

Artificial Intelligence

Adversarial Search

LESSON 7

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Adversarial Search

- The algorithms discussed so far need to find an answer to a question
- In adversarial search, the algorithm faces an opponent that tries to achieve the opposite goal
- Often, adversarial search is encountered in games

Types of Games

	deterministic	chance
perfect information	chess, checkers, go, othello	Backgammon, monopoly
imperfect information	battleships, blind tictactoe	bridge, poker, scrabble

Perfect Information Zero-Sum Games

- The games most studied within AI (such as chess and Go) are
 - deterministic, two-player turn-taking, perfect information, zero-sum games
- Perfect information
 - Synonym for fully observable
- Zero-sum
 - means that what is good for one player is just as bad for the other
 - there is no "win-win" outcome
- Terminology
 - Move -> action
 - Position -> state

Tic-Tac-Toe

- Two players
 - ()
 - X

- A type of algorithm in adversarial search
- Minimax represents winning conditions as (-1) for one side and (+1) for the other side
- Further actions will be driven by these conditions
 - The minimizing side tries to get the lowest score
 - The maximizing side tries to get the highest score

Minimax for Tic-Tac-Toe

- Max(X) aims to maximize the score
- Min(O) aims to minimize the score

The Game

- S₀: initial state
- PLAYER(s): returns which player (X or O) to move in state s
- ACTIONS(s): returns legal moves in state s
 - What spots are free on the board
- RESULT(s,a): returns state after action a taken in state s
 - The board that resulted from performing the action a on the state s
- TERMINAL(s): checks if state s is a terminal state
 - If someone won or there is a tie
 - Returns True if the game has ended, False otherwise
- UTILITY(s): final numerical value for terminal state s
 - That is, -1, 0 or 1

Initial State

PLAYER(s)

ACTION(s)

RESULTS(s,a)

TERMINAL(s)

UTILITY(s)

What Action should O take?

• Player(s) = O

PLAYER(s) = O

Generalizing the Game Tree

- We can simplify the diagram into a more abstract Minimax tree
 - each state is just representing some generic game that might be tic-tac-toe or some other game
 - Any of the green arrows that are pointing up, represents a maximizing state, where the player is the *max* player
 - the score should be as big as possible
 - Any of the red arrows pointing down are minimizing states, where the player is the *min* player
 - trying to make the score as small as possible

Generalizing the Game Tree

• Let's consider the maximizing player

- He has three choices
 - one choice gives a score of 5
 - one choice gives a score of 3
 - one choice gives a score of 9
- Between those three choices, his best option is to choose 9
 - the score that maximizes his options out of all three options

Observation:

For some games, a single move of a player is called a **ply** to distinguish it from a **move** where both players have taken an action

Generalizing the Game Tree

- Now, one could also ask a reasonable question
 - What might my opponent do two moves away from the end of the game?
 - The opponent is the minimizing player
 - He is trying to make the score as small as possible
 - Imagine what would have happened if they had to pick which choice to make

How the Algorithm Works

- Recursively, the algorithm simulates all possible games that can take place beginning at the current state and until a terminal state is reached
- Each terminal state is valued as either -1, 0, or +1

Minimax in Tic-Tac-Toe

- Knowing the state whose turn it is, the algorithm can know whether the current player, if playing optimally, will choose the action that leads to a state with a lower or higher value
- In this way, the algorithm alternates between minimizing and maximizing, generating values for the state that would result from each possible action
- This is a recursive process
 - Eventually, through this recursive reasoning process, the maximizing player generates values for each state that could result from all possible actions at the current state
 - After having these values, the maximizing player chooses the highest one
- The maximizer considers the possible values of future states

- Given a state **s**:
 - MAX picks action a in ACTIONS(s) that produces highest value of MIN-VALUE(RESULT(s,a))
 - MIN picks action a in ACTIONS(s) that produces smallest value of MAX-VALUE(RESULT(s,a))
- Everyone makes their decision based on trying to estimate what the other person would do

function MAX-VALUE(state):
if TERMINAL(state):
 return UTILITY(state)
v=-inf
for action in ACTIONS(state):
 v=MAX(v,MIN-VALUE(RESULT(state,action)))
return v

function MIN-VALUE(state):
if TERMINAL(state):
 return UTILITY(state)
v=+inf
for action in ACTIONS(state):
 v=MIN(v,MAX-VALUE(RESULT(state,action)))
return v

Minimax properties

- Performs a complete depth-first exploration of the game tree
 - Time complexity -> O(b^m)
 - m maximum depth of the tree
 - b number of legal moves at each point
 - Space complexity -> O(bm)

Optimizations?

- The entire process could be long, especially as the game starts to get more complex, as we start to add more moves and more possible options
 - E.g., chess has a branching factor of about 35 and the average game has a depth of about 80 ply, not feasible to search 35⁸⁰ states (about 10¹²³)
- What sort of optimizations can we make here?
 - How can we do better to
 - use less space
 - take less time

What Minimax Does so far

Pruning Useless Sub-Trees

Alpha-Beta Pruning

- As a way to optimize Minimax, Alpha-Beta Pruning skips some of the recursive computations that are decidedly unfavorable
- If, after determining the value of an action, there are initial indications that the following action may cause the opponent to achieve a better result than the action already determined, there is no need to investigate this action further
 - because it will be decidedly less favorable than the previously determined action

Minimax(root) = max(mi

$$max(3, z, 2)$$
 where $z = min(2, x, y) <= 2$

=

Why is it Called $\alpha - \beta$?

- α is the best value (to max) found so far off the current path
- If V is worse than α , max will avoid it \Rightarrow prune that branch
- Define β similarly for min

PARTHENOPE

The $\alpha - \beta$ Algorithm

function Alpha-Beta-Decision(state) returns an action return the *a* in Actions(state) maximizing Min-Value(Result(*a*, state)) function Max-Value(state, α , β) returns *a utility value* inputs: state, current state in game α , the value of the best alternative for max along the path to state β , the value of the best alternative for min along the path to state if Terminal-Test(state) then return Utility(state) $\nu \leftarrow -\infty$ for *a*, *s* in Successors(state) do $\nu \leftarrow Max(\nu, Min-Value(s, \alpha, \beta))$ if $\nu \ge \beta$ then return ν $\alpha \leftarrow Max(\alpha, \nu)$ return ν function Min-Value(state, α , β) returns *a utility value* same as Max-Value but with roles of α , β reversed

Properties of $\alpha - \beta$

- Pruning does not affect the final result
- Good move ordering improves the effectiveness of pruning
- With a perfect ordering, time complexity = $O(b^{m/2})$
 - This means it doubles the solvable depth
 - For chess (about 35¹⁰⁰), unfortunately, 35⁵⁰ is still impossible!
- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Total Possible Games

- 255.168 total possible Tic-Tac-Toe games
- More complex game
 - 288.000.000.000 total possible chess games
 - after four moves each
 - 10²⁹⁰⁰⁰ total possible chess games (lower bound)
- A big problem for Minimax
- So what?
 - Do not look through all the states (also called type A strategy, Shannon 1950)
 - Depth-limited Minimax

Depth-Limited Minimax

- Depth-limited Minimax only considers a predefined number of moves before stopping, without ever reaching a terminal state
 - However, this does not allow to obtain an exact value for each action, since the end of the hypothetical games has not yet been reached
- To deal with this problem, Depth-Limited Minimax relies on an evaluation function that estimates the expected utility of the game from a given state, or in other words, assigns estimated values to states

Evaluation function

- Evaluation function
 - Function that estimates the expected utility of the game from a given state
- Example
 - In a game like chess, if you imagine that a game value of 1 means white wins, -1 means black wins, 0 means it's a draw
 - A score of 0.8 means white is very likely to win though certainly not guaranteed
 - Depending on how good that evaluation function is, ultimately constrains how good the AI is

Evaluation Functions

Black to move White slightly better

Black winning

- For chess, typically linear weighted sum of features
 - $E val(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$
- For instance, $w_1 = 3$ with
 - $f_1(s) = (number of white pawns) (number of black pawns), etc.$