Course of
 "Automatic Control Systems" 2023/24

Nyquist plots

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences
Università degli Studi di Napoli Parthenope
francesco.montefusco@uniparthenope.it
Team code: $\mathbf{m f s} 9$ zfr

Stability of the closed loop system

A Let us consider the $R(s) \rightarrow Y(s)$ closed loop system

A Assume that the hidden modes of the open loop function $F(s)=K(s) G(s)$ are asymptotically stable

A The stability of the closed loop system depends on the poles of the transfer function

$$
\mathrm{T}(s)=\frac{F(s)}{1+F(s)}
$$

Stability of the closed loop system

A Indicate with $N_{F}(s)$ and $D_{F}(s)$ the numerator and the denominator of the open loop function

$$
\mathrm{F}(s)=\frac{N_{F}(s)}{D_{F}(s)}=\frac{N_{K}(s) N_{G}(s)}{D_{K}(s) D_{G}(s)},
$$

A The closed loop function can be written as

$$
\mathrm{T}(s)=\frac{\frac{N_{F}(s)}{D_{F}(s)}}{1+\frac{N_{F}(s)}{D_{F}(s)}}=\frac{N_{F}(s)}{D_{F}(s)+N_{F}(s)} .
$$

A The denominator of $T(s)$ is given by the sum of $N_{F}(s)$ and $D_{F}(s)$; therefore, the design problem of a controller able to guarantee the stability of the closed loop system is to be very demanding.

A By means of the Nyquist plots and the Nyquist criteria, we are going to determine the stability of the closed loop system from the open loop system features

Nyquist plots

A The Nyquist plots are polar diagrams of the transfer function $\left.F(s)\right|_{s=j \omega}$

A They are an alternative solution to the Bode diagrams for the representation of the transfer functions.

A In a Nyquist plot magnitude and phase of $\boldsymbol{F}(\boldsymbol{j} \omega)$ are represented by a curve parametrized in $\boldsymbol{\omega}$.
$F(s)$ is represented in the polar plane as a function of $\boldsymbol{j} \omega$ assuming ω moving
from 0 to $+\infty$

$$
\left|F\left(j \omega^{*}\right)\right|
$$

Nyquist plots: example 1

A The Nyquist plots can be obtained from the magnitude and phase Bode plots of

$$
F(s)=\frac{1}{1+s}
$$

A Note that a single point on the Nyquist plots can also indicate the value of $F(j \omega)$ in a finite interval of ω.

Nyquist plots: first-order open loop system

$F(s)=\frac{k}{1+s \tau}, \tau=1 \mathrm{~s}, \quad F(j \omega)=\left.F(s)\right|_{s=j \omega} . \quad|F(j \omega)|=k\left|\frac{1}{1+j \omega \tau} \frac{1-j \omega \tau}{1-j \omega \tau}\right|=\frac{k \sqrt{1+(\omega \tau)^{2}}}{1+(\omega \tau)^{2}}=\frac{k}{\sqrt{1+(\omega \tau)^{2}}} ;$
$|F(j \omega)|_{\mathrm{dB}}=20 \log _{10}|F(j \omega)| ; \quad \arg F(j \omega)=-\arg (1+j \omega \tau)=-\tan ^{-1}(\omega \tau)$.

Nyquist plots: second-order open loop system

$$
|F(j \omega)|=\frac{1}{\sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+\left(\frac{2 \zeta}{\omega_{n}}\right)^{2}}}, \quad \arg F(j \omega)=-\tan ^{-1} \frac{\frac{2 \zeta}{\omega_{n}}}{1-\frac{\omega^{2}}{\omega_{n}^{2}}} .
$$

$$
|F(j \omega)|_{\mathrm{dB}}=-20 \log _{10} \sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+\left(\frac{2 \zeta}{\omega_{n}}\right)^{2}}
$$

Nyquist plots: third-order open loop system

Nyquist plot for the closed loop stability analysis

A A precise representation of the Nyquist plots from magnitude and phase Bode plots isn't an easy job.

A However, if we focus on the closed loop stability performance, only a limited set of points on the Nyquist point need to be traced precisely:

1. Intersection of the diagram with the unit circle
2. Intersection of the diagram with the negative real axis.

Indeed, it is of interest to verify if the diagram intersects, encircles the Critical point - $\mathbf{1}+\mathbf{j 0}$

Phase variation

A For the analysis of closed loop system an important parameter to be considered is the Phase Variation

$$
\begin{aligned}
& \Delta \angle F(j \omega) \\
& -\infty \omega \infty
\end{aligned}
$$

defined as the phase variation of $\mathrm{F}(\mathrm{j} \omega)$ when ω moves from $-\infty$ to ∞ counted positive if counterclockwise.

A In order to evaluate the phase variation, we also need to plot $F(j \omega)$ when ω moves from $-\infty$ to 0 .

A For polynomial functions

$$
\begin{array}{ll}
\operatorname{Re}(F(-j \omega))=\operatorname{Re}(F(j \omega)) & \text { Pair function } \\
\operatorname{Im}(F(-j \omega))=-\operatorname{Im}(F(j \omega)) & \text { Odd function }
\end{array}
$$

A Hence, the Nyquist plots of $F(j \omega)$ for negative and positive angular frequencies are symmetric wrt the real axis.

Nyquist plot and phase variation: example

PTRTHENOP
A Let us consider again the transfer function

$$
F(s)=\frac{1}{1+s}
$$

$$
\begin{aligned}
& \Delta \angle F(j \omega)=-\pi \\
& -\infty \omega \infty
\end{aligned}
$$

Nyquist plot and phase variation: example

A Let us consider the transfer function

$$
F(s)=\frac{1}{(1+s)^{3}}
$$

Formula for the phase variation

A In the following we propose a formula for the phase variation of a transfer function $F(j \omega)$ as a function of the number and sign of $F(j \omega)$ poles and zeros

A We will first evaluate the phase variation due to real no null poles and zeros.

A Then, we will extend the evaluation to the case of complex poles and zeros having a null real part.

Phase variation for negative real poles and zeros

ARTHENORE

Negative real zero ($\tau>0$)

$$
F(s)=1+\tau s \rightarrow \begin{gathered}
\widehat{\Delta L j(j \omega)} \\
-\infty \omega \infty
\end{gathered}
$$

Negative real pole $(\boldsymbol{\tau}>\mathbf{0})$

$$
F(s)=\frac{1}{1+\tau s} \rightarrow \underset{-\infty \omega \infty}{\Delta \angle F(j \omega)}=-\pi
$$

Phase variation for positive real poles and zeros

Positive real zero ($\boldsymbol{\tau}<\mathbf{0}$)
$F(s)=1+\tau s \rightarrow \underset{-\infty \omega \infty}{\Delta \angle F(j \omega)}=-\pi$

Positive real pole ($\tau<0$)

$$
F(s)=\frac{1}{1+\tau s} \rightarrow \underset{\substack{\Delta F(j \omega) \\-\infty \omega \infty}}{\infty}=\pi
$$

Phase variation for complex poles with $\zeta \neq 0$

Negative complex poles ($\zeta>0$)

$$
F(s)=\frac{1}{1+\frac{2 \zeta}{\omega_{n}} s+\frac{s^{2}}{\omega_{n}^{2}}} \quad \rightarrow \quad \underset{\Delta F(j \omega)}{ } \quad-\infty \omega
$$

Positive complex poles ($\zeta<0$)

$$
F(s)=\frac{1}{1+\frac{2 \zeta}{\omega_{n}} s+\frac{s^{2}}{\omega_{n}^{2}}} \quad \rightarrow \quad \stackrel{\Delta \angle F(j \omega)}{-\infty \omega \infty}=2 \pi
$$

Negative complex zeros ($\zeta>0$)

$$
F(s)=1+\frac{2 \zeta}{\omega_{n}} s+\frac{s^{2}}{\omega_{n}^{2}} \quad \rightarrow \quad \stackrel{\Delta}{\Delta} \angle F(j \omega)=2 \pi
$$

Negative complex zeros ($\zeta<0$)

$$
F(s)=1+\frac{2 \zeta}{\omega_{n}} s+\frac{s^{2}}{\omega_{n}^{2}} \quad \rightarrow \quad \underset{-\infty \omega \infty}{\Delta \angle j \omega)}=-2 \pi
$$

Phase variation formula

A The previous results allows to relate the phase variation to the number and sign of poles/zeros of the transfer function.

Given a transfer function $F(j \omega)$, said:

- n the total number of poles
- \boldsymbol{m} the total number of چeros
- $n_{p}\left(n_{n}\right)$ the number of poles with positive (negative) real part
- $\boldsymbol{m}_{\boldsymbol{p}}\left(\boldsymbol{m}_{n}\right)$ the total number of zeros with positive (negative) real part

$$
\begin{array}{rl}
\boldsymbol{n}=\boldsymbol{n}_{\boldsymbol{n}}+\boldsymbol{n}_{\boldsymbol{p}} & \boldsymbol{m}=\boldsymbol{m}_{\boldsymbol{n}}+\boldsymbol{m}_{\boldsymbol{p}} \\
{ }^{\Delta \angle F(j \omega)} & =\pi\left(m_{n}-n_{n}\right)-\pi\left(m_{p}-n_{p}\right) \\
-\infty \omega \infty= & \pi(m-n)-2 \pi\left(m_{p}-n_{p}\right)
\end{array}
$$

