

Artificial Intelligence

Knowledge Representation and Inference

LESSON 10

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Knowledge-based Agents

- Human intelligence is based on knowledge
 - People know information and facts about the world
 - Using that information, people draw conclusions
- Our interest is to focus on the ability to reason based on knowledge when applied to artificial intelligence
- We're going to develop what are known as knowledge-based agents
 - Agents that reason by operating on the internal representation of knowledge

Knowledge-Based Agents

- The core of a knowledge-based agent is the knowledge base
 - A set of sentences
- A sentence is expressed in a knowledge representation language
 - It represents an assertion about the world
- If a sentence is given without being derived from other sentences it is called an axiom
- Drawing conclusions, that is, deriving new sentences from the knowledge base is done through inference

Example from Harry Potter Saga

- Let's take one sentence that we know to be true
 - If it didn't rain, Harry visited Hagrid today
- Then take another fact.
 - Harry visited Hagrid or Dumbledore today, but not both
- Finally, consider a third piece of information
 - Harry visited Dumbledore today
- From this knowledge base, we can try to reason to draw some conclusion
 - Harry did not visit Hagrid today
 - It rained today
- It's this kind of reasoning, logical reasoning, where humans use logic, based on the known information to enrich that information and draw conclusions

Human Reasoning vs Computer Reasoning

- Humans reason about logic generally in terms of human language
 - For instance, focusing on the English language, given a few sentences we try to reason through how it is that they relate to one another
- With computers, we need to be more formal
 - It is necessary to encode the notion of *logic*, and *truth* and *falsehood* inside a machine
- Introduction of a few more terms and a few symbols that will help us to realize the notion of logic inside of artificial intelligence

Logic

- Let's start with the idea of a sentence
 - A sentence in a natural language like English is just something that one is saying
 - In the context of AI a sentence is
 - An assertion about the world in a knowledge representation language
 - some way of representing knowledge inside of computers

Knowledge-based Agents

- The knowledge base may be
 - extended with new sentences
 - An operation we can call TELL
 - Queried on what is known
 - An operation called ASK

```
function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t)) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) t \leftarrow t + 1
```

return action

- Inference satisfies the requirement that when one ASKs a question to the knowledge base, the answer should follow from what has been told (or TELLed) previously to KB
- The agent takes a percept as input and returns an action
 - The agent maintains a knowledge base, KB
 - KB contains some background knowledge

Knowledge-based Agents

- When the agent program is called, it
 - TELLs the knowledge base what it perceives
 - ASKs the knowledge base what action it should perform
 - Answering the query, a reasoning process may occur involving the current state of the world, the outcomes of possible action sequences, ...
 - 3. TELLs the knowledge base of the chosen action and returns the action to execute
- MAKE-PERCEPT-SENTENCE constructs a sentence asserting that the agent perceived the given percept at the given time
- MAKE-ACTION-QUERY constructs a sentence that asks what action should be done
 at the current time
- MAKE-ACTION-SENTENCE constructs a sentence asserting that the chosen action was executed

function KB-AGENT(*percept*) **returns** an *action* **persistent**: *KB*, a knowledge base *t*, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) $action \leftarrow Ask(KB, Make-Action-Query(<math>t$)) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$

return action

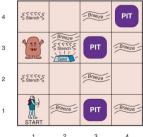
Some examples

- Automatic theorem proving
 - Write a computer program capable to prove or to refute the following statement
 - Goldbach's conjecture (1742)
 - For any even number p>=4, there exists at least one pair of prime numbers q and r (identical or not) such that

$$q + r = p$$

Some other examples

- Game playing
 - Write a computer program capable of playing the Wumpus game, a text-based computer game used in a modified version as an Al's toy-problem
 - Basic version
 - The Wumpus world: a cave made up of connected rooms, bottomless pits, a heap of gold, and the Wumpus, a beast that eats anyone who enter its room
 - Goal: starting from room (1,1), find the gold and go back to (1,1), without falling into a pit or hitting the Wumpus
 - Main rules of the game:
 - The content of any room is known only after entering it
 - In rooms neighboring the Wumpus and pits, a stench and a breeze are perceived, respectively



Knowledge-based Systems

- Humans usually solve problems like the previous ones by combining high-level abstract knowledge representation and reasoning
- Knowledge-based systems aim at automating human capabilities
 - Representing knowledge about the world
 - Reasoning to derive new knowledge and to guide action

Wumpus World Description (PEAS)

Performance measure

- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment

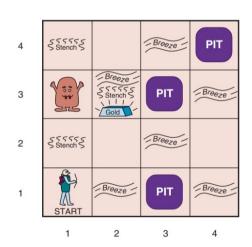
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- · Shooting kills Wumpus if you are facing it
- Shooting uses up the only arrow
- · Grabbing picks up gold if in the same square
- Releasing drops the gold in the same square

Actuators

• Left turn, Right turn, Forward, Grab, Release, Shoot

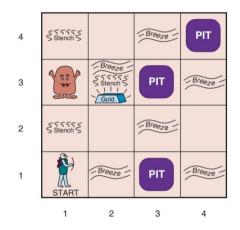
Sensors

• Breeze, Glitter, Smell



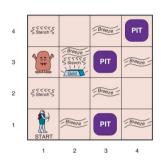
Playing the Wumpus Game

 Consider the following initial configuration of the Wumpus game, and remember that the content of any room is known only after entering it



• If you are the player, how would you reason to decide the next move to do at each game step?

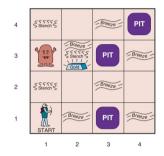
• Sketch of a possible reasoning process for deciding the next move



1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit

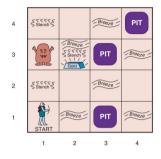
S = Stench V = Visited

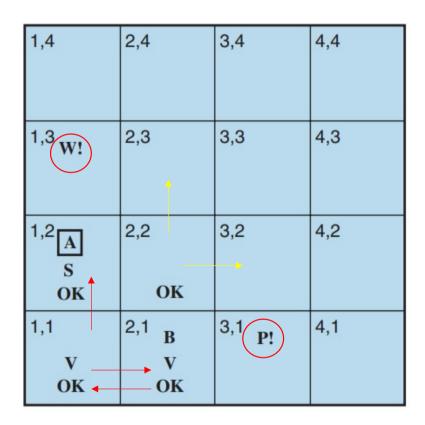


1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V — OK	2,1 A B OK	3,1 P?	4,1

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit

Y = Visited
W = Wumpus





 \mathbf{A} = Agent

B = Breeze

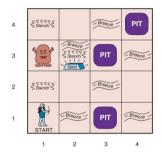
G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

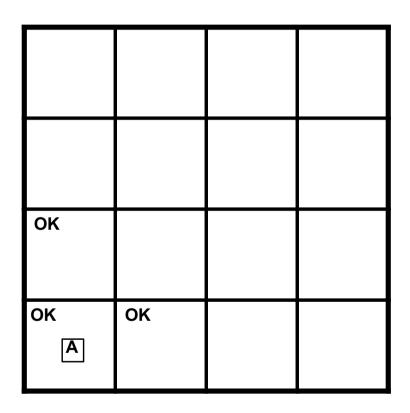
V = Visited



1,4	2,4 P?	3,4	4,4
1,3 _{W!}	2,3 A S G B	3,3 P?	4,3
1,2 S V OK	V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square

 $egin{array}{ll} \mathbf{P} &= \textit{Pit} \\ \mathbf{S} &= \textit{Stench} \\ \mathbf{V} &= \textit{Visited} \\ \mathbf{W} &= \textit{Wumpus} \end{array}$



 \mathbf{A} = Agent

B = Breeze

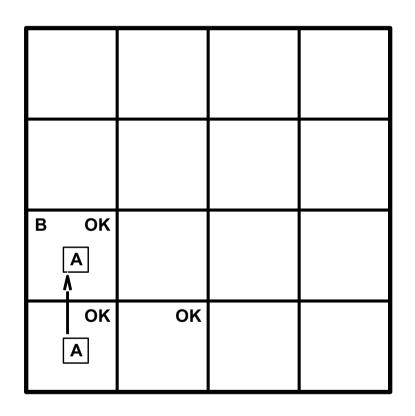
G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited



A = Agent

 $\overline{\mathbf{B}}$ = Breeze

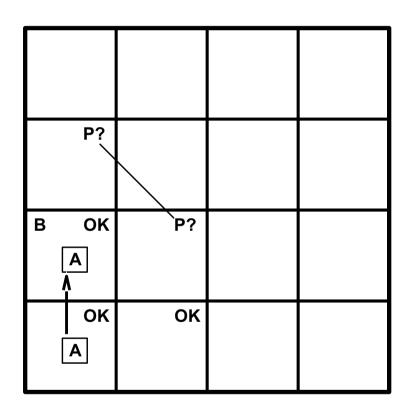
G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited



 \mathbf{A} = Agent

 $\overline{\mathbf{B}}$ = Breeze

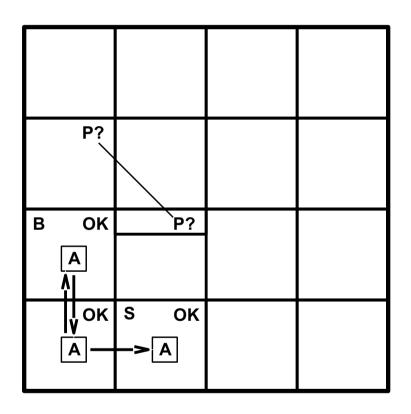
G = Glitter, Gold

OK = Safe square

 $\mathbf{P} = Pit$

S = Stench

V = Visited



 \mathbf{A} = Agent

 $\overline{\mathbf{B}}$ = Breeze

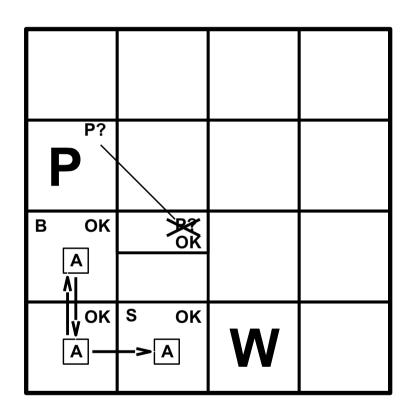
G = Glitter, Gold

OK = Safe square

 $\mathbf{P} = Pit$

S = Stench

V = Visited



 \mathbf{A} = Agent

= Breeze

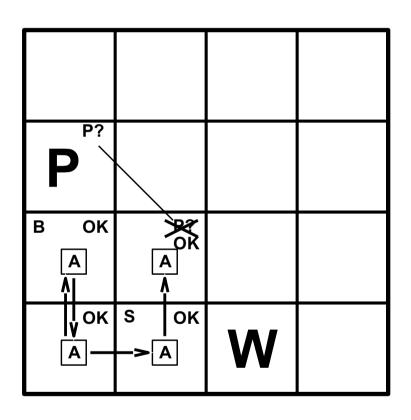
G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited



 \mathbf{A} = Agent

= Breeze

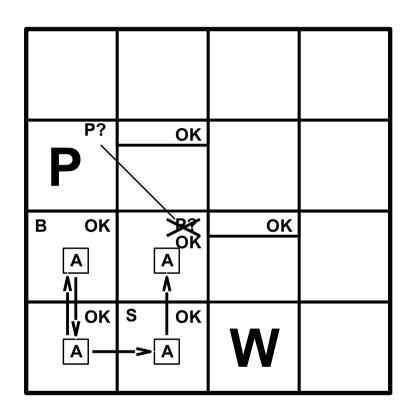
G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited



A = Agent

= Breeze

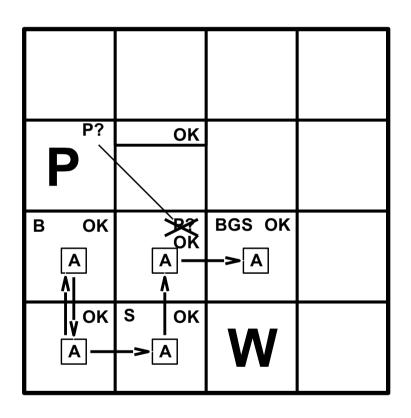
G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited



 \mathbf{A} = Agent

= Breeze

G = Glitter, Gold

OK = Safe square

 $\mathbf{P} = Pit$

S = Stench

V = Visited

Main Approaches to Al system Design

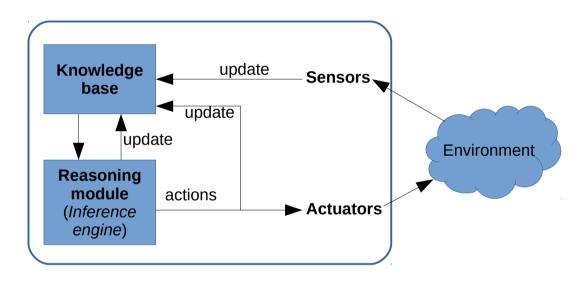
Procedural

- The desired behavior (actions) are encoded directly as program code
 - No explicit knowledge representation and reasoning

Declarative

- Explicit representation, in a knowledge base, of
 - Background knowledge (e.g., the rules of the Wumpus game)
 - Knowledge about one specific problem instance (e.g., what the agent knows about a specific Wumpus cave it is exploring)
 - The agent's goal
- Actions are then derived from reasoning

Architecture of Knowledge-based Systems



- A peculiar characteristic is a separation between knowledge representation and reasoning
 - The knowledge base contains all the agent's knowledge about its environment, in a declarative form
 - The inference engine implements a reasoning process to derive new knowledge and to make decisions

Knowledge Representation and Reasoning

- Logic is one of the main tools used in AI for
 - Knowledge representation
 - Logical languages
 - Propositional logic
 - Predicate (first-order) logic
 - Reasoning
 - Inference rules and algorithms
- Inherited contributions
 - Aristotle (4th century BC): the "laws of thought"
 - G. Boole (1815-64): Boolean algebra (propositional logic)
 - G. Frege (1848-1925): predicate logic
 - K. Gödel (1906-78): incompleteness theorem

Main Applications

- Automatic theorem provers
- Logic programming languages (e.g., Prolog)
- Expert Systems

Logic

Logic

- The study of conditions under which an argumentation (reasoning) is correct
- The concepts involved in the above definition
 - Argumentation
 - A set of statements consisting of some premises and one conclusion:
 - All men are mortal; Socrates is a man; then, Socrates is mortal
 - Correctness
 - When the conclusion cannot be false when all the premises are true
 - Proof
 - A procedure to assess the correctness

Propositions

- Natural language is very complex and vague \Rightarrow hard to formalize
- Logic considers argumentations made up of only a subset of statements
 - Propositions (declarative statements)
 - A proposition is a statement expressing a concept that can be either true or false
- Example
 - Socrates is a man
 - Two and two makes four
 - If the Earth had been flat, then Columbus would have not reached America

Simple and Complex Propositions

- A proposition is
 - Simple, if it does not contain simpler propositions
 - Complex, if it is made up of simpler propositions connected by logical connectives
- Example
 - Simple propositions
 - Socrates is a man
 - Two and two makes four
 - Complex propositions
 - A basketball match can be won or lost
 - If the Earth had been flat, then Columbus would have not reached America

Argumentations

- When can a proposition be considered true or false?
 - This is a philosophical question
 - Logic does not address this question: it only analyzes the structure of argumentation
- Example
 - All men are mortal; Socrates is a man; then, Socrates is mortal
 - Informally, the structure of this argumentation is:
 - All P are Q; x is P; then x is Q
- Is it correct, **whatever** P, Q, and x are, that is, **regardless** of whether the corresponding propositions "all P are Q", "x is P" and "x is Q" are true or false?

Formal Languages

- Logic provides formal languages for representing propositions in the form of sentences
- A formal language is defined by syntax and semantics
 - Syntax (grammar)
 - Rules that define what sentences are well-formed
 - Semantics
 - · Rules that define the meaning of well-formed sentences
 - The truth of sentences with respect to each possible world
- Examples (of formal languages)
 - Arithmetic: propositions about numbers
 - Programming languages: instructions to be executed by a computer
- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
 - We say m is a model of a sentence α if α is true in m
 - M (α) is the set of all models of α

Natural vs Logical Languages

- Natural languages
 - Syntax is not rigorously defined
 - Semantics defines the content of a statement, i.e., what it refers to in the real world
- Example (syntax)
 - The book is on the table: syntactically correct statement, with a clear semantics
 - Book the on is table the: syntactically incorrect statement, no meaning can be attributed to it
 - Colorless green ideas sleep furiously: syntactically correct, but what does it mean?

Natural vs Logical Languages

- Logical languages
 - Syntax
 - formally defined
 - Semantics
 - Rules that define the truth value of each well-formed sentence w.r.t. each possible model (a possible world represented by that sentence)
- Example
 - Syntax
 - x + y = 4 is a well-formed sentence, x4y + = is not
 - Model
 - The symbol 4 represents the natural number four, x and y any pair of natural numbers, + the sum operator, etc.
 - Semantics
 - x + y = 4 is true for x = 1 and y = 3, x = 3 and y = 2, etc.

Logical Entailment

- Logical reasoning is based on the relation of logical entailment between sentences
 - Defines when a sentence logically follows from one another
- Definition
 - The sentence α entails the sentence β if and only if in every model in which α is true, also β is true

$$\alpha \vDash \beta$$

- Example (arithmetic)
 - $x + y = 4 \models x = 4 y$
 - In every model (i.e., for any assignment of numbers to x and y) in which x + y = 4 is true, also x = 4 y is true

Logical Inference

- Logical inference
 - The process of deriving conclusions from premises
- Inference algorithm
 - A procedure that derives sentences (conclusions) from other sentences (premises) in a formal language
- Formally, the fact that an inference algorithm A derives a sentence α from a set of sentences (knowledge base) KB is written as

$$KB \vdash_{A} \alpha$$

Properties of Inference Algorithms

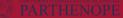
- Definition
 - Soundness (truth preservation)
 - If an inference algorithm derives only sentences entailed by the premises, i.e.:

whenever $KB \vdash_A \alpha$, it is also true that $KB \vDash \alpha$

- Completeness
 - If an inference algorithm derives all the sentences entailed by the premises, i.e.:

whenever $KB \models \alpha$, it is also true that $KB \vdash_A \alpha$

 A sound algorithm derives conclusions that are guaranteed to be true in any world in which the premises are true



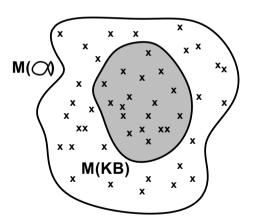
Applications of Inference Algorithms

- In Al inference is used to answer two main kinds of questions
 - Does a given conclusion α logically follow from the agent's knowledge KB? That is, $KB \models \alpha$
 - What are all the conclusions that logically follow from the agent's knowledge? That is, find all α such that $KB \models \alpha$
- Example
 - Does a breeze in room (2,1) entail the presence of a pit in room (2,2)?
 - What conclusions can be derived about the presence of pits and of the Wumpus in each room, from the current knowledge?

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

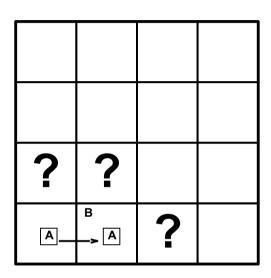
Entailment in the wumpus world

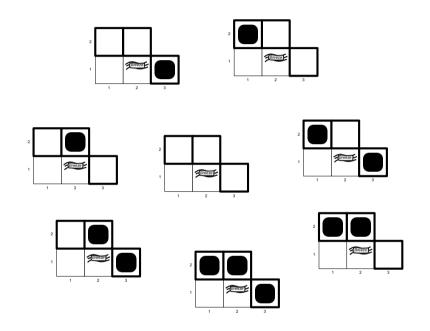
- By definition:
 - m is a model of a sentence **a** if **a** is true in m
 - M (a) is the set of all models of a
 - Then KB $\mid = \mathbf{a}$ if and only if M (KB) \subseteq M (\mathbf{a})
 - E.g. KB = Giants won and Reds won
 - **a** = Giants won

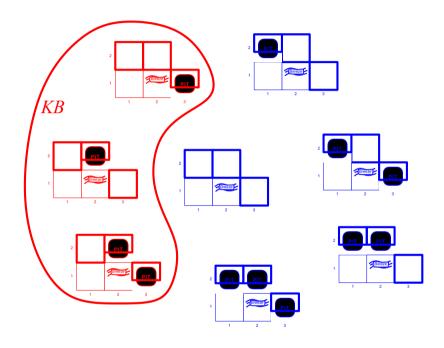


Entailment in the wumpus world

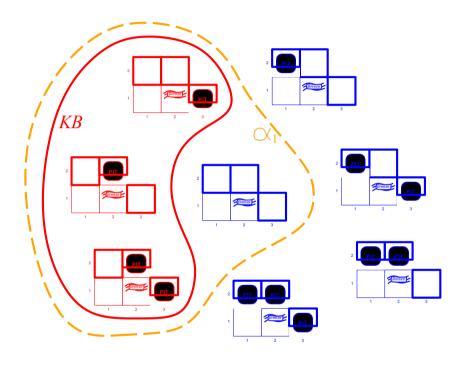
- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for ?s assuming only pits
 - 3 Boolean choices \Rightarrow 8 possible models





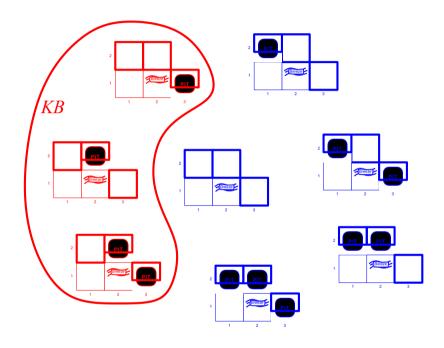


KB = wumpus-world rules + observations

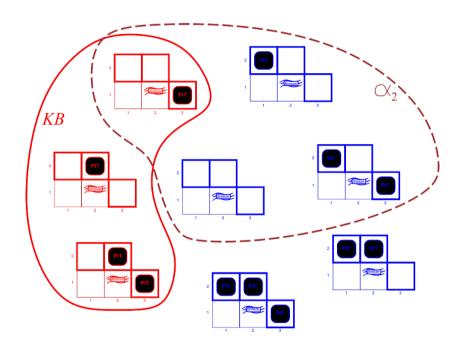


KB = wumpus-world rules + observations

 $\alpha_1 = "[1,2]$ is safe", $KB = \alpha_1$, proved by model checking



KB = wumpus-world rules + observations



KB = wumpus-world rules + observations

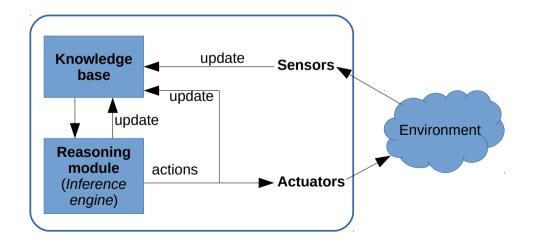
 α_2 = "[2,2] is safe", KB does not entail α_2

Inference Algorithms: Model Checking

- The definition of entailment can be directly applied to construct a simple inference algorithm, named Model checking
 - Given a set of premises, KB, and a sentence α , enumerate all possible models and check whether α is true in every model in which KB is true
- Example (arithmetic)
 - $KB : \{x + y = 4\}$
 - $\alpha : y = 4 x$
 - Is the inference $\{x + y = 4\} \vdash y = 4 x$ correct?
 - Model checking: enumerate all possible pairs of numbers x, y, and check whether y = 4 x is true whenever x + y = 4 is

Architecture of Knowledge-based Systems Revisited

- If logical language is used
 - Knowledge base
 - A set of sentences in a given logical language
 - Inference engine
 - An inference algorithm for the same logical language



Logical Languages

- Propositional logic
 - The simplest logic language
 - An extension of Boolean algebra
- Predicate (or first-order) logic
 - A more expressive and concise extension of propositional logic
 - Seminal work by Frege