

Course of "Automatic Control Systems" 2023/24

Nyquist stability criterion

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope francesco.montefusco@uniparthenope.it

Team code: mfs9zfr

Phase variation formula

- ▲ The previous lesson the concept of phase variation has been introduced.
- A The phase variation is related to the number and sign of poles/zeros of the transfer function $F(s)|_{s=j\omega}$.

Given a transfer function $F(s)|_{s=j\omega}$, said:

- *n* the total number of poles
- *m* the total number of zeros
- $n_p(n_n)$ the number of poles with positive (negative) real part
- $m_p(m_n)$ the total number of zeros with positive (negative) real part

$$n = n_n + n_p \qquad m = m_n + m_p$$

$$\Delta \angle F(j\omega) = \pi(m_n - n_n) - \pi(m_p - n_p)$$

$$-\infty \omega \infty = \pi(m - n) - 2\pi(m_p - n_p)$$

▲ The previous phase variation formula doesn't consider the case of poles and zeros on the imaginary axis.

▲ Indeed, in case of poles and zeros on the imaginary axis the phase variation can not be defined

▲ In the following slides we will consider these two critical cases and we will illustrate how to extend the definition of phase variation

- ▲ Open loop poles on the imaginary axis (null real part), can be due to:
 - \Rightarrow One or more integrators $1/s^h$
 - * Resonance $1/(1 + s^2/\omega_n^2)^h$
- ▲ In both the cases we have a *discontinuity in the phase margin*:
 - * Integrator: passing from $\pi/2$ to $-\pi/2$ with infinite magnitude $at \omega = 0$
 - ★ Resonance: passing from 0 to $-\pi$ with infinity magnitude at $\omega = \omega_n$ and from π to 0 with infinity magnitude at $\omega = -\omega_n$

$$F(s) = \frac{1}{s(s+1)} \qquad \qquad \begin{matrix} \omega = 0^{-} \\ \omega = -\infty \\ \hline \omega = +\infty \\ \hline \omega = 0^{+} \end{matrix}$$

- ▲ In order to obtain a closed polar plot and to extend the definition of phase variation, we introduce *the closures at infinity*.
- A The closures at infinity consists in rotating clockwise the Nyquist plot of the $F(j\omega)$ in the discontinuity frequency with an infinite radius.
- ▲ With this manipulation, the contribution to the phase variation of poles on the imaginary axis will be the same as the poles with negative real part.

Phase variation with poles on the imaginary axis

- ▲ Open loop zeros on the imaginary axis (null real part), can be due to:
 - \Rightarrow One or more derivative s^h
 - $Anti-resonance (1 + s^2/\omega_n^2)^h$
- ▲ In both the cases we have a *discontinuity in the phase margin*:
 - ♦ *Derivate*: passing *from* $-\pi/2$ *to* $\pi/2$ with zero magnitude *at* $\omega = 0$
 - Anti-Resonance: passing from 0 to π with zero magnitude at $ω = ω_n$ and from −π to 0 with zero magnitude at $ω = -ω_n$

- In order to extend the definition of phase variation, we will assume that $in \ \omega = 0$ and $\omega = \omega_n$ the Nyquist plot of the frequency response $F(j\omega)$ will rotate counterclockwise with infinitesimal magnitude.
- ▲ With this manipulation, the contribution to the phase variation of zeros on the imaginary axis will be the same as the zeros with negative real part.

Phase variation with poles and zeros on the imaginary axis

 \checkmark Transfer function with resonance

Stability of the closed loop system

▲ Let us consider the $R(s) \rightarrow Y(s)$ closed loop system

- Assume that the hidden modes of the open loop function F(s) = K(s)G(s) are asymptotically stable
- ▲ The stability of the closed loop system depends on the poles of the transfer function

$$T(s) = \frac{F(s)}{1 + F(s)}$$

A Indicate with $N_F(s)$ and $D_F(s)$ the numerator and the denominator of the open loop function

$$\mathbf{F}(s) = \frac{N_F(s)}{D_F(s)} = \frac{N_K(s)N_G(s)}{D_K(s)D_G(s)},$$

 \checkmark The closed loop function can be written as

$$\mathbf{T}(s) = \frac{\frac{N_F(s)}{D_F(s)}}{1 + \frac{N_F(s)}{D_F(s)}} = \frac{N_F(s)}{D_F(s) + N_F(s)}.$$

- A The denominator of T(s) is given by the sum of $N_F(s)$ and $D_F(s)$; therefore, the design problem of a controller able to guarantee the stability of the closed loop system is to be very demanding.
- ▲ By means of the Nyquist plots and the Nyquist criteria, we are going to determine the stability of the closed loop system from the open loop system features

Let us consider a strictly proper open-loop function F(s) and assume that the Nyquist diagram of F(s) doesn't intersect the critical point -1 + j0.

Said

 $* \overline{N}$ the number of counter-clockwise encirclements of the critical point -1 + j0of the Nyquist plot of F(s)

 $* n_{p^+}(F(s))$ the number of unstable poles of F(s)

the closed loop function T(s) is asymptotically stable if and only if

 $\overleftarrow{\mathcal{N}} = n_{p+}(F(s)).$

Moreover, if $\widetilde{\mathcal{N}} \neq n_{p^+}$, the number of unstable poles of the closed loop function T(s) is equal to $n_{p^+}(F(s)) - \widetilde{\mathcal{N}}$.

▲ Let us define the so-called *Difference Function*

$$D(s) = 1 + F(s) = \frac{N_F(s) + D_F(s)}{D_F(s)}$$

 \blacktriangle It is straightforward to notice that :

* The poles of D(s) are the open loop control system poles, i.e. $D_D(s) = D_F(s)$

* The zeros of D(s) are the closed loop control system poles, i.e. $N_D(s) = D_T(s)$

- ▲ Said
 - ▲ $n_p(D(s))$ the number of poles of D(s)
 - $\land n_{p^+}(D(s))$ the number of poles with positive real part of D(s)
 - ▲ $n_z(D(s))$ the number of zeros of D(s)
 - \land $n_{z^+}(D(s))$ the number of zeros with positive real part of D(s)

The phase variation of the difference function is

$$\Delta \angle D(j\omega) = \pi \left(n_z(D(s)) - n_p(D(s)) \right) - 2\pi \left(n_{z^+}(D(s)) - n_{p^+}(D(s)) \right)$$

- ▲ However,
 - 1. F(s) strictly proper $\rightarrow D(s) = 1 + F(s) = \frac{N_F(s) + D_F(s)}{D_F(s)}$ proper and than

 $n_p(D(s)) = n_z(D(s))$

2. Taking into account that $N_D(s) = D_T(s)$ and it is required the closed loop stability of the system, than

 $n_{z^+}\big(D(s)\big)=0$

▲ Hence the phase variation of the difference function is

$$\Delta \angle D(j\omega) = 2\pi \cdot n_{p^{+}}(D(s)) = 2\pi \cdot n_{p^{+}}(F(s))$$

A The function D(s) will encircle counter-clockwise the origin of the Nyquist plane a number of times given by

 $n_{p^+}(F(s))$

A The proof is concluded taking into account that the encirclements of the origin of the D(s) Nyquist plot correspond to the encirclements of the critical point -1 + j0 of the F(s) Nyquist plot

Nyquist stability criterion: example 1

 \blacktriangle Let us consider again the frequency response

 $F(s) = \frac{1}{1+s}$

$\mathcal{N} = n_{p+}(F(s)) = 0 \rightarrow asymptotically stable closed loop function$

Nyquist stability criterion: example 2

 $\widetilde{\mathcal{N}} = n_{p+}(F(s)) = 0 \rightarrow asymptotically stable closed loop function$

However the two examples have an important difference in terms of robust stability