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Steady state response of continuous LTI 
systems to  sinusoidal inputs - 1

ñ Let us consider an asymptotically stable LTI system with a transfer function 
𝑊 𝑠  subject to a sinusoidal input signal

ñ The evaluation of the steady state response of LTI system to sinusoidal 
inputs is very important:

  any signal can be decomposed in the sum of a finite (periodic signal) 
and infinite number  (aperiodic signal) of sinusoids  by means of the 
Fourier series.
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ñ It is possible to prove that the steady state response of an LTI system with 
transfer function 𝑊 𝑠  to a sinusoidal inputs 𝑢 𝑡 = U!sin(𝜔!𝑡 + 𝜙) can 
be written in the time domain as

where

ò |𝑊 𝑠 |"#$%! is the magnitude of the Laplace transform of 𝑊 𝑠  
evaluated in 𝑠 = 𝑗𝜔!.

ò ∠𝑊 𝑠 |"#$%! is the phase of the Laplace transform of 𝑊 𝑠  evaluated 
in 𝑠 = 𝑗𝜔!.
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Steady state response of continuous LTI 
systems to  sinusoidal inputs - 2
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Steady state response at sinusoidal inputs
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Total response of system 𝑊(𝑠) ⁄= 1 (𝑠&+𝑠 + 1) to the input 𝑢 𝑡 = sin 2𝑡 ⋅ 1 𝑡 .    
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Filters

ñ The proposed result can be summarized as follows:

ò The magnitude of a sinusoidal input signal 𝑢 𝑡 = sin(𝜔!𝑡 + 𝜙) is 
amplified or reduced  by a linear system depending on the value of 
|𝑊 𝑠 |"#$%! .

ò An input signal 𝑢 𝑡 = sin(𝜔!𝑡 + 𝜙) is phase shifted by a linear 
system depending on the value of  ∠𝑊 𝑠 |"#$%! .

ñ In other terms, a linear system can be designed as a filter able to amplify 
without distortion a certain set of input signals Ω' and reduce or eliminate 
the other signals.

5



Prof. Francesco Montefusco Industrial Automation 2023/24

Harmonic response function 

ñ This result underlines the importance of the function 𝑊(𝑗𝜔) for the 
analysis of the forced response of LTI systems.

ñ The function 𝑊(𝑗𝜔)  is called harmonic response function of the system.

ñ In the following we present a method able to rapidly evaluate the magnitude 
and the phase 𝑊(𝑗𝜔) as a function of 𝜔.
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W(jw) general form - 1

ñ Given an asymptotically stable LTI system,  the harmonic response function  
𝑊(𝑗𝜔)  is given by the ratio of polynomial with real and complex conjugate 
roots

7

( ) ( )
( )

( )
w

k

h

n

w

ww
z

t

ww
x

s
w

js
j p npnp

pn
j

q nqnq

q

i

m
i

js p

j

q

i

sss

ssss
KsWjW

=

=

Õ Õ

ÕÕ

÷
÷
ø

ö
ç
ç
è

æ
+++

÷
÷
ø

ö
ç
ç
è

æ
+++

==

2

2

2

2

2
11

2
11



Prof. Francesco Montefusco Industrial Automation 2023/24

W(jw) general form - 2

ñ Bode diagrams allows to extract the magnitude and the phase of 𝑊(𝑗𝜔) as 
a function of 𝜔

ñ Bode diagrams are a main tool for the closed loop control design

ñ For the closed loop control problems, we are interested to analyze 
magnitude and phase of transfer functions 𝑊(𝑠) also in case of stable and 
unstable systems

ñ In that cases, 𝑊 𝑠 |"#$% is not the harmonic function.  
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Bode diagrams definition 
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ñ The y-axis of the magnitude and phase Bode diagrams indicate respectively  

ò the magnitude of the transfer function in dB  (decibel)

|W jω |() = 20 log'! |W(jω)|

ò the phase of the transfer function  in degrees or radians 

∠𝑊(𝑗𝜔)
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Magnitude and phase diagrams
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magnitude [dB]

Phase [deg]
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Bode diagrams of the magnitude

ñ The magnitude of the Bode diagrams is expressed in decibel firstly because  the 
logarithmic scale allows to consider large magnitude intervals with limited space    
(ex: |10|*+ = 20 , |100|*+ = 40 , |1000|*+ = 60)

ñ Moreover, the magnitude of  𝑊 𝑠 |"#$%  in decibel can be written has

and using the main properties of the logarithm….
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Bode diagrams of the magnitude

   

ñ The magnitude of 𝑊 𝑠 |"#$% in decibel is given by the sum of  four terms: 
constant, monomial, binomial and trinomial terms

ñ The phase function has the some product property of the logarithm. Hence in the 
following we will construct the magnitude and phase Bode diagrams considering  
these four terms separately. 
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Basic terms for the Bode diagrams

ñ Constant term:   𝑲

ñ Monomial term: Zero/Pole in the origin of multiplicity 𝜈:     𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 𝐬𝛎

ñ Binomial term :   Real zero/pole of multiplicity 𝜈:    𝟐𝟎 𝐥𝐨𝐠𝟏𝟎(𝟏 + 𝝉𝐬)±𝛎

ñ Trinomial term : Complex conjugate zero/pole of multiplicity 𝜈:

𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 𝟏 +
𝟐𝜻𝐬
𝝎𝒏

+
𝒔𝟐

𝝎𝒏
𝟐

±𝛎

 
13



Prof. Francesco Montefusco Industrial Automation 2023/24

Constant term: K
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Monomial terms: (jw)n
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magnitude [dB]

Phase [deg]

𝟐𝟎 ⁄𝒅𝑩 𝒅𝒆𝒄

4𝟎 ⁄𝒅𝑩 𝒅𝒆𝒄

−𝟐𝟎 ⁄𝒅𝑩 𝒅𝒆𝒄

−𝟒𝟎 ⁄𝒅𝑩 𝒅𝒆𝒄

|𝐖 𝐣𝝎 |𝐝𝐁 = 𝟐𝟎 ⋅ 𝒍𝒐𝒈𝟏𝟎 (| 𝒋𝝎 𝝂|)

∠𝐖 𝐣𝝎 = ∠ 𝒋𝝎 𝝂
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Real Bode diagrams: binomial term 
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Zero of multiplicity one  𝑾 𝒔 = 𝟏 + 𝒔𝝉

This result can be easily generalized to a generic binomial term

Phase [deg]

Magnitude [dB]

Phase in degree
∠W j𝜔 = ∠ (1 + 𝑗𝜔𝜏)

Asymp
Real

magnitude in decibel
   |W j𝜔 |(5

= 20 ⋅ 𝑙𝑜𝑔'! (|1 + 𝑗𝜔𝜏|)
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Real Bode diagrams: trinomial term 
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Complex conjugate poles of multiplicity one  𝑾 𝒔 = 𝟏 + 𝟐𝜻𝐬
𝝎𝒏
+ 𝒔𝟐

𝝎𝒏𝟐

:𝟏

Peak module

𝑴𝒑 =
𝟏

𝟐𝜻 𝟏 − 𝟐𝜻𝟐

Peak frequency
𝝎𝒑 = 𝝎𝒏 𝟏 − 𝟐𝜻𝟐

This result can be easily generalized to a generic trinomial term

magnitude in decibel |W j𝜔 |$%

= 20 ⋅ 𝑙𝑜𝑔&' 1 + 𝑗
2𝜁𝜔
𝜔(

−
𝜔)

𝜔()

Magnitude [dB]

Phase [deg]
𝜔<

Asymp

Phase in degree, ∠W j𝜔

= ∠ 1 + 𝑗
2𝜁𝜔
𝜔(

−
𝜔)

𝜔()
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ñ Monomial terms of multiplicity 1. The slope is constant in 𝜔 ∈ [0 ∞[

ñ Binomial and trinomial terms of multiplicity 1. The slope changes on the break 
point

ñ When the term has a multiplicity greater than one, the slopes should be
multiplied by the multiplicity.

Bode magnitude table

Indipendent from the sign of  the real part

Real Zero +20 dB/decade

Real Pole -20 dB/decade

Comp. Conjug. zeros +40 dB/decade

Comp. Conjug. poles -40 dB/decade

18

Zero in the origin +20 dB/decade

Pole  in the origin -20 dB/decade
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Bode phase table

ñ Constant and monomial terms of multiplicity 1. The slope is constant in 
𝜔 ∈ [0 ∞[

ñ Binomial and trinomial terms of multiplicity 1. The slope changes one 
decade before and after the breaking point.

ñ When the term has a multiplicity greater than one, the phase variation
should be multiplied by the multiplicity.

19

Negative real part Positive real part

Real Zero +90° +45à -45 °/decade -90° -45à +45 °/decade

Real Pole -90° -45à +45 °/decade +90° +45à -45 °/decade

Comp. Conjug. zeros +180° +90à -90 °/decade -180° -90à +90 °/decade

Comp. Conjug. poles -180° -90à +90 °/decade +180° +90à -90 °/decade

K < 0 -180° per wÎ[0,¥)

Zero in the origin +90° per wÎ[0,¥)

Pole in the origin -90° per wÎ[0,¥)



Fourier analysis – continuous time signal
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Ø Any periodic function f(t) with period T, 

𝑓 𝑡 = 𝑓 𝑡 + 𝑇 ,
can be written as 

where 𝜔! =
&=
>
	 ,

F0 is the average value of  f  over a single period.

.

.

The component with 𝜔!	 is the fundemental armonic or 1st harmonic, that 
with 𝑛𝜔! is n-th harmonic. 
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Using Fourier analysis:

Therefore, the square wave can be written

Example: square wave
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Example: approximation of a square wave
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Single harmonic approximation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

2

Am
pl

itu
de

Two harmonics approximation
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Five harmonics approximation

𝜔! = 2π rad/s

𝜔!, 3𝜔! 

𝜔!, 3𝜔!, 
5𝜔!, 7𝜔!, 
9𝜔!, 
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Let us consider the system 
with transfer function:
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Magnitude frequency response of the system
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Magnitude of the first five Fourier coefficients of a square wave signal with T=2

𝐺 𝑠 =
1

𝑠# + 𝑠 + 1
and assume we want to 
compute the steady-state 
response to the square 
wave with period   T=2𝜋.
• 𝑢 𝑡 = $

#
+ #

%
sin 𝑡

+
2
3𝜋 sin 3𝑡 +

+
2
5𝜋 sin 5𝑡 + ⋯

Example: steady state response to a square 
wave - 1
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square wave output first harmonic approx.

The stead state response of  
the  system with transfer 
function

𝐺 𝑠 =
1

𝑠# + 𝑠 + 1

is practically identical to the 
response assuming just the 
first two terms of  the Fourier 
expansion (the average value 
plus the first harmonic)

Example: steady state response to a square 
wave - 2



Fourier transform
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Ø So far we have assumed that the signal are periodic. In this case, the
frequency spectrum (i.e., the coefficients of the Fourier series) of the signal
is discrete (i.e., it is defined only a certain frequencies)

Ø When the signal is aperiodic, we can assume it as a signal with period 𝑇 =
∞. Thus, the interval between two consecutive harmonics 𝑛𝜔< = 𝑛 =>

?
tends to zero and the frequency spectrum becomes a continuous function
of w (i.e. defined for all the frequency values)

Ø Formally, given a aperiodic signal f (t), it can be analysed in the frequency
domain by applying the Fourier transform, defined as

ℱ 𝜔 = i
:?

@?
𝑓(𝑡)𝑒:$%A 𝑑𝑡
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Steady state response of discrete LTI 
systems to  sinusoidal inputs - 1

ñ Let us consider an asymptotically stable discrete LTI system with a transfer 
function 𝐺 𝑧

ñ The steady state response to a sinusoidal input 𝑢 𝒌 ,

𝑢 𝒌 = 𝑼sin 𝜽𝟎𝒌 𝟏(𝒌)

is given by  

𝒚 𝒌 = 𝑼 𝑮 𝒆𝒋𝜽𝟎 sin 𝜽𝟎𝒌 + arg 𝑮 𝒆𝒋𝜽𝟎

where 𝑮(𝒛)|𝒛#𝒆𝒋𝜽𝟎  is the frequency response of the discrete-time system 

26

G(z)
u(k) y(k)
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Indeed, by applying z-Transform

and by decomposition

where

In the case of  asymptotically stable system,

Steady state response of discrete LTI 
systems to  sinusoidal inputs - 2
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Steady state response of discrete LTI 
systems to  sinusoidal inputs - 3

From this results, given a sample time T, the response of a discrete time
LTI to a sinusoidal input is the same at each frequency 𝜔 +𝑚 =>

?
, with

𝑚 ∈ ℕ
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Frequency response

ñ This result, as for the continuous time LTI systems, underlines the importance 
of the function 𝐺(𝒆𝒋F) for the analysis of the forced response of discrete time 
LTI systems.

ñ The function 𝐺(𝒆𝒋F) is the frequency response of the discrete time system, 
with 𝜃 ∈ 0 2𝜋 , and 𝒆𝒋F is not a pole of G(z).



Fourier analysis – discrete time signal
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Ø Any periodic function u(k), denoted here with uk with period N, 
(positive integer)  

.

.

can be written as 

The response yk of  a discrete time LTI to uk


