
Adversarial Search

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 7

Artificial Intelligence

Adversarial Search

• The algorithms discussed so far need to find an answer to a
question

• In adversarial search, the algorithm faces an opponent that tries to
achieve the opposite goal

• Often, adversarial search is encountered in games

Types of Games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

Backgammon,
monopoly

battleships,
blind tictactoe

bridge, poker, scrabble

Perfect Information Zero-Sum Games

• The games most studied within AI (such as chess and Go) are
• deterministic, two-player turn-taking, perfect information, zero-sum games

• Perfect information
• Synonym for fully observable

• Zero-sum
• means that what is good for one player is just as bad for the other

• there is no “win-win” outcome

• Terminology
• Move -> action
• Position -> state

Tic-Tac-ToeInitial State

• Two players
• O
• X

X
O X

O
XO
X

Minimax

• A type of algorithm in adversarial search

• Minimax represents winning conditions as (-1) for one side and (+1)
for the other side

• Further actions will be driven by these conditions
• The minimizing side tries to get the lowest score
• The maximizing side tries to get the highest score

Minimax for Tic-Tac-Toe

O X X
O O
O X X

X O X
O O X
X X O

O X
X O

X O X

1-1 0
• Max(X) aims to maximize the score

• Min(O) aims to minimize the score

The Game

• S0: initial state

• PLAYER(s): returns which player (X or O) to move in state s

• ACTIONS(s): returns legal moves in state s
• What spots are free on the board

• RESULT(s,a): returns state after action a taken in state s
• The board that resulted from performing the action a on the state s

• TERMINAL(s): checks if state s is a terminal state
• If someone won or there is a tie

• Returns True if the game has ended, False otherwise

• UTILITY(s): final numerical value for terminal state s
• That is, -1, 0 or 1

Initial StateInitial State

PLAYER(s)PLAYER(s)

PLAYER() = X

XPLAYER() = O

ACTION(s)ACTIONS(s)

X O
O X X
X O

ACTIONS() = { , }
O

O

RESULTS(s,a)RESULT(s, a)

X O
O X X
X O

RESULT(,) =O
O X O
O X X
X O

TERMINAL(s)TERMINAL(s)

O
O X
X O X

TERMINAL() = false

O X
O X
X O X

TERMINAL() = true

UTILITY(s)UTILITY(s)

O X
O X
X O X

UTILITY() = 1

O X X
X O
O X O

UTILITY() = -1

What Action should O take?

• Player(s) = O

Initial State

X
OX

O
XO

X

PLAYER(s) = O

X O
O X X
X O

PLAYER(s) = O

O X O
O X X
X O

X O
O X X
X O O

MIN-VALUE:
0

O X O
O X X
X X O

X X O
O X X
X O O

VALUE:
0

VALUE:
1

MAX-VALUE:
1

MAX-VALUE:
0

PLAYER(s) = X

X O
O X X
X O

O X O
O X X
X O

X O
O X X
X O O

MIN-VALUE:
0

O X O
O X X
X X O

X X O
O X X
X O O

VALUE:
0

VALUE:
1

MAX-VALUE:
1

MAX-VALUE:
0

X O
O X
X O

X X O
O X
X O

X X O
O X O
X O

X X O
O X
X O O

MIN-VALUE:
-1

X X O
O X X
X O O

VALUE:
0

VALUE:
-1

MAX-VALUE:
0

X O
O X
X X O

VALUE:
1

MAX-VALUE:
1

Generalizing the Game Tree

• We can simplify the diagram into a more abstract Minimax tree
• each state is just representing some generic game that might be tic-tac-toe or

some other game
• Any of the green arrows that are pointing up, represents a maximizing state,

where the player is the max player
• the score should be as big as possible

• Any of the red arrows pointing down are minimizing states, where the player is
the min player
• trying to make the score as small as possible 9

5 3 9

Generalizing the Game Tree

• Let’s consider the maximizing player
• He has three choices

• one choice gives a score of 5
• one choice gives a score of 3

• one choice gives a score of 9

• Between those three choices, his best option is to choose 9
• the score that maximizes his options out of all three options

9

5 3 9

Observation:

For some games, a single move of a player

is called a ply to distinguish it from a move

where both players have taken an action

Generalizing the Game Tree

• Now, one could also ask a reasonable question
• What might my opponent do two moves away from the end of the game?
• The opponent is the minimizing player

• He is trying to make the score as small as possible
• Imagine what would have happened if they had to pick which choice to make

9

5 3 9

9

5 3 9 2 8

8

8

How the Algorithm Works

• Recursively, the algorithm simulates all possible games that can
take place beginning at the current state and until a terminal state
is reached

• Each terminal state is valued as either -1, 0, or +1

Minimax in Tic-Tac-Toe

• Knowing the state whose turn it is, the algorithm can know whether the
current player, if playing optimally, will choose the action that leads to a state
with a lower or higher value

• In this way, the algorithm alternates between minimizing and maximizing,
generating values for the state that would result from each possible action

• This is a recursive process
• Eventually, through this recursive reasoning process, the maximizing player generates

values for each state that could result from all possible actions at the current state
• After having these values, the maximizing player chooses the highest one

• The maximizer considers the possible values of future states

Minimax

• Given a state s:

• MAX picks action a in ACTIONS(s) that produces highest value of MIN-VALUE(RESULT(s,a))

• MIN picks action a in ACTIONS(s) that produces smallest value of MAX-VALUE(RESULT(s,a))

• Everyone makes their decision based on trying to estimate what the other person
would do

Minimax

function MAX-VALUE(state):

if TERMINAL(state):
return UTILITY(state)

v=-inf

for action in ACTIONS(state):
v=MAX(v,MIN-VALUE(RESULT(state,action)))

return v

Minimax

function MIN-VALUE(state):

if TERMINAL(state):
return UTILITY(state)

v=+inf

for action in ACTIONS(state):
v=MIN(v,MAX-VALUE(RESULT(state,action)))

return v

Minimax properties

• Performs a complete depth-first exploration of the game tree
• Time complexity -> O(bm)

• m maximum depth of the tree
• b number of legal moves at each point

• Space complexity -> O(bm)

Optimizations?

• The entire process could be long, especially as the game starts to
get more complex, as we start to add more moves and more
possible options
• E.g., chess has a branching factor of about 35 and the average game has a

depth of about 80 ply, not feasible to search 3580 states (about 10123)

• What sort of optimizations can we make here?
• How can we do better to

• use less space
• take less time

What Minimax Does so far

4

5 2

2 64

3

9 73

4

4 58

Pruning Useless Sub-Trees

4

5 ≤2

2

≤3

9 3

4

4 58

Alpha-Beta Pruning

• As a way to optimize Minimax, Alpha-Beta Pruning skips some of the
recursive computations that are decidedly unfavorable

• If, after determining the value of an action, there are initial indications that
the following action may cause the opponent to achieve a better result than
the action already determined, there is no need to investigate this action
further
• because it will be decidedly less favorable than the previously determined action

𝛼 − 𝛽 Pruning Example

MAX

3 12 8

MIN 3

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X
14

14

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X
14 5

14 5

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X
14 5 2

14 5 2

3 3

Minimax(root) = max(min(3,12,8), min(2, x, y), min(14,5,2))
 = max(3, min(2, x, y), 2)
 = max(3, z, 2) where z = min(2, x, y) <= 2
 = 3

Why is it Called 𝛼 − 𝛽 ?

• 𝛼 is the best value (to max) found so far off the current path

• If V is worse than 𝛼, max will avoid it ⇒ prune that branch

• Define 𝛽 similarly for min

MIN

..

..

..

MAX

MAX

MIN V

The 𝛼 − 𝛽 Algorithm
function Alpha-Beta-Decision(state) returns an action
return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state,α,β) returns a utility value
inputs: state, current state in game

α, the value of the best alternative for max along the path to state
β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)
v←− ∞
for a, s in Successors(state) do

v←Max(v, Min-Value(s,α,β))
if v ≥ β then return v
α←Max(α, v)

return v

function Min-Value(state,α,β) returns a utility value
same as Max-Value but with roles of α,β reversed

Properties of 𝛼 − 𝛽	

• Pruning does not affect the final result

• Good move ordering improves the effectiveness of pruning

• With a perfect ordering, time complexity = O(bm/2)
• This means it doubles the solvable depth

• For chess (about 35100), unfortunately, 3550 is still impossible!

• A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Total Possible Games

• 255.168 total possible Tic-Tac-Toe games

• More complex game
• 288.000.000.000 total possible chess games

• after four moves each

• 1029000 total possible chess games (lower bound)

• A big problem for Minimax

• So what?
• Do not look through all the states (also called type A strategy, Shannon 1950)

• Depth-limited Minimax

Depth-Limited Minimax

• Depth-limited Minimax only considers a predefined number of moves
before stopping, without ever reaching a terminal state
• However, this does not allow to obtain an exact value for each action, since the

end of the hypothetical games has not yet been reached

• To deal with this problem, Depth-Limited Minimax relies on an
evaluation function that estimates the expected utility of the game from
a given state, or in other words, assigns estimated values to states

Evaluation function

• Evaluation function
• Function that estimates the expected utility of the game from a given

state

• Example
• In a game like chess, if you imagine that a game value of 1 means white

wins, -1 means black wins, 0 means it’s a draw
• A score of 0.8 means white is very likely to win though certainly not guaranteed
• Depending on how good that evaluation function is, ultimately constrains how good

the AI is

Evaluation Functions

• For chess, typically linear weighted sum of features
• Eval(s) = w1f 1(s) + w2f 2(s) + . . . + wnf n(s)

• For instance, w1 = 3 with
• f1(s) = (number of white pawns) – (number of black pawns), etc.

Black to move

White slightly better

White to move

Blackwinning

