
Propositional Logic: Inference rules

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 12

Artificial Intelligence

Inference: General concepts

• Two sentences 𝛼 and 𝛽 are logically equivalent (𝛼 ≡ 𝛽), if they are
true under the same models, i.e., if and only if
• 𝛼	 ⊨ 𝛽 and 𝛽 ⊨ 𝛼
• For instance (P ⋀ Q)≡(Q ⋀ P)

• A sentence is valid if it is true in all models
• It is also called a tautology

• P ∨ ¬P

• A sentence is satisfiable if it is true only in some model
• P ⋀ Q

Inference: General concepts

• Two useful properties related to the above concepts
• Deduction theorem

• For any 𝛼 and 𝛽, 𝛼	 ⊨ 𝛽 if and only if 𝛼	⇒ 𝛽 is valid
• Hence, given a set KB of premises and a possible conclusion, the model-checking

inference algorithm works by checking whether KB ⇒ 𝛼 is valid

• satisfiability is related to the standard mathematical proof technique of reductio
ad absurdum (proof by refutation or by contradiction):

 𝛼 ⊨ 𝛽 if and only if (𝛼 ∧ ¬ 𝛽) is unsatisfiable

Inference Rules

• Practical inference algorithms are based on inference rules to avoid the
exponential computational complexity of model checking

• An inference rule represents a standard pattern of inference:
• it implements a simple reasoning step whose soundness can be easily proven

and applied to a set of premises with a specific structure to derive a conclusion

• Inference rules are represented as follows:

53

Inference rules

To avoid the exponential computational complexity of model
checking, practical inference algorithms are based on inference
rules.

An inference rule represents a standard pattern of inference: it
implements a simple reasoning step whose soundness can be
easily proven, that can be applied to a set of premises having a
specific structure to derive a conclusion.

Inference rules are represented as follows:

premises
conclusion

Examples of Inference Rules

• The first five rules easily generalize to any set of sentences 𝛼1, …, 𝛼n

54

Examples of inference rules

In the following, – and — denote any propositional sentences.

And Elimination –1·–2
–i

, i = 1, 2
And Introduction –1,–2

–1·–2
Or Introduction –1

–1‚–2
(–2 can be any sentence)

First De Morgan’s law ¬(–1·–2)
¬–1‚¬–2

Second De Morgan’s law ¬(–1‚–2)
¬–1 · ¬–2

Double Negation ¬(¬–)
–

Modus Ponens –∆—, –
—

The first five rules above easily generalize to any set of sentences
–1, . . . , –n.

Soundness of Inference Rules

• Since inference rules usually involve a few sentences, their
soundness can be easily proven using model checking

• Example: Modus Ponens

55

Soundness of inference rules

Since inference rules usually involve a few sentences, their
soundness can be easily proven using model checking.

An example: Modus Ponens

premise conclusion premise
– — – ∆ —

false false true
false true true
true false false
true true true

Inference Rules

• Modus Ponens

 If it is raining, then Harry is inside
 It is raining

 Harry is inside

Modus Ponens

α → β

α

β

Modus Ponens

Inference Rules

• And Elimination

Harry is friends with Ron and Hermione

 Harry is friend with Hermione

And Elimination

α ∧ β

α

And Elimination

Inference Rules

• Double Negation Elimination

 It is not true that Harry did not pass the test

 Harry passed the test

Double Negation Elimination

¬(¬α)

α

Double Negation Elimination

Inference Rules

• Implication Elimination

If it is raining, then Harry is inside

 It is not raining or Harry is inside

Implication Elimination

α → β

¬α ∨ β

Implication Elimination

Inference Rules

• Biconditional elimination

It is raining if and only if Harry is inside

If it is raining, then Harry is inside, and if Harry is inside, then it is
raining

Biconditional Elimination

α ↔ β

(α → β) ∧ (β → α)

Biconditional Elimination

De Morgan’s Law

It is not true that both Harry and Ron passed the test

Harry did not pass the test or Ron did not pass the test

De Morgan’s Law

¬(α ∧ β)

¬α ∨ ¬β

De Morgan's Law

De Morgan’s Law

It is not true that Harry or Ron passed the test

 Harry did not pass the test and Ron did not pass the test

De Morgan’s Law

¬(α ∨ β)

¬α ∧ ¬β

De Morgan's Law

Distributive Property

(α ∧ (β ∨ γ))

(α ∧ β) ∨ (α ∧ γ)

Distributive Property

Distributive Property

(α ∨ (β ∧ γ))

(α ∨ β) ∧ (α ∨ γ)

Distributive Property

Inference Algorithms

• Given a set of premises KB and a hypothetical conclusion 𝛼, the
goal of an inference algorithm A is to find a proof KB ⊢! 𝛼 (if any)
• A sequence of applications of inference rules that leads from KB to 𝛼

Inference Algorithms: Example

• In the initial configuration of the Wumpus game shown in the figure
below, the agent’s KB includes

• The agent can be interested in knowing whether room (1,2) contains a
pit, i.e., whether KB ⊨ P1,2:
• Applying modus ponens to (a) and (b) it derives (c) ¬P1,2 ⋀ ¬P2,1

• Applying And elimination to (c), it derives ¬P1,2

• Hence, it can conclude that room (1,2) does not contain a pit
57

Inference algorithms: an example

In the initial configuration of the wumpus game shown in the
figure below, the agent’s KB includes:

(a) ¬B1,1 (current percept)
(b) ¬B1,1 ∆ ¬P1,2 · ¬P2,1

(one of the rules of the game)

84 Chapter 7. Logical Agents

PIT

1 2 3 4

1

2

3

4

START

Stench

Stench

Breeze

Gold

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Figure 7.2 FILES: figures/wumpus-world.eps (Tue Nov 3 16:24:13 2009). A typical wumpus
world. The agent is in the bottom left corner, facing right.The agent can be interested in knowing whether room (1, 2)

contains a pit, i.e., whether KB |= P1,2:
I applying Modus Ponens to (a) and (b) it derives:

(c) ¬P1,2 · ¬P2,1
I applying And elimination to (c), it derives ¬P1,2

So, it can conclude that room (1, 2) does not contain a pit.

Search Problems

• Initial state
• Actions
• Transition model
• Goal test
• Path cost function

Theorem Proving as a Search Problem

• Initial state: starting knowledge base

• Actions: inference rules

• Transition model: new knowledge base after inference

• Goal test: check statement we’re trying to prove

• Path cost function: number of steps in proof

Proof by Resolution

• What about the completeness of the inference algorithm?
• If the search algorithm that uses the inference rule is complete and the

rules are adequate the inference algorithm is complete
• However, if the inference rule is not adequate, for instance, the goal is

unreachable
• Therefore, we turn on a single inference rule, the resolution, that yields a

complete inference algorithm when coupled with any complete search
algorithm

Resolution

(Ron is in the Great Hall) ∨ (Hermione is in the library)

Ron is not in the Great Hall

Hermione is in the library

• Resolution is based on another inference rule that let us prove anything that
can be proven about a KB

Resolution: Unit Resolution Rule

P ∨ Q

¬P

Q

Resolution
P ∨ Q1 ∨ Q2 ∨ ...∨ Qn

¬P

Q1 ∨ Q2 ∨ ...∨ Qn
• The two statements resolve to produce a new statement
• that is, Q1 ∨ … ∨ Qn

Resolution

(Ron is in the Great Hall) ∨ (Hermione is in the library)

(Ron is not in the Great Hall) ∨ (Harry is sleeping)

(Hermione is in the library) ∨ (Harry is sleeping)

Resolution

P ∨ Q

¬P ∨ R

Q ∨ R

Resolution

P ∨ Q1 ∨ Q2 ∨ ...∨ Qn

¬P ∨ R1 ∨ R2 ∨ ...∨ Rm

Q1 ∨ Q2 ∨ ...∨ Qn ∨ R1 ∨ R2 ∨ ...∨ Rm

Clause and Conjunctive Normal Form
• A disjunction of literals
• e.g. P ∨ Q ∨ R

• Disjunction means literals connected with or

• Conjunction means literals connected with and

• Literal is either a propositional symbol or the opposite of a propositional
symbol

• Any logical sentence can be turned into a conjunctive normal form (CNF)
• That is, a logical sentence that is a conjunction of clauses

conjunctive normal form

logical sentence that is a conjunction of
clauses

e.g. (A ∨ B ∨ C) ∧ (D ∨ ¬E) ∧ (F ∨ G)

Conversion to CNFConversion to CNF

• Eliminate biconditionals

• turn (α ↔ β) into (α → β) ∧ (β → α)

• Eliminate implications

• turn (α → β) into ¬α ∨ β

• Move ¬ inwards using De Morgan's Laws

• e.g. turn ¬(α ∧ β) into ¬α ∨ ¬β

• Use distributive law to distribute ∨ wherever possible

Conversion to CNFConversion to CNF

(P ∨ Q) → R

¬(P ∨ Q) ∨ R

(¬P ∧ ¬Q) ∨ R

(¬P ∨ R) ∧ (¬Q ∨ R)

eliminate implication

De Morgan's Law

distributive law

• Converting into a CNF is useful in order to apply the resolution
• Inference by resolution

Inference by Resolution

P ∨ Q

¬P ∨ R

(Q ∨ R)

Inference by Resolution

P ∨ Q ∨ S

¬P ∨ R ∨ S

(Q ∨ S ∨ R ∨ S)

Factoring -> eliminates all redundant variables

Inference by Resolution
P

¬P

()

• The empty clause is always false
• This is the base of the inference by resolution algorithm

Empty clause

Inference by Resolution

• To determine if KB ⊨ 𝛼:
• Check if (KB ⋀ ¬𝛼) is a contradiction?

• If so, then KB ⊨ 𝛼
• Otherwise, no entailment

• In practice
• Convert if (KB ⋀ ¬𝛼) to Conjunctive Normal Form
• Keep checking to see if we can use the resolution to produce a new clause

• If ever we produce the empty clause (equivalent to False), we have a contradiction,
and KB ⊨ 𝛼

• Otherwise, if we can’t add new clauses, no entailment

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(A ∨ B) (¬B ∨ C) (¬C) (¬A)

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(A ∨ B) (¬B ∨ C) (¬C) (¬A)

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A)

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A)

Inference by Resolution
Inference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A)

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A) (A)

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A) (A)

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A) (A)

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A) (A) ()

Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B) (¬B ∨ C) (¬C) (¬A) (A) ()

Horn Clauses

• In many domains of practical interest, the whole KB can be encoded as Horn clauses
• Disjunction of literals of which at most one is positive

• For instance, (¬P ∨ Q ∨ ¬S) is a Horn clause

• Horn clauses can be expressed as implications in which
• The antecedent is a conjunction (⋀) of atomic sentences (non-negated propositional

symbols)
• The consequent is a single atomic sentence

 P1 ⋀ P2 ⋀ … ⋀ Pn ⇒ Q
• As a special case, also atomic sentences (i.e., proposition symbols) and their negation can

be rewritten as Horn clauses
• Since (P ⇒ Q) ⟺ (¬P ∨ Q):

61

Horn clauses
In many domains of practical interest, the whole KB can be
expressed in the form of “if... then...” propositions that can be
encoded as Horn clauses, i.e., implications where:
I the antecedent is a conjunction (·) of atomic sentences

(non-negated propositional symbols)
I the consequent is a single atomic sentence

P1 · . . . · Pn ∆ Q

For instance, S2,1 · S4,1 · S3,2 ∆ W3,1 is a Horn clause.

As particular cases, also atomic sentences (i.e., propositional
symbols) and their negation can be rewritten as Horn clauses.
Indeed, since (P ∆ Q) … (¬P ‚ Q):

P … ¬True ‚ P … True ∆ P
¬P … ¬P ‚ False … P ∆ False

Forward and Backward Chaining

• Two practical inference algorithms exist when
• The KB can be expressed as a set of Horn clauses
• The conclusion is an atomic and non-negated sentence

• These algorithms, named Forward and Backward Chaining, exhibit
the following characteristics
• A single inference rule: Modus Ponens
• Completeness
• Linear computational complexity in the size of the KB

Forward Chaining

• Given a Horn clauses-formed KB, Forward Chaining (FC) derives all
the entailed (non-negated) sentences

63

Forward chaining

Given a KB made up by Horn clauses, Forward Chaining (FC)
derives all the entailed atomic (non-negated) sentences:

function Forward-chaining (KB)
repeat

apply MP in all possible ways to sentences in KB
add to KB the derived sentences not already present (if any)

until some sentences not yet present in KB have been derived
return KB

Forward Chaining

• FC is an example of data-driven reasoning
• it starts from known data and derives its consequences

• For instance, in the Wumpus game
• FC could be used to update the agent’s knowledge about the environment (the presence

of pits in each room, etc.), based on the new percepts after each move

• The inference engine of expert systems is inspired by the FC inference
algorithm

Forward Chaining Example

• Consider a KB made up of Horn clauses
1. P ⟹ Q
2. L ⋀ M ⟹ P
3. B ⋀ L ⟹ M
4. A ⋀ P ⟹ L
5. A ⋀ B ⟹ L
6. A
7. B
…

Forward Chaining Example

• Through FC we get
8. The only implication whose premises (individual symbols) are in the KB is 5:

• MP derives L and adds it to the current KB

9. Now the premises of 3 are all true:
• MP derives M and adds it to the KB

10. The premises of 2 have become all true:
• MP derives P and adds it to the KB

11. The premises of 1 and 4 are now all true:
• MP derives Q from 1 and adds it to the KB, but disregards 4 since its consequent (L) is

already in the KB

12. No new sentences can be derived from 1-11:
• FC ends and returns the updated KB containing the original sentences 1-7 and the

ones derived in the above steps: {L, M, P, Q}

Backward Chaining

• For a given KB made up of Horn clauses, and a given atomic, non-
negated sentence 𝛼, FC can be used to prove whether KB ⊨ 𝛼
• So, one must check if 𝛼 is present or not among the derived sentences

• In this case, Backward Chaining (BC) is more effective
• It recursively applies MP backward, since KB ⊨ 𝛼 iff

• Either 𝛼 in KB or
• KB contains some implication 𝛽1, …, 𝛽n ⟹ 	𝛼 and (recursively) KB ⊨ 𝛽1,…, KB ⊨ 𝛽n

• The sentence 𝛼 to be proved is called a query

Backward Chaining

68

Backward Chaining

function Backward-chaining (KB, –)
if – œ KB then return True
let B be the set of sentences of KB having – as the consequent
for each — œ B

let —1, —2, . . . be the propositional symbols in the antecedent of —
if Backward-Chaining (KB, —i) = True for all —i ’s
then return True

return False

Backward Chaining

• BC is a form of goal-directed reasoning
• in the Wumpus game, it could be used to answer queries like given the current

agent’s knowledge, is moving upward the best action?

• The computational complexity of BC is even lower than FC since BC
focuses only on relevant sentences

• The Prolog inductive logic programming language is based on the
predicate logic version of the BC inference algorithm

Backward Chaining Example

• Consider a KB representing the rules followed by a financial institution
for deciding whether to grant a loan to an individual

• The following proposition symbols are used
• OK -> the loan should be approved
• COLLAT -> the collateral for the loan is satisfactory
• PYMT -> the applicant is able to repay the loan
• REP -> the applicant has a good financial reputation
• APP -> the appraisal on the collateral is sufficiently greater than the loan amount
• RATING -> the applicant has a good credit rating
• INC -> the applicant has a good, steady income
• BAL -> the applicant has an excellent balance sheet

Backward Chaining Example

• The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all Horn clauses)

• Should the loan be approved for this specific applicant?
• This amount to prove whether OK is entailed by the KB

• KB ⊨ OK

71

Backward Chaining: an example

The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all of them are Horn clauses):

1. COLLAT · PYMT · REP ∆ OK

2. APP ∆ COLLAT

3. RATING ∆ REP

4. INC ∆ PYMT

5. BAL · REP ∆ OK

6. APP

7. RATING

8. INC

9. ¬BAL

Should the loan be approved for this specific applicant?
This amounts to prove whether OK is entailed by the KB, i.e., whether:

KB |= OK

Backward Chaining Example

• The BC recursive proof KB ⊢!" OK can be conveniently represented as
an AND-OR graph, a tree-like graph in which
• multiple links joined by an arc indicate a conjunction:

• every linked proposition must be proven for proving the proposition in the parent node

• multiple links without an arc indicate a disjunction:
• any linked proposition can be proven for proving prove the proposition in the parent node

Backward Chaining Example

• The first call Backward-Chaining(KB,OK) is represented by the tree root,
corresponding to the sentence to be proved
• OK

• Since OK ∉ KB, implications having OK as the consequent are searched for

• There are two such sentences: 1 and 5
• The BC procedure tries to prove all the antecedents of at least one of them. Considering

first 5, a recursive call to Backward-chaining is made for each of its two antecedents,
represented by an AND-link:

73

Backward Chaining: an example

The first call Backward-chaining(KB, OK) is represented by the tree
root, corresponding to the sentence to be proven:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

Since OK /œ KB, implications having OK as the consequent are searched
for. There are two such sentences: 1 and 5. The BC procedure tries to
prove all the antecedents of at least one of them. Considering first 5, a
recursive call to Backward-chaining is made for each of its two
antecedents, represented by an AND-link:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

71

Backward Chaining: an example

The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all of them are Horn clauses):

1. COLLAT · PYMT · REP ∆ OK

2. APP ∆ COLLAT

3. RATING ∆ REP

4. INC ∆ PYMT

5. BAL · REP ∆ OK

6. APP

7. RATING

8. INC

9. ¬BAL

Should the loan be approved for this specific applicant?
This amounts to prove whether OK is entailed by the KB, i.e., whether:

KB |= OK

Backward Chaining Example

• Consider the call Backward-Chaining(KB,REP)
• Since REP ∉ KB, and the only implication having REP as consequent is 3, another

recursive call is made for the antecedent of 3

• The call Backward-Chaining(KB,RATING) returns True, since RATING ∈ KB,
and thus also the call Backward-Chaining(KB,REP) returns True

74

Backward Chaining: an example
Consider the call Backward-chaining(KB, REP): since REP /œ KB,
and the only implication having REP as the consequent is 3, another
recursive call is made for the antecedent of 3:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The call Backward-chaining(KB, RATING) returns True, since
RATING œ KB, and thus also the call Backward-Chaining(KB,
REP) returns True:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

74

Backward Chaining: an example
Consider the call Backward-chaining(KB, REP): since REP /œ KB,
and the only implication having REP as the consequent is 3, another
recursive call is made for the antecedent of 3:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The call Backward-chaining(KB, RATING) returns True, since
RATING œ KB, and thus also the call Backward-Chaining(KB,
REP) returns True:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

71

Backward Chaining: an example

The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all of them are Horn clauses):

1. COLLAT · PYMT · REP ∆ OK

2. APP ∆ COLLAT

3. RATING ∆ REP

4. INC ∆ PYMT

5. BAL · REP ∆ OK

6. APP

7. RATING

8. INC

9. ¬BAL

Should the loan be approved for this specific applicant?
This amounts to prove whether OK is entailed by the KB, i.e., whether:

KB |= OK

Backward Chaining Example

• However, the call Backward-Chaining(KB,BAL) returns False since BAL ∉ KB and there
are no implications having BAL as a consequent

• Hence, the first call Backward-Chaining(KB,OK) is not able to prove OK through this
AND-link

• The other sentence in the KB having OK as the consequent, 1, is now considered,
and another AND-link is generated with three recursive calls for each of the
antecedents of 1

75

Backward Chaining: an example
However, the call Backward-chaining(KB, BAL) returns False, since
BAL /œ KB and there are no implications having BAL as the consequent.
Therefore, the first call Backward-chaining(KB, OK) is not able to
prove OK through this AND-link:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The other sentence in the KB having OK as the consequent, 1, is now
considered, and another AND-link is generated with three recursive calls
for each of the antecedents of 1:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

75

Backward Chaining: an example
However, the call Backward-chaining(KB, BAL) returns False, since
BAL /œ KB and there are no implications having BAL as the consequent.
Therefore, the first call Backward-chaining(KB, OK) is not able to
prove OK through this AND-link:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The other sentence in the KB having OK as the consequent, 1, is now
considered, and another AND-link is generated with three recursive calls
for each of the antecedents of 1:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

71

Backward Chaining: an example

The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all of them are Horn clauses):

1. COLLAT · PYMT · REP ∆ OK

2. APP ∆ COLLAT

3. RATING ∆ REP

4. INC ∆ PYMT

5. BAL · REP ∆ OK

6. APP

7. RATING

8. INC

9. ¬BAL

Should the loan be approved for this specific applicant?
This amounts to prove whether OK is entailed by the KB, i.e., whether:

KB |= OK

Backward Chaining Example

• The call Backward-Chaining(KB,COLLAT) generates in turn another recursive call to
prove the antecedent of the only implication having COLLAT as the consequent, 2:

• The call Backward-Chaining(KB,APP) returns True, since APP ∈ KB, and thus also
Backward-Chaining(KB,COLLAT) returns True

76

Backward Chaining: an example

The call Backward-chaining(KB, COLLAT) generates in turn
another recursive call to prove the antecedent of the only implication
having COLLAT as the consequent, 2:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The call Backward-chaining(KB, APP) returns True, since
APP œ KB, and thus also Backward-Chaining(KB, COLLAT)
returns True

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

76

Backward Chaining: an example

The call Backward-chaining(KB, COLLAT) generates in turn
another recursive call to prove the antecedent of the only implication
having COLLAT as the consequent, 2:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The call Backward-chaining(KB, APP) returns True, since
APP œ KB, and thus also Backward-Chaining(KB, COLLAT)
returns True

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

71

Backward Chaining: an example

The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all of them are Horn clauses):

1. COLLAT · PYMT · REP ∆ OK

2. APP ∆ COLLAT

3. RATING ∆ REP

4. INC ∆ PYMT

5. BAL · REP ∆ OK

6. APP

7. RATING

8. INC

9. ¬BAL

Should the loan be approved for this specific applicant?
This amounts to prove whether OK is entailed by the KB, i.e., whether:

KB |= OK

Backward Chaining Example

• Similarly, the calls Backward-Chaining(KB,PYMT) and Backward-
Chaining(KB,REP) return True

• The corresponding AND-link is the proved, which finally allows the first
call Backward-Chaining(KB,OK) to return True

• The proof KB ⊢!" OK is then successfully completed

77

Backward Chaining: an example

Similarly, the calls Backward-chaining(KB, PYMT) and
Backward-Chaining(KB, REP) return True.

The corresponding AND-link is then proven, which finally allows the first
call Backward-chaining(KB, OK) to return True:

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC RATING

The proof KB „BC OK is then successfully completed.
71

Backward Chaining: an example

The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all of them are Horn clauses):

1. COLLAT · PYMT · REP ∆ OK

2. APP ∆ COLLAT

3. RATING ∆ REP

4. INC ∆ PYMT

5. BAL · REP ∆ OK

6. APP

7. RATING

8. INC

9. ¬BAL

Should the loan be approved for this specific applicant?
This amounts to prove whether OK is entailed by the KB, i.e., whether:

KB |= OK

Exercise

• Construct the agent’s KB for the Wumpus game

• The KB should contain
• The rules of the game

• The agent starts in room (1,1), there is a breeze in rooms adjacent to pits, etc.

• rules to decide the agent’s move at each step of the game

• Note that the KB must be updated at each step of the game
1. Adding percepts in the current room (from sensors)
2. Reasoning to derive new knowledge about the position of pits and Wumpus
3. Reasoning to decide the next move
4. Updating the agent’s position after a move

Limitations of propositional logic

• Main problems
• Limited expressive power

• Inferences involving the structure of atomic sentences (e.g., All men are mortal, …)
cannot be made

• Lack of conciseness
• Even small KBs (in natural language) require many propositional symbols and

sentences

From Propositional to Predicate Logic

• The description of many domains of interest for real-world applications (e.g.,
mathematics, philosophy, AI) involves the following elements in natural language:
• nouns denoting objects (or persons), e.g.: Wumpus and pits; Socrates and Plato; the numbers one,

two, etc.

• predicates denoting properties of individual objects and relations between them, e.g.: Socrates is
a man, five is prime, four is lower than five; the sum of two and two equals four

• some relations between objects can be represented as functions, e.g.: “father of”, “two plus two”
• facts involving some or all objects, e.g.: all squares neighboring the Wumpus are smelly; some

numbers are prime

• These elements cannot be represented in propositional logic, and require the more
expressive predicate logic
• The predicate logic version of the Resolution algorithm is used in automatic theorem provers, to

assist mathematicians to develop complex proofs

