

Course of "Industrial Automation" 2023/24

Discrete equivalents – Digital control design

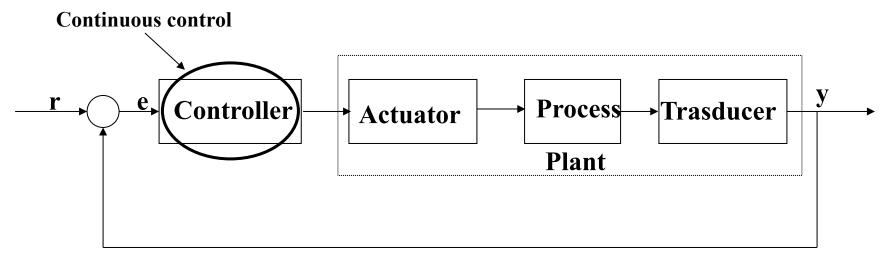
Prof. Francesco Montefusco

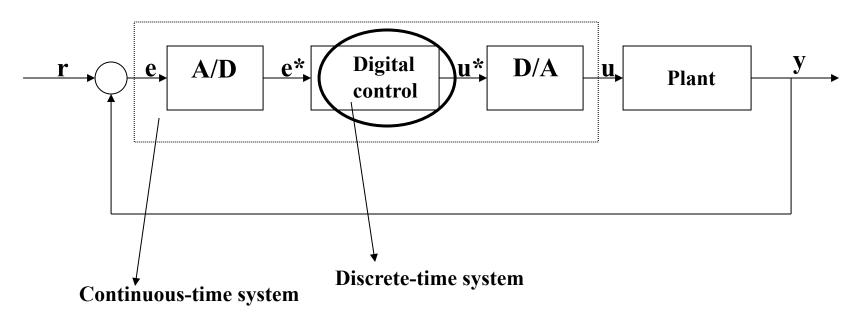
Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope

frances co.montefus co@uniparthenope.it

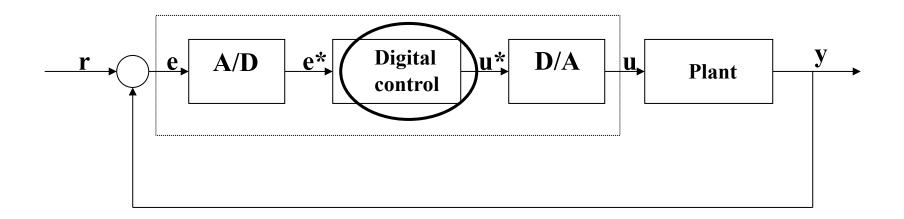
Team code: **vgxlryz**

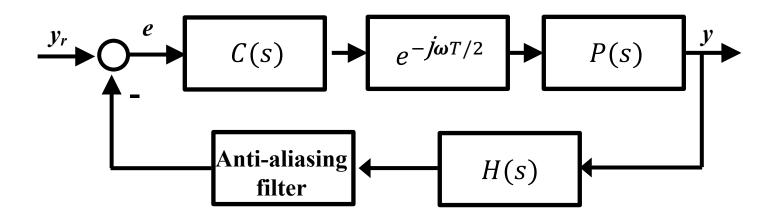
Continuous vs. digital





Scheme of the digital control system in continuous-time





- From C(s) we want to find a discrete equivalent D(z):
- A transformation $(s \rightarrow z)$ allows the transition from continuous time to discrete time such that

same static and dynamic perfomance

• Same static perfomance:

$$D(z)|_{z=1} \cong C(s)|_{s=0}$$

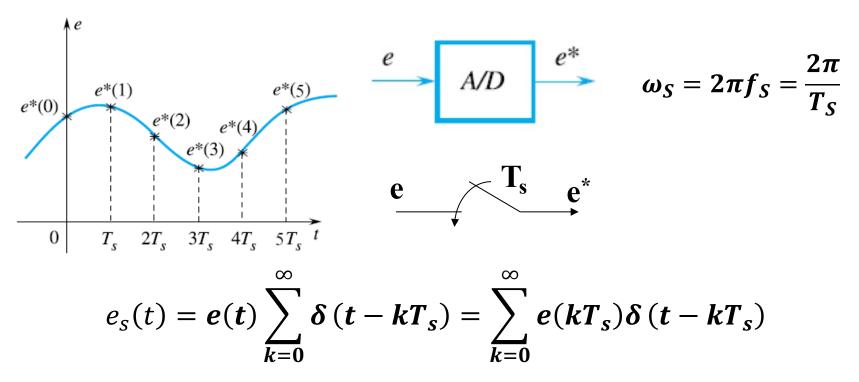
• Same dynamic performance, i.e., D(z) with same frequency behavior of C(s) in a given range of ω :

$$D(z)|_{z=e^{j\omega T}}\cong C(s)|_{s=j\omega}$$

The transformation from contoinouos to discret time domain is given by

$$z = e^{sT}$$

Indeed, we use the impulse modulation as the mathematical representation of the sampling operation as it follows:



Introduction - 3

Then, assuming $x_s(t)$ the sampled representation of a continuoustime signal x(t): $x_s(t) = x(t) \sum_{k=0}^{\infty} \delta(t - kT_s) = \sum_{k=0}^{\infty} x(kT_s) \delta(t - kT_s)$ $\mathcal{L}(x_s(t)) = \int_0^\infty \sum_{k=0}^\infty x(kT_s) \delta(\tau - kT_s) e^{-s\tau} d\tau$ $=\sum_{n=0}^{\infty}\int_{0}^{\infty}x(kT_{s})\delta(\tau-kT_{s})e^{-s\tau}d\tau=$ $\sum x(kT_s)e^{-skT_s} = X(z)|_{z=e^{sT_s}}$ $\overline{n=0}$ $X_{s}(s) = X(z)|_{z=e^{sT_{s}}}$

Therefore, we could assume the inverse transformation

$$s=rac{1}{T}\ln z,$$

But we get:

• a function D(z) which is not rational, and cannot be associated with a finite-dimensional discrete-time system

Basically, design of discrete equivalents via numerical integration

Numerical Integration - 1

Let us consider a continuous Linear Time Invariant (LTI) system in the form:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

By integrating the state equation between kT and (k + 1)T and denoting with $x^*(k) = x(kT)$ the state vector at the instant time kT:

$$x^*(k+1) - x^*(k) = A \int_{kT}^{(k+1)T} x(t) dt + B \int_{kT}^{(k+1)T} u(t) dt.$$

By exploiting the following formula for the numerical integration f(t):

$$\int_{kT}^{(k+1)T} f(t)dt \cong [(1-\alpha)f(kT) + \alpha f((k+1)T)]T$$

with $0 \le \alpha \le 1$

We obtain:

$$x^{*}(k+1) - x^{*}(k) = A[(1-\alpha)x^{*}(k) + \alpha x^{*}(k+1)]T + B[(1-\alpha)u^{*}(k) + \alpha u^{*}(k+1)]T$$

$$y^{*}(k) = Cx^{*}(k) + Du^{*}(k).$$

where $u^{*}(k) = u(kT)$

By applying zeta-Transform:

$$\left[\frac{1}{T}\frac{z-1}{\alpha z+1-\alpha}I-A\right]X^*(z)=BU^*(z)$$

and

$$\frac{Y^*(z)}{U^*(z)} = G^*(z) = C \left[\frac{1}{T} \frac{z-1}{\alpha z+1-\alpha} I - A \right]^{-1} B + D$$

Numerical Integration - 3

Recall the tf of a continuous LTI a tempo continuo,

$$G(s) = C(sI - A)^{-1}B + D,$$

the discrete equivalent tf $G^*(z)$,

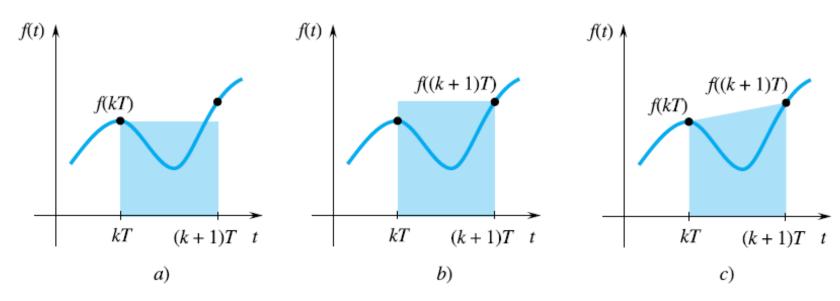
$$G^*(z) = C \left[\frac{1}{T} \frac{z-1}{\alpha z+1-\alpha} I - A \right]^{-1} B + D$$

is given by
$$G^*(z) = G \left(\frac{1}{T} \frac{z-1}{\alpha z+1-\alpha} \right)$$

by exploiting the following transformation

$$s=\frac{1}{T}\frac{z-1}{\alpha z+1-\alpha}$$

Geometric interpretation



Forward rule (Euler's method, α=0) Backward rule (α=1)

$$s = \frac{z-1}{T} \qquad \qquad s = \frac{z-1}{zT}$$

Trapezoid rule (Tustin, α=0.5)

$$s = \frac{T}{2}\frac{z+1}{z-1}$$

By approximating the differential equation via difference equation – Euler's method

From the definition of a derivative

$$\dot{y} = \lim_{\delta t \to 0} \frac{\delta y}{\delta t}$$

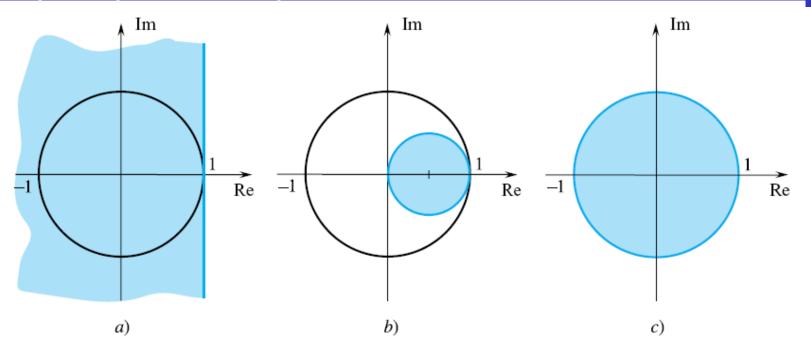
Even if δt is not quite equal to zero

$$\dot{y}(k) = \dot{y}(kT) \cong \frac{y((k+1)T) - y(kT)}{(k+1)T - kT} = \frac{y(k+1) - y(k)}{T}$$

$$f(x) = \frac{z-1}{T}Y(z)$$

$$sY(s) \cong \frac{z-1}{T}Y(z)$$

A map from the left-half of the s-plane (s<0) to the z-plane



Forward rule (Euler's method, α=0) Backward rule (α=1)

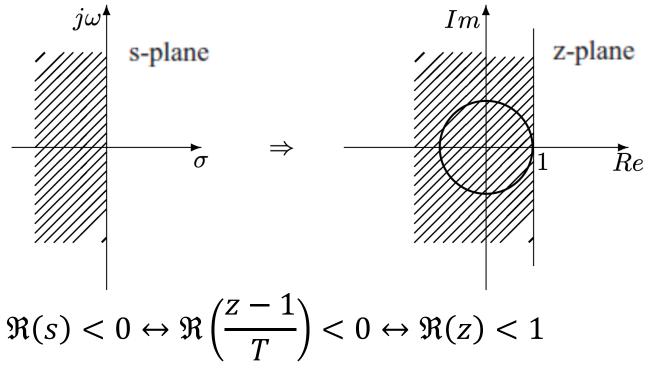
Trapezoid rule (Tustin, α=0.5)

$$r = \frac{1 + (1 - \alpha) Ts}{1 - \alpha Ts}$$

Map from s to z: s<0 for forward rule

Forward rule:
$$z = 1 + sT \leftrightarrow s = \frac{z-1}{T}$$

By approximating $z = e^{sT}$
 $z = e^{sT} \cong 1 + sT$

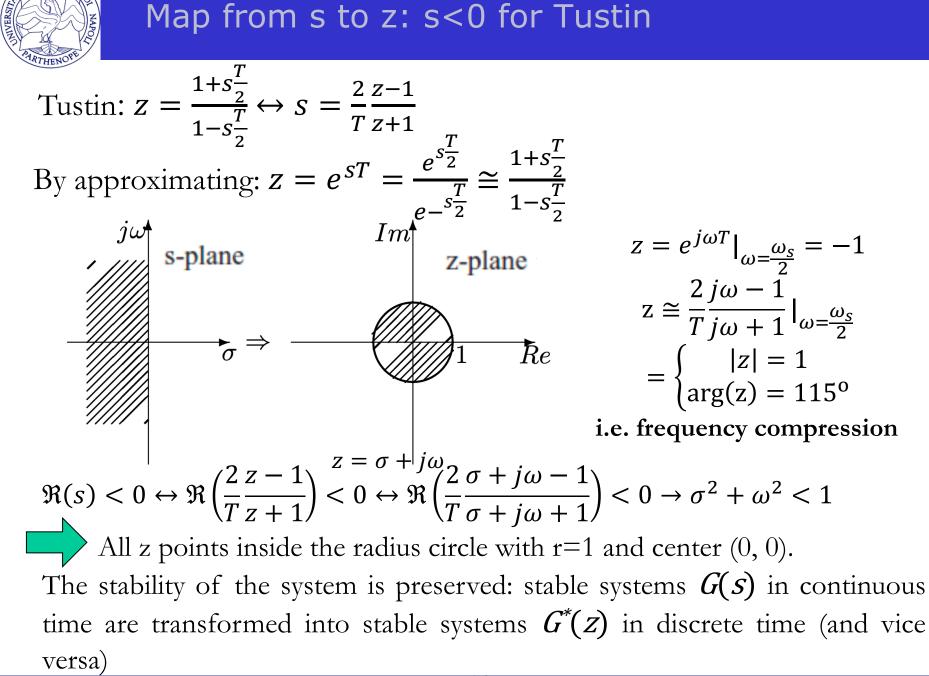


Then it is possible to achieve unstable $G^*(z)$ from stable G(s).

Map from s to z: s<0 for backward rule

Backward rule: $z = \frac{1}{1-sT} \leftrightarrow s = \frac{z-1}{zT}$ By approximating: $z = e^{sT} = \frac{1}{e^{-sT}} \cong \frac{1}{1-sT}$ Im s-plane Piano σ Re $\Re(s) < 0 \leftrightarrow \Re\left(\frac{z-1}{zT}\right)^{z=\sigma+j\omega} < 0 \leftrightarrow \Re\left(\frac{1}{T}\frac{\sigma+j\omega-1}{\sigma+i\omega}\right) < 0 \rightarrow \left(\sigma-\frac{1}{2}\right)^{2} + \omega^{2} < \frac{1}{2}$ All z points inside the radius circle with $r=\frac{1}{2}$ and center $(\frac{1}{2}, 0)$. Stable G(s) systems correspond to stable $G^*(z)$ system. However, there is the chance to achieve stable $G^*(z)$ systems from unstable G(s).

Map from s to z: s<0 for Tustin



Frequency behavior- Tustin

$$G^{*}(z)|_{z=e^{j\omega T}}\cong G(s)|_{s=j\omega}$$

By using **Tustin**:

$$G^*(\mathbf{z}) \cong G(\mathbf{s})|_{\mathbf{s}=\frac{2z-1}{Tz+1}}$$

In terms of frequency:

$$G^*(z = e^{j\omega T}) \cong G\left(\frac{2}{T}\frac{e^{j\omega T} - 1}{e^{j\omega T} + 1}\right) = G\left(j\frac{2}{T}\tan\frac{\omega T}{2}\right)$$

Then

$$G^*(e^{j\omega T}) \cong G(j\omega) \leftrightarrow j\frac{2}{T} \tan \frac{\omega T}{2} = j\omega \text{ iff } \frac{\omega T}{2} \ll 1 \leftrightarrow \omega \ll \frac{\omega_s}{8}$$

with $\omega_s = \frac{2\pi}{T}$

If we want that at a given frequency ω_1

$$\boldsymbol{G}^*(e^{j\omega_1 T}) = G(j\omega_1),$$

then it is sufficient to employ this transformation

$$\boldsymbol{G}^*\left(e^{j\omega_1 T}\right) = G\left(\frac{\omega_1}{\tan\frac{\omega_1 T}{2}}\frac{2}{T}\frac{z-1}{z+1}\right)$$

where

$$s = \frac{\omega_1}{\tan\frac{\omega_1 T}{2}} \frac{2}{T} \frac{z-1}{z+1}$$

represents the bilinear transformation with prewarping.

zeta-Transform method: hold equivalent – impulse invariant discretization

This discretization method allows maintaining unchanged the impulse response of the discrete equivalent $G^*(z)$ of the continuous-time system G(s).

By definition $G^*(z)$ is the zeta-Transform of output sequence y^*_{δ} in response to the unit pulse $\delta(k)$.

$$\boldsymbol{G}^{*}(\boldsymbol{z}) = Z(\boldsymbol{y}_{\delta}^{*}) = Z\left(\mathcal{L}^{-1}\left(\boldsymbol{G}(\boldsymbol{s})\right)\Big|_{\boldsymbol{t}=\boldsymbol{K}\boldsymbol{T}}\right)$$

 $G^*(z)$ is given by the the zeta-Transform of the response to the ideal pulse G(s) ($y_{\delta}(t) = \mathcal{L}^{-1}(G(s))$) sampled at multiple instants of the sampling period $T, y_{\delta}^*(k) = y_{\delta}(KT)$.

zeta-Transform method: hold equivalent – impulse invariant discretization

Given the continuous LTI system defined by the transfer function G(s),

$$G(s)=\frac{1}{s(s+1)}$$

determine the discrete equivalent $G^*(z)$ by using zeta-Transform method

Solution:

1.
$$y_{\delta}(t) = \mathcal{L}^{-1}(G(s)) = 1(t) - e^{-t}1(t) = (1 - e^{-t})1(t)$$

2.
$$y_{\delta}^*(kT) = (1 - e^{-kT})1(kT)$$

3.
$$G^*(z) = Z(y^*_{\delta}) = \frac{z}{z-1} - \frac{z}{z-e^{-T}} = \frac{z(1-e^{-T})}{(z-1)(z-e^{-T})}$$

Sampled-data system (ZOH equivalent)

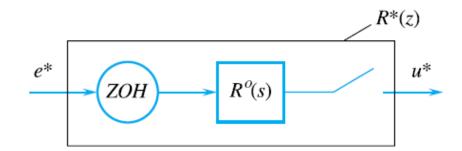
$$R^{*}(z) = U_{\delta}^{*}(z) = \frac{z-1}{z}U(z) = \frac{z-1}{z}Z\left(\mathcal{L}^{-1}\left(\frac{R^{o}(s)}{s}\right)\Big|_{t=KT}\right)$$

Summarizing, by this procedure it is possible to obtain the discrete tf of the digital controller, $R^*(z)$:

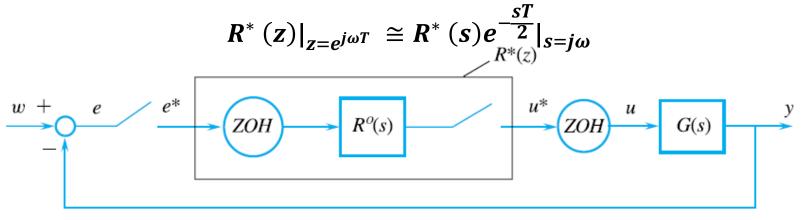
- 1. Determine the step response of the continuous controller in the Laplace domain, $U_s(s) = \frac{R^o(s)}{s}$.
- 2. Antitransform $U_s(s)$ thereby determining the samples of the controller output $u_s(kT)$.
- 3. Compute the z-transform of the output samples $u_s(kT)$: $Z(u_s(kT))$

4. Determine the tf of
$$R^*(z) = \frac{z-1}{z} Z(u_s(kT))$$

Sampled-data system (ZOH equivalent)



 $R^{o}(s)$, analog controller - $R^{*}(z)$, digital controller by sampleddata model (ZOH method)



i.e., double pair of sampler and hold devices

The technique consists of a set of heuristic rules for locating the zeros and poles according to the sampling transformation

The discrete equivalent $G^*(z)$ can be obtained as it follows:

- 1. the transformation of the individual poles and zeros is carried out using the sampling transformation $z = e^{sT}$;
- 2. introduce as many zeros into z = -1 as there are poles of G(s) in excess of the finite zeros;
- 3. the static gain is compensated.

Example:
$$G(s) = \frac{10(s+5)}{(1+10s)(s+1)}$$

For the zero in $s = -5$, $(s+5) \longrightarrow \left(1 - \frac{e^{-5T}}{z}\right)$

$$n-m=1$$
 \longrightarrow One zero in $z=-1$

$$G^*(z) = k \frac{(z+1)(z-e^{-5T})}{(z-e^{-T})(z-e^{-0.1T})}$$

$$G^*(1) = 2k \frac{(1 - e^{-5T})}{(1 - e^{-T})(1 - e^{-0.1T})} = G(0) = 50$$

$$k = \frac{50 \left(\mathbf{1} - e^{-T} \right) \left(\mathbf{1} - e^{-0.1T} \right)}{(\mathbf{1} - e^{-5T})}$$

 $\xrightarrow{r} \xrightarrow{e} A/D \xrightarrow{e^*} D(z) \xrightarrow{u^*} D/A \xrightarrow{u} G(s) \xrightarrow{v} \xrightarrow{y}$

For the control system shown in figure, where

$$G(s)=\frac{1}{s(s+1)},$$

design a digital control D(z) by emulation of a continuous design (i.e. by computing the discrete equivalent using Tustin) in order to satisfy the following requirements

- $e_{\infty} = 0$ wrt to a step disturbance d
- *s* ≤ 15%
- $t_{a5\%} < 300 \text{ ms}$
- *T* = 30 ms

Discuss the action to be implemented for reducing the effect of high-frequency noise n (i.e., $n_1(t) = 0.1\sin(400t)$, $n_2(t) = 0.1\sin(500t)$)

n

- e_∞ = 0 wrt to a step disturbance d
 ⇒ one integrator in the open loop function F(s) (i.e., one pole in zero)
- *s* ≤ 15%

 $\Rightarrow \zeta \ge 0.5$, where ζ is the damping factor of the closed-loop system ($\varphi_m > 50^\circ$)

- $t_{a5\%} < 300 \text{ ms}$ $\Rightarrow \frac{3}{\zeta \omega_n} < \frac{3}{10} \Rightarrow \begin{cases} \zeta \omega_n > 10 \\ \omega_c \cong \omega_n \end{cases} \Rightarrow \omega_c > 20 \text{ rad/s, where } \omega_c \text{ is the crossing} \end{cases}$ frequency of the open-loop function, F(s), and ω_n is the natural frequency of the second order approximation of the closed loop system.
- $T = 30 \text{ ms} (\omega_s = \frac{2\pi}{T})$ $\Rightarrow \text{ delay at } \omega_c \Rightarrow \text{ in terms of phase, } -\frac{\omega_c T}{2} \Rightarrow \varphi_m > 50^\circ + \left(\frac{\omega_c T}{2}\right)^\circ$
- See the relative Matlab code and the scheme implemented in Simulink

Discuss the action to be implemented for reducing the effect of high-frequency noise n (i.e., $n_1(t) = 0.1\sin(400t)$, $n_2(t) = 0.1\sin(500t)$)

 \Rightarrow anti-aliasing filter with $\omega_f < \frac{\omega_s}{2}$ and $\omega_f \gg \omega_c$

 $\xrightarrow{r} e A/D e^* D(z) u^* D/A u G(s) y$

For the control system shown in figure, where

$$G(s)=\frac{1}{(s+10)},$$

the following continuous controller has been designed:

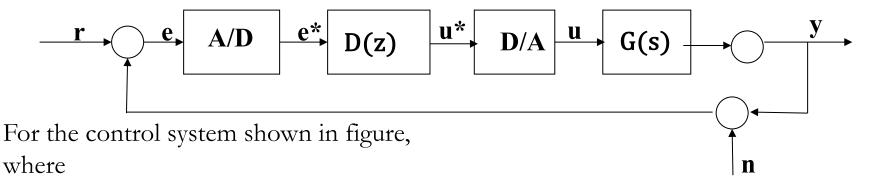
$$C(s) = \frac{10(s+10)}{s(s/50+1)}$$

Then, a digital controller has been implemented by discretization using ZOH method with T = 50 ms.

- Evaluate the performance achieved by the continuous controller
- Evaluate the performance achieved by the digital controller
- By assuming a high-frequency noise n (i.e., $n_1(t) = 0.5\sin(400t)$), compare the performance obtained by the analoog and digital controllers
- For the digital controller discuss the action to be implemented for reducing the effect of *n*.
- Evaluate the performance of the digital controller by using T = 25 ms.

n

• Implement the controller: give the difference equation that corresponds to D(z) for both the values of T



$$G(s)=\frac{1}{(s+2)},$$

a. Design a digital control D(z) by emulation of a continuous design (i.e. by computing the discrete equivalent using ZOH and/or Tustin)

- by setting opportunely the sampling time T,
- in order to satisfy the following requirements:
 - $e_{\infty} = 0$ to a step disturbance d
 - $e_{\infty} \leq 0.1$ to a ramp signal of slope 0.5.
 - $s \leq 20\%$ to a step input r
 - $t_{a5\%} < 1s$
 - attenuation factor $\geq 20 \, dB$ for multi-frequency noise in the range $[50 + \infty] \, rad/s$

- b. Discuss the action to be implemented for reducing the effect of high-frequency noise n (i.e., $n_1(t) = 0.2\sin(50t)$, $n_2(t) = 0.2\sin(100t)$)
- c. Implement the controller: give the difference equation that corresponds to D(z) for both cases (Tustin and ZOH)

For the continuous design:

• $e_{\infty} = 0$ wrt to a step disturbance d \Rightarrow one integrator in the open loop function F(s) = C(s)G(s) (i.e., one pole in zero)

Then $C(s) = \frac{k_0}{s}$

• $e_{\infty} \le 0.1$ to a ramp signal of slope R_0 equal to 0.5, $r(t) = 0.5t \ 1(t) \ (R_0 = 0.5)$

$$\Rightarrow e_{\infty} = \frac{R_0}{F_0}, \text{ with } F_0 = k_0 G(0) = \frac{k_0}{2} \Rightarrow e_{\infty} = \frac{R_0}{F_0} = \frac{\frac{1}{2}}{\frac{k_0}{2}} \le \frac{1}{10} \Rightarrow k_0 \ge 10$$

- $s \le 20\%$ $\Rightarrow \zeta \ge 0.45$, where ζ is the damping factor of the closed-loop system ($\varphi_m > 45^\circ$)
- $t_{a5\%} < 1 \text{ s}$ $\Rightarrow \frac{3}{\zeta\omega_n} < 1 \Rightarrow \begin{cases} \zeta\omega_n > 3\\ \omega_c \cong \omega_n \end{cases} \Rightarrow \omega_c > 6.6 \text{ rad/s}, \text{ where } \omega_c \text{ is the crossing} \\ \text{frequency of the open-loop function, } F(s), \text{ and } \omega_n \text{ is the natural frequency of the} \\ \text{second order approximation of the closed loop system} \Rightarrow C(s) = \frac{k_0}{s} \frac{(s+1)}{(\frac{s}{30}+1)}$
 - attenuation factor ≥ 20 dB for noise in the range $[50 + \infty]$ rad/s

See the relative Matlab code and the scheme implemented in Simulink.