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Introduction - 1 

• Same static perfomance:

• Same dynamic performance, i.e., 𝑫(𝒛) with same frequency
behavior of 𝑪(𝒔) in a given range of 𝝎 :

𝑫(𝑧)|𝒛"𝟏 ≅ 𝑪(𝒔)|𝒔"𝟎

𝑫(𝒛)|𝒛"𝒆𝒋𝝎𝑻 ≅ 𝑪(𝒔)|𝒔"𝒋𝝎

• From C(s) we want to find a discrete equivalent D(z):  
• A transformation (𝒔 ⟶ 𝒛) allows the transition from continuous 

time to discrete time such that

same static and dynamic perfomance



Prof. Francesco Montefusco Industrial Automation 2023/245

Introduction - 2 

The transformation from contoinouos to discret time domain is
given by

Indeed, we use the impulse modulation as the mathematical
representation of the sampling operation as it follows:

𝒛 = 𝒆𝒔𝑻

Tse e*

𝑒! 𝑡 = 𝒆 𝒕 -
𝒌#𝟎

%

𝜹 𝒕 − 𝒌𝑻𝒔 = -
𝒌#𝟎

%

𝒆 𝒌𝑻𝒔 𝜹 𝒕 − 𝒌𝑻𝒔

𝝎𝑺 = 𝟐𝝅𝒇𝑺 =
𝟐𝝅
𝑻𝑺
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Introduction - 3 

𝑥! 𝑡 = 𝒙 𝒕 -
𝒌#𝟎

%

𝜹 𝒕 − 𝒌𝑻𝒔 = -
𝒌#𝟎

%

𝒙 𝒌𝑻𝒔 𝜹 𝒕 − 𝒌𝑻𝒔

ℒ 𝑥! 𝑡 = 4
𝟎

%
-
𝒌#𝟎

%

𝒙 𝒌𝑻𝒔 𝜹 (𝝉 − 𝒌𝑻𝒔)𝒆'𝒔𝝉 𝒅𝝉

= -
𝒏#𝟎

%

4
𝟎

%
𝒙 𝒌𝑻𝒔 𝜹(𝝉 − 𝒌𝑻𝒔)𝒆'𝒔𝝉𝒅𝝉 =

-
𝒏#𝟎

%

𝒙 𝒌𝑻𝒔 𝒆'𝒔𝒌𝑻𝒔 = 𝑿 𝒛 |𝒛#𝒆𝒔𝑻𝒔

Then, assuming 𝑥! 𝑡 the sampled representation of  a continuous-
time signal 𝑥 𝑡 :

𝓛

𝑿𝒔 𝒔 = 𝑿 𝒛 |𝒛)𝒆𝒔𝑻𝒔
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Introduction - 4 

Therefore, we could assume the inverse transformation

𝒔 = 𝟏
𝑻 ln 𝒛, 

But we get:

• a function 𝑫(𝑧)	 which is not rational, and cannot be associated
with a finite-dimensional discrete-time system

Basically, design of discrete equivalents via numerical integration
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Numerical Integration - 1

Let us consider a continuous Linear Time Invariant (LTI) system in the 
form:

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡

By integrating the state equation between 𝑘𝑇 and 𝑘 + 1 𝑇 and denoting
with 𝒙∗ 𝒌 = 𝒙 𝒌𝑻 the state vector at the instant time kT:

𝒙∗ 𝒌 + 𝟏 − 𝒙∗ 𝒌 = 𝑨B
𝒌𝑻

𝒌&𝟏 𝑻
𝒙 𝒕 𝒅𝒕 + 𝑩B

𝒌𝑻

𝒌&𝟏 𝑻
𝒖 𝒕 𝒅𝒕 .

By exploiting the following formula for the numerical integration 𝒇 𝑡 :

B
𝒌𝑻

𝒌&𝟏 𝑻
𝒇 𝒕 𝒅𝒕 ≅ 𝟏 − 𝜶 𝒇 𝒌𝑻 + 𝜶𝒇( 𝒌 + 𝟏 𝑻) 𝑻

with 𝟎 ≤ 𝜶 ≤ 𝟏
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Numerical Integration - 2

We obtain:

𝒙∗ 𝒌 + 𝟏 − 𝒙∗ 𝒌 = 𝑨 𝟏 − 𝜶 𝒙∗ 𝒌 + 𝜶𝒙∗(𝒌 + 𝟏) 𝑻
+𝑩 𝟏 − 𝜶 𝒖∗ 𝒌 + 𝜶𝒖∗(𝒌 + 𝟏) 𝑻

𝒚∗ 𝒌 = 𝑪𝒙∗ 𝒌 + 𝑫𝒖∗ 𝒌 .
where 𝒖∗ 𝒌 = 𝒖 𝒌𝑻
By applying zeta-Transform:

𝟏
𝑻

𝒛 − 𝟏
𝜶𝒛 + 𝟏 − 𝜶

𝑰 − 𝑨 𝑿∗ 𝒛 = 𝑩𝑼∗(𝒛)
and 

𝒀∗ 𝒛
𝑼∗(𝒛)

= 𝑮∗ 𝒛 = 𝑪
𝟏
𝑻

𝒛 − 𝟏
𝜶𝒛 + 𝟏 − 𝜶

𝑰 − 𝑨
'𝟏
𝑩 +𝑫



Prof. Francesco Montefusco Industrial Automation 2023/2410

Numerical Integration - 3

Recall the tf of  a continuous LTI a tempo continuo,

𝐺 𝑠 = 𝐶 𝑠𝐼 − 𝐴 '(𝐵 + 𝐷,

the discrete equivalent tf 𝐺∗ 𝑧 , 

𝐺∗ 𝑧 = 𝐶
1
𝑇

𝑧 − 1
𝛼𝑧 + 1 − 𝛼 𝐼 − 𝐴

'(
𝐵 + 𝐷

is given by

𝐺∗ 𝑧 = 𝐺
1
𝑇

𝑧 − 1
𝛼𝑧 + 1 − 𝛼

by exploiting the following transformation

𝒔 =
𝟏
𝑻

𝒛 − 𝟏
𝜶𝒛 + 𝟏 − 𝜶



Geometric interpretation 
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Risposta in frequenza per 
un sistema LTI a tempo discreto

Forward rule
(Euler’s method, a=0)

Backward rule
(a=1)

Trapezoid rule
(Tustin, a=0.5)

𝑠 =
𝑧 − 1
𝑇 𝑠 =

𝑧 − 1
𝑧𝑇

𝑠 =
𝑇
2
𝑧 + 1
𝑧 − 1



By approximating the differential equation 
via difference equation – Euler’s method
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From the definition of a derivative

�̇� = lim
'(→*

𝛿𝑦
𝛿𝑡

Even if 𝛿𝑡 is not quite equal to zero

�̇� 𝑘 = �̇� 𝑘𝑇 ≅
𝑦 𝑘 + 1 𝑇 − 𝑦 𝑘𝑇

𝑘 + 1 𝑇 − 𝑘𝑇
=
𝑦 𝑘 + 1 − 𝑦 𝑘

𝑇

𝓛, 𝚭
𝑠𝑌(𝑠) ≅ )'(

*
𝑌 𝑧

𝑠 =
𝑧 − 1
𝑇



A map from the left-half of the s-plane 
(s<0) to the z-plane
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𝑧 =
1 + (1 − 𝛼) 𝑇𝑠

1 − 𝛼𝑇𝑠
Inverse 

transformation:

Forward rule
(Euler’s method, a=0)

Backward rule
(a=1)

Trapezoid rule
(Tustin, a=0.5)
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Forward rule: 𝑧 = 1 + 𝑠𝑇 ↔ 𝑠 = )'(
*

By approximating 𝑧 = 𝑒!*
𝑧 = 𝑒!* ≅ 1 + sT

ℜ 𝑠 < 0 ↔ ℜ
𝑧 − 1
𝑇

< 0 ↔ ℜ 𝑧 < 1

Then it is possible to achieve unstable 𝐺∗(𝑧) from stable 𝐺 𝑠 .

Map from s to z: s<0 for forward rule 
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Backward rule: 𝑧 = (
('!* ↔ 𝑠 = )'(

)*

ℜ 𝑠 < 0 ↔ ℜ
𝑧 − 1
𝑧𝑇

< 0 ↔ ℜ
1
𝑇
𝜎 + 𝑗𝜔 − 1
𝜎 + 𝑗𝜔

< 0 → 𝜎 −
1
2

%
+ 𝜔% <

1
2

Stable G(s) systems correspond to stable 𝐺∗(𝑧) system. However, there
is the chance to achieve stable 𝐺∗(𝑧) systems from unstable G(s).

By approximating: 𝑧 = 𝑒!* = (
+$%& ≅

(
('!*

𝑧 = 𝜎 + 𝑗𝜔

All z points inside the radius circle with r=½ and center (½, 0). 

Map from s to z: s<0 for backward rule 
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Tustin: 𝑧 =
(&!&'
('!&'

↔ 𝑠 = 2
*
)'(
)&(

𝑧 = 𝑒+,#|,-,!%
= −1

z ≅
2
𝑇
𝑗𝜔 − 1
𝑗𝜔 + 1 |,-

,!
%

= F 𝑧 = 1
arg z = 115.

i.e. frequency compression

The stability of the system is preserved: stable systems G(s) in continuous
time are transformed into stable systems G*(z) in discrete time (and vice
versa)

All z points inside the radius circle with r=1 and center (0, 0). 

𝑧 = 𝜎 + 𝑗𝜔
ℜ 𝑠 < 0 ↔ ℜ

2
𝑇
𝑧 − 1
𝑧 + 1

< 0 ↔ ℜ
2
𝑇
𝜎 + 𝑗𝜔 − 1
𝜎 + 𝑗𝜔 + 1

< 0 → 𝜎% + 𝜔% < 1

By approximating: 𝑧 = 𝑒!* = +%
&
'

+'%
&
'
≅

(&!&'
('!&'

Map from s to z: s<0 for Tustin



Frequency behavior– Tustin
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𝑮∗	(𝒛)|𝒛4𝒆𝒋𝝎𝑻 ≅ 𝑮(𝒔)|𝒔4𝒋𝝎

By using Tustin:
𝑮∗ 𝒛 ≅ 𝑮 𝒔 |

𝒔42*
)'(
)&(

In terms of  frequency:

𝑮∗ 𝒛 = 𝒆𝒋𝝎𝑻 ≅ 𝑮
2
𝑇
𝒆𝒋𝝎𝑻 − 1
𝒆𝒋𝝎𝑻 + 1

= 𝑮 𝑗
2
𝑇
tan

𝝎𝑻
2

Then
𝑮∗ 𝒆𝒋𝝎𝑻 ≅ 𝑮 𝒋𝝎 ↔ 𝑗 2

*
tan𝝎𝑻

2
= 𝑗𝝎 iff  𝝎𝑻

2
≪ 1 ↔ 𝜔 ≪ 9%

:
with 𝜔! =

2;
*



Tustin/ bilinear transformation with prewarping
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If we want that at a given frequency 𝜔(

𝑮∗ 𝑒<9(* = 𝐺 𝑗𝜔( ,

then it is sufficient to employ this transformation

𝑮∗ 𝑒<9(* = 𝐺
𝜔(

tan𝜔(𝑇2

2
𝑇
𝑧 − 1
𝑧 + 1

where

𝑠 =
𝜔(

tan𝜔(𝑇2

2
𝑇
𝑧 − 1
𝑧 + 1

represents the bilinear transformation with prewarping.
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zeta-Transform method: hold equivalent –
impulse invariant discretization

This discretization method allows maintaining unchanged the impulse
response of the discrete equivalent 𝑮∗ 𝒛 of the continuous-time system
𝑮 𝒔 .

By definition 𝑮∗ 𝒛 is the zeta-Transform of output sequence 𝑦=
∗ in

response to the unit pulse 𝛿(𝑘).

𝑮∗ 𝒛 = 𝑍 𝑦=
∗ = Ζ ℒ'( m𝐺(𝑠)

>4?*

𝑮∗ 𝒛 is given by the the zeta-Transform of the response to the
ideal pulse 𝑮 𝒔 (𝑦= 𝑡 = ℒ'( 𝐺(𝑠) ) sampled at multiple instants
of the sampling period T, 𝑦=

∗ 𝑘 = 𝑦= 𝐾𝑇 .
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Given the continuous LTI system defined by the transfer function
𝑮 𝒔 ,

𝑮 𝒔 =
𝟏

𝒔(𝒔 + 𝟏)
determine the discrete equivalent 𝑮∗ 𝒛 by using zeta-Transform
method

Solution:

1. 𝑦= 𝑡 = ℒ'( 𝐺(𝑠) = 1 𝑡 − 𝑒'>1 𝑡 = 1 − 𝑒'> 1(𝑡)

2. 𝑦=∗ 𝑘𝑇 = 1 − 𝑒'@* 1(𝑘𝑇)

3. 𝐺∗ 𝑧 = 𝑍 𝑦=
∗ = )

)'(−
)

)'+$& =
) ('+$&

)'( )'+$&

zeta-Transform method: hold equivalent –
impulse invariant discretization
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Sampled-data system (ZOH equivalent)

Summarizing, by this procedure it is possible to obtain the discrete tf
of  the digital controller, 𝑅∗ 𝑧 :
1. Determine the step response of  the continuous controller in the 

Laplace domain, 𝑈!(𝑠)=
0"(2)
2
.

2. Antitransform 𝑈! 𝑠 thereby determining the samples of  the 
controller output 𝑢2 𝑘𝑇 .

3. Compute the z-transform of  the output samples 𝑢! 𝑘𝑇 : 𝒁 𝑢2 𝑘𝑇

4. Determine the tf of  𝑅∗ 𝑧 = )'(
)
𝒁 𝑢! 𝑘𝑇

𝑅∗ 𝑧 = 𝑈=
∗ 𝑧 =

𝑧 − 1
𝑧

𝑈 𝑧 =
𝑧 − 1
𝑧

Ζ ℒ'( s
𝑅A(𝑠)
𝑠

>4?*
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Sampled-data system (ZOH equivalent)

𝑹𝒐 𝒔 , analog controller - 𝑹∗ 𝒛 , digital controller by sampled-
data model (ZOH method)

𝑹∗ 𝒛 |𝒛-𝒆𝒋𝝎𝑻 ≅ 𝑹∗ 𝒔 𝒆!
𝒔𝑻
𝟐 |𝒔-𝒋𝝎

i.e., double pair of  sampler and hold devices
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The technique consists of a set of heuristic rules for locating the zeros
and poles according to the sampling transformation

The discrete equivalent 𝐺∗ 𝑧 can be obtained as it follows:

1. the transformation of the individual poles and zeros is carried out
using the sampling transformation 𝒛 = 𝒆𝒔𝑻;

2. introduce as many zeros into 𝒛 = −𝟏 as there are poles of 𝐺 𝑠 in
excess of the finite zeros;

3. the static gain is compensated.

Zero-pole matching equivalents
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Example: 𝐺 𝑠 =
𝟏𝟎 𝒔 + 𝟓

𝟏 + 𝟏𝟎𝒔 (𝒔 + 𝟏)

For the zero in 𝐬 = −𝟓, 𝒔 + 𝟓 𝟏 −
𝒆'𝟓𝑻

𝒛

𝐺∗ 𝑧 = 𝑘
𝑧 + 1 (𝒛 − 𝒆'𝟓𝑻)

𝒛 − 𝒆'𝑻 𝒛 − 𝒆'𝟎.𝟏𝑻

𝒏 −𝒎 = 𝟏 One zero in 𝒛 = −𝟏

𝐺∗ 1 = 2𝑘
(𝟏 − 𝒆'𝟓𝑻)

𝟏 − 𝒆'𝑻 𝟏 − 𝒆'𝟎.𝟏𝑻
= 𝐺 0 = 50

𝑘 =
50
2

𝟏 − 𝒆'𝑻 𝟏 − 𝒆'𝟎.𝟏𝑻

(𝟏 − 𝒆'𝟓𝑻)

Zero-pole matching equivalents - Example



Problem - 1
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A/D D/A G(s)r e e* u* u y
D(z)

d

nFor the control system shown in figure,
where

𝐺 𝑠 =
1

𝑠(𝑠 + 1)
,

design a digital control D(z) by emulation of a continuous design (i.e. by computing
the discrete equivalent using Tustin) in order to satisfy the following requirements
• 𝑒: = 0 wrt to a step disturbance d
• 𝑠 ≤ 15%
• 𝑡;<% < 300 ms
• 𝑇 = 30 ms
Discuss the action to be implemented for reducing the effect of  high-frequency noise
𝑛 (i.e.,	𝑛>(𝑡) = 0.1sin(400𝑡),	𝑛%(𝑡) = 0.1sin(500𝑡))



Problem - 1
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• 𝑒: = 0 wrt to a step disturbance d	
⟹ one integrator in the open loop function 𝐹(𝑠) (i.e., one pole in zero)

• 𝑠 ≤ 15%
⟹ ζ ≥ 0.5, where 𝜁 is the damping factor of  the closed-loop system (𝜑? > 50°)

• 𝑡;<% < 300 ms

⟹ @
A,&

< @
>*
⟹ gζ𝜔B > 10

𝜔C ≅ 𝜔B
⟹𝜔C > 20 rad/s, where 𝜔C is the crossing

frequency of the open-loop function, 𝐹(𝑠), and 𝜔B is the natural frequency of the 
second order approximation of  the closed loop system.

• 𝑇 = 30 ms (𝜔2 =
%D
#

) 

⟹ delay at 𝜔C ⟹ in terms of  phase, −𝝎𝒄#
%
⟹𝜑? > 50° + 𝝎𝒄#

%
°

• See the relative Matlab code and the scheme implemented in Simulink



Problem - 1
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Discuss the action to be implemented for reducing the effect of  high-frequency noise
𝑛 (i.e.,	𝑛>(𝑡) = 0.1sin(400𝑡),	𝑛%(𝑡) = 0.1sin(500𝑡))

⟹ anti-aliasing filter with 𝝎𝒇 <
,!
%

and 𝝎𝒇 ≫ 𝜔C



Problem - 2
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A/D D/A G(s)r e e* u* u y
D(z)

d

n
For the control system shown in figure,
where

𝐺 𝑠 =
1

(𝑠 + 10) ,

the following continuous controller has been designed:

𝐶 𝑠 =
10(𝑠 + 10)
𝑠(𝑠/50 + 1)

Then, a digital controller has been implemented by discretization using ZOH method with 𝑇 =
50 ms.
• Evaluate the performance achieved by the continuous controller
• Evaluate the performance achieved by the digital controller
• By assuming a high-frequency noise 𝑛 (i.e., 𝑛#(𝑡) = 0.5sin(400𝑡) ), compare the

performance obtained by the analaog and digital controllers
• For the digital controller discuss the action to be implemented for reducing the effect of 𝑛.
• Evaluate the performance of the digital controller by using 𝑇 = 25 ms.



Problem - 2
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• Implement the controller: give the difference equation that corresponds to D(z) for both the
values of T



Problem - 3
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For the control system shown in figure,
where

𝐺 𝑠 =
1

(𝑠 + 2)
,

a. Design a digital control D(z) by emulation of  a continuous design (i.e. by 
computing the discrete equivalent using ZOH and/or Tustin) 
o by setting opportunely the sampling time T,
o in order to satisfy the following requirements: 

• 𝑒: = 0 to a step disturbance d
• 𝑒: ≤ 0.1	to a ramp signal of  slope 0.5.
• 𝑠 ≤ 20% to a step input r
• 𝑡;<% < 1s	
• attenuation factor ≥ 20 dB for multi-frequency noise in the range

50 + ∞  rad/s

A/D D/A G(s)r e e* u* u y
D(z)

n



Problem - 3
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c. Implement the controller: give the difference equation that corresponds to
D(z) for both cases (Tustin and ZOH)

b. Discuss the action to be implemented for reducing the effect of high-
frequency noise 𝑛 (i.e., 𝑛>(𝑡) = 0.2sin(50𝑡), 𝑛%(𝑡) = 0.2sin(100𝑡))



Problem - 3
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• 𝑒: = 0 wrt to a step disturbance d	
⟹ one integrator in the open loop function 𝐹 𝑠 = 𝐶 𝑠 𝐺(𝑠) (i.e., one pole in 
zero)
Then 𝐶 𝑠 = F(

2
• 𝑒: ≤ 0.1	to a ramp signal of  slope 𝑅* equal  to 0.5, 𝑟 𝑡 = 0.5𝑡 1 𝑡 (𝑅*=0.5)

⟹ 𝑒: = 0(
G(

, with 𝐹* = 𝑘*𝐺 0 = F(
%
⟹ 𝑒: = 0(

G(
=

)
*
+(
*

≤ >
>*
⟹ 𝑘* ≥ 10

• 𝑠 ≤ 20%
⟹ ζ ≥ 0.45, where 𝜁 is the damping factor of  the closed-loop system (𝜑? >
45°)

• 𝑡;<% < 1 s

⟹ @
A,&

< 1 ⟹ gζ𝜔B > 3
𝜔C ≅ 𝜔B

⟹𝜔C > 6.6 rad/s, where 𝜔C is the crossing

frequency of the open-loop function, 𝐹(𝑠), and 𝜔B is the natural frequency of the 
second order approximation of  the closed loop system ⟹𝐶 𝑠 = F(

2
2H>
( !,(H>)

• attenuation factor ≥ 20dB for noise in the range 50 + ∞  rad/s

For the continuous design:
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See the relative Matlab code and the scheme implemented in Simulink.


