𝒔 =
𝑵𝑭 𝒔
𝑫𝑭 𝒔

𝟏	 -	 𝑵𝑭 𝒔
𝑫𝑭 𝒔

= 𝑵𝑭(𝒔)
𝑫𝑭(𝒔)-𝑵𝑭 𝒔

.

ñ The denominator of 𝑇(𝑠) is given by the sum of 𝑁+ 𝑠  and 𝐷+ 𝑠 ; therefore, the 
design problem of a controller able to guarantee the stability of the closed loop 
system is to be very demanding. 

ñ By means of the Nyquist plots and the Nyquist criteria, we are going to determine 
the stability of the closed loop system from the open loop system features
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Nyquist Stability Criterion

Let us consider a strictly proper open-loop function  𝑭 𝒔  and assume that the 
Nyquist diagram of  𝑭 𝒔  doesn’t intersect the critical point −𝟏 + 𝒋𝟎 . 

Said 

ò𝓝 the number of  counter-clockwise encirclements of the critical point −𝟏 + 𝒋𝟎 
of the Nyquist plot of 𝑭 𝒔

ò 𝒏𝒑*(𝑭(𝒔)) the number of unstable poles of  𝑭 𝒔

the closed loop function  𝑻 𝒔  is asymptotically stable if and only if 

𝓝 = 𝒏𝒑-(𝑭(𝒔)).

Moreover ,  if 𝓝 ≠ 𝒏𝒑* , the number of  unstable poles of the closed loop function  
𝑻 𝒔  is equal to  𝒏𝒑*(𝑭(𝒔)) −𝓝.
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Nyquist Stability Criterion: proof

ñ Let us define the so-called Difference Function 

ñ It is straightforward to notice that :

ò The poles of  𝐷 𝑠  are the open loop control system poles , i.e. 𝐷5 𝑠 =
𝐷+(𝑠)

ò The zeros of  𝐷 𝑠  are the closed loop control system poles, i.e. 𝑁5 𝑠 =
𝐷6(𝑠)

𝐷 𝑠 = 1 + 𝐹 𝑠 =
𝑁+ 𝑠 + 𝐷+(𝑠)

𝐷+(𝑠)
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Nyquist Stability Criterion: proof

ñ Said 

ñ 𝒏𝒑(𝑫(𝒔)) the number of poles of 𝐷(𝑠)

ñ 𝒏𝒑*(𝑫(𝒔)) the number of poles with positive real part of 𝐷(𝑠)

ñ 𝒏𝒛(𝑫(𝒔)) the number of zeros of 𝐷(𝑠)

ñ 𝒏𝒛*(𝑫(𝒔)) the number of zeros with positive real part of 𝐷(𝑠)

The phase variation of the difference function is

Δ∠𝐷 𝑗𝜔
−∞𝝎 ∞

= 𝜋 𝒏𝒛(𝑫(𝒔))− 𝒏𝒑(𝑫(𝒔)) − 2𝜋 𝒏𝒛*(𝑫(𝒔))− 𝒏𝒑*(𝑫(𝒔))
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Nyquist Stability Criterion: proof

ñ However, 

1.   𝐹 𝑠  strictly proper   → 𝐷 𝑠 = 1 + 𝐹 𝑠 = 8+ ! -5+(!)
5+(!)

  proper and  than

𝒏𝒑(𝑫(𝒔))= 𝒏𝒛(𝑫(𝒔)) 

2. Taking into account that 𝑁5 𝑠 = 𝐷6(𝑠) and it is required the closed loop 
stability of the system, than 

𝒏𝒛* 𝑫 𝒔 = 𝟎 

ñ Hence the phase variation of the difference function is

Δ∠𝐷 𝑗𝜔
−∞𝝎 ∞

= 2𝜋 ⋅ 𝒏𝒑* 𝑫 𝒔 = 2𝜋 ⋅ 𝒏𝒑*(𝑭(𝒔))
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Nyquist Stability Criterion: proof

ñ The function 𝐷 𝑠  will encircle counter-clockwise the origin of the Nyquist plane a 
number of times given by

𝒏𝒑* 𝑭 𝒔

ñ The proof is concluded taking into account that the encirclements of the origin of 
the 𝐷 𝑠  Nyquist plot correspond to the encirclements of the critical point −1 + 𝑗0  
of the F 𝑠  Nyquist plot

𝑹𝒆(𝑭(𝒔))

𝑰𝒎(𝑭(𝒔)) 

−𝟏 + 𝒋𝟎 

𝑫(𝒔)F 𝒔 = 𝑫 𝒔 − 𝟏

𝟏
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Nyquist stability criterion: example 1

ñ Let us consider again the frequency response F 𝑠 = +
+,-

𝝎 = 𝟏

𝝎 = 𝟎!𝝎 → +∞

𝝎 → −∞

𝝎 = −𝟏

𝝎 = 𝟎"

𝓝 = 𝒏𝒑- 𝑭 𝒔 = 𝟎 → 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒔𝒕𝒂𝒃𝒍𝒆 𝒄𝒍𝒐𝒔𝒆𝒅 𝒍𝒐𝒐𝒑 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
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Nyquist stability criterion: example 2

ñ Let us consider the frequency response F 𝑠 = +
+,- .

𝝎 = 𝟎!

𝝎 → +∞

∠𝐹 𝑗𝜔 = −
3
2𝜋 𝝎 = 𝟎"

𝝎 → −∞

∠𝐹 𝑗𝜔 =
3
2𝜋

𝓝 = 𝒏𝒑- 𝑭 𝒔 = 𝟎 → 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒔𝒕𝒂𝒃𝒍𝒆 𝒄𝒍𝒐𝒔𝒆𝒅 𝒍𝒐𝒐𝒑 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

𝑯𝒐𝒘𝒆𝒗𝒆𝒓 𝒕𝒉𝒆 𝒕𝒘𝒐 𝒆𝒙𝒂𝒎𝒑𝒍𝒆𝒔 𝒉𝒂𝒗𝒆 𝒂𝒏 𝒊𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆
𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 𝒓𝒐𝒃𝒖𝒔𝒕 𝒔𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚… .


