

Course of "Automatic Control Systems" 2023/24

Nyquist plots

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: mfs9zfr

Stability of the closed loop system

 \land Let us consider the $R(s) \rightarrow Y(s)$ closed loop system

- Assume that the hidden modes of the open loop function F(s) = K(s)G(s) are asymptotically stable
- ▲ The stability of the closed loop system depends on the poles of the transfer function

$$T(s) = \frac{F(s)}{1 + F(s)}$$

Stability of the closed loop system

A Indicate with $N_F(s)$ and $D_F(s)$ the numerator and the denominator of the open loop function

$$F(s) = \frac{N_F(s)}{D_F(s)} = \frac{N_K(s)N_G(s)}{D_K(s)D_G(s)},$$

▲ The closed loop function can be written as

$$\mathbf{T}(s) = rac{rac{N_F(s)}{D_F(s)}}{1 + rac{N_F(s)}{D_F(s)}} = rac{N_F(s)}{D_F(s) + N_F(s)}.$$

- The denominator of T(s) is given by the sum of $N_F(s)$ and $D_F(s)$; therefore, the design problem of a controller able to guarantee the stability of the closed loop system is to be very demanding.
- A By means of the Nyquist plots and the *Nyquist criteria*, we are going *to determine* the stability of the closed loop system from the open loop system features

Nyquist plots

 \land The Nyquist plots are polar diagrams of the transfer function $F(s)|_{s=j\omega}$

F(s) is represented in the polar plane as a function of $j\omega$ assuming ω moving from 0 to $+\infty$

- They are an alternative solution to the Bode diagrams for the representation of the transfer functions.
- A In a Nyquist plot magnitude and phase of $F(j\omega)$ are represented by a curve parametrized in ω .

Nyquist plots: example 1

The Nyquist plots can be obtained from the magnitude and phase Bode plots of

$$F(s) = \frac{1}{1+s}$$

Note that a single point on the Nyquist plots can also indicate the value of $F(j\omega)$ in a finite interval of ω .

Nyquist plots: first-order open loop system

$$F(s) = \frac{k}{1+s\tau}, \ \tau = 1 \text{ s}, \ F(j\omega) = F(s)|_{s=j\omega}. \ |F(j\omega)| = k|\frac{1}{1+j\omega\tau}\frac{1-j\omega\tau}{1-j\omega\tau}| = \frac{k\sqrt{1+(\omega\tau)^2}}{1+(\omega\tau)^2} = \frac{k}{\sqrt{1+(\omega\tau)^2}};$$

$$|F(j\omega)|_{\mathrm{dB}} = 20\log_{10}|F(j\omega)|; \quad \arg F(j\omega) = -\arg(1+j\omega\tau) = -\tan^{-1}(\omega\tau).$$

Nyquist plots: second-order open loop system

$$F(s) = \frac{1}{\frac{s^2}{\omega_n^2} + \frac{2\zeta}{\omega_n} s + 1}, \ \omega_n = 1 \text{ rad/s}.$$

$$F(s) = \frac{1}{\frac{s^2}{\omega_n^2} + \frac{2\zeta}{\omega_n} s + 1}, \quad \omega_n = 1 \text{ rad/s.} \qquad |F(j\omega)| = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(\frac{2\zeta}{\omega_n}\right)^2}}, \quad \arg F(j\omega) = -\tan^{-1} \frac{\frac{2\zeta}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}.$$

$$|F(j\omega)|_{dB} = -20\log_{10}\sqrt{\left(1-\frac{\omega^2}{\omega_n^2}\right)^2 + \left(\frac{2\zeta}{\omega_n}\right)^2}$$

Nyquist plots: third-order open loop system

Nyquist plot for the closed loop stability analysis

- A precise representation of the Nyquist plots from magnitude and phase Bode plots isn't an easy job.
- A However, if we focus on the closed loop stability performance, only a limited set of points on the Nyquist point need to be traced precisely:
 - 1. Intersection of the diagram with the unit circle
 - 2. Intersection of the diagram with the negative real axis.

Indeed, it is of interest to verify if the diagram intersects, encircles the

Critical point -1 + j0

Phase variation

For the analysis of closed loop system an important parameter to be considered is the *Phase Variation* $\Delta \angle F(j\omega)$

 $-\infty \omega \infty$

defined as the phase variation of $F(j\omega)$ when ω moves from $-\infty$ to ∞ counted positive if counterclockwise.

- A In order to evaluate the phase variation, we also need to plot $F(j\omega)$ when ω moves from $-\infty$ to 0.
- ▲ For polynomial functions

$$Re(F(-j\omega)) = Re(F(j\omega))$$
 Pair function

$$Im(F(-j\omega)) = -Im(F(j\omega))$$
 Odd function

Hence, the Nyquist plots of $F(j\omega)$ for negative and positive angular frequencies are symmetric wrt the real axis.

Nyquist plot and phase variation: example

Let us consider again the transfer function

$$F(s) = \frac{1}{1+s}$$

Nyquist plot and phase variation: example

▲ Let us consider the transfer function

$$F(s) = \frac{1}{(1+s)^3}$$

Formula for the phase variation

In the following we propose a *formula for the phase variation* of a transfer function $F(j\omega)$ as a function of the number and sign of $F(j\omega)$ poles and zeros

▲ We will first evaluate the phase variation due to real no null poles and zeros.

▲ Then, we will extend the evaluation to the case of complex poles and zeros having a null real part.

Phase variation for negative real poles and zeros

Negative real zero ($\tau > 0$)

$$F(s) = 1 + \tau s \rightarrow \Delta \angle F(j\omega) = \pi$$

Negative real pole $(\tau > 0)$

$$F(s) = \frac{1}{1+\tau s} \rightarrow \Delta \angle F(j\omega) = -\pi$$

Phase variation for positive real poles and zeros

Positive real zero ($\tau < 0$)

$$F(s) = 1 + \tau s \rightarrow \Delta \angle F(j\omega) = -\pi$$

Positive real pole ($\tau < 0$)

$$F(s) = \frac{1}{1+\tau s} \rightarrow \Delta \angle F(j\omega) = \pi$$

0.8

0.6

0.2

0.4

Real Axis

Phase variation for complex poles with $\zeta \neq 0$

Negative complex poles ($\zeta > 0$)

$$F(s) = \frac{1}{1 + \frac{2\zeta}{\omega_n} s + \frac{s^2}{\omega_n^2}} \rightarrow \frac{\Delta \angle F(j\omega)}{-\infty \omega} = -2\pi$$

$$\Delta \angle F(j\omega) = -2\pi$$

Positive complex poles ($\zeta < 0$)

$$F(s) = \frac{1}{1 + \frac{2\zeta}{\omega_n} s + \frac{s^2}{\omega_n^2}} \rightarrow \frac{\Delta \angle F(j\omega)}{-\infty \omega} = 2\pi$$

$$\Delta \angle F(j\omega) = 2\pi$$

$$-\infty \omega \infty$$

Negative complex zeros ($\zeta > 0$)

$$F(s) = 1 + \frac{2\zeta}{\omega_n} s + \frac{s^2}{\omega_n^2} \rightarrow \frac{\Delta \angle F(j\omega)}{-\infty} = 2\pi$$

$$\Delta \angle F(j\omega) = 2\pi$$

$$-\infty \omega \infty$$

Negative complex zeros ($\zeta < 0$)

$$F(s) = 1 + \frac{2\zeta}{\omega_n} s + \frac{s^2}{\omega_n^2} \rightarrow \frac{\Delta \angle F(j\omega)}{-\infty \omega} = -2\pi$$

$$\Delta \angle F(j\omega) = -2\pi$$

Phase variation formula

▲ The previous results allows to relate the phase variation to the number and sign of poles/zeros of the transfer function.

Given a transfer function $F(j\omega)$, said:

- n the total number of poles
- m the total number of zeros
- $n_p(n_n)$ the number of poles with positive (negative) real part
- $m_p(m_n)$ the total number of zeros with positive (negative) real part

$$n = n_n + n_p \qquad m = m_n + m_p$$

$$\Delta \angle F(j\omega) = \pi(m_n - n_n) - \pi(m_p - n_p)$$

$$-\infty \omega \infty = \pi(m - n) - 2\pi(m_p - n_p)$$