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Informed Search

• Uniformed and informed search concern with finding a solution as a sequence 
of actions
• The environments are fully observable, deterministic, static, and known

• Now, we want to relax some of those constraints
• Finding a good state without considering the path to get there

• Discrete and continuous states

• Nondeterministic environments



• Local Search and Optimization Problems
• Hill-climbing
• Simulated annealing

• Genetic algorithms 
• Local search in continuous spaces
• Belief states and conditional plans

What we are going to learn today



Optimization Problems

• In search problems examined so far, the agent needed to find a path 
from a source to a destination
• E.g., a path from Arad to Bucharest

• In many optimization problems, the path is irrelevant
• The goal state itself is the solution, that is, the objective is to choose 

the best option from a set of possible options
• We care only about finding a valid final configuration

• 8-queens

• Integrated-circuits design
• Job shop scheduling

• Telecommunications network optimization

• Crop planning



Local Search and Optimization Problems
• Local search algorithms operate by searching from a start state to 

neighboring states, without keeping track of the paths nor the set of states 
that have been reached
• local search is interested in finding the best answer to a question

• The state space is a set of “complete” configurations
• find the optimal configuration, e.g., TSP
• find configuration satisfying constraints, e.g., timetable

• We can use iterative improvement algorithms
• keep a single “current” state and try to improve it

• Often, local search will bring to an answer that is not optimal but “good 
enough”
• They are not systematic; they might never explore a portion of the search space where a 

solution actually resides



Example

• We have four houses in set locations
• Goal: build two hospitals such that the distance from each house to a 

hospital is minimized
• A state is any configuration of houses and hospitalsbXild WZR hRVSiWalV, VXch WhaW Ze miQimi]e Whe diVWaQce fURm each hRXVe WR a hRVSiWal. ThiV

SURblem caQ be YiVXali]ed aV fRllRZV:

IQ WhiV illXVWUaWiRQ, Ze aUe VeeiQg a SRVVible cRQågXUaWiRQ Rf hRXVeV aQd hRVSiWalV. The diVWaQce
beWZeeQ Whem iV meaVXUed XViQg MaQhaWWaQ diVWaQce (QXmbeU Rf mRYeV XS, dRZQ, aQd WR Whe
VideV; diVcXVVed iQ mRUe deWail iQ lecWXUe 0), aQd Whe VXm Rf Whe diVWaQceV fURm each hRXVe WR
Whe QeaUeVW hRVSiWal iV 17. We call WhiV Whe cRVW, becaXVe Ze WU\ WR miQimi]e WhiV diVWaQce. IQ WhiV
caVe, a VWaWe ZRXld be aQ\ RQe cRQågXUaWiRQ Rf hRXVeV aQd hRVSiWalV.

AbVWUacWiQg WhiV cRQceSW, Ze caQ UeSUeVeQW each cRQågXUaWiRQ Rf hRXVeV aQd hRVSiWalV aV Whe
VWaWe-VSace laQdVcaSe belRZ. Each Rf Whe baUV iQ Whe SicWXUe UeSUeVeQWV a YalXe Rf a VWaWe, Zhich
iQ RXU e[amSle ZRXld be Whe cRVW Rf a ceUWaiQ cRQågXUaWiRQ Rf hRXVeV aQd hRVSiWalV.



State-space Landscape

• We can represent each configuration of houses and hospitals as a state-
space landscape
• Each of the bars represents a value of a state, e.g., the cost of a certain 

configuration of houses and hospitals

GRiQg Rff Rf WhiV YiVXali]aWiRQ, Ze caQ deåQe a feZ imSRUWaQW WeUmV fRU Whe UeVW Rf RXU
diVcXVViRQ:

NRWe WhaW Whe Za\ lRcal VeaUch algRUiWhmV ZRUk iV b\ cRQVideUiQg RQe QRde iQ a cXUUeQW VWaWe,
aQd WheQ mRYiQg Whe QRde WR RQe Rf Whe cXUUeQW VWaWeÌV QeighbRUV. ThiV iV XQlike Whe miQima[
algRUiWhm, fRU e[amSle, ZheUe eYeU\ ViQgle VWaWe iQ Whe VWaWe VSace ZaV cRQVideUed UecXUViYel\.

HLOO COLPbLQJ

Hill climbiQg iV RQe W\Se Rf a lRcal VeaUch algRUiWhm. IQ WhiV algRUiWhm, Whe QeighbRU VWaWeV aUe
cRmSaUed WR Whe cXUUeQW VWaWe, aQd if aQ\ Rf Whem iV beWWeU, Ze chaQge Whe cXUUeQW QRde fURm Whe
cXUUeQW VWaWe WR WhaW QeighbRU VWaWe. WhaW TXaliåeV aV beWWeU iV deåQed b\ ZheWheU Ze XVe aQ
RbjecWiYe fXQcWiRQ, SUefeUUiQg a higheU YalXe, RU a decUeaViQg fXQcWiRQ, SUefeUUiQg a lRZeU YalXe.

A hill climbiQg algRUiWhm Zill lRRk Whe fRllRZiQg Za\ iQ SVeXdRcRde:

AQ ObMecWLYe FXQcWLRQ iV a fXQcWiRQ WhaW Ze XVe WR ma[imi]e Whe YalXe Rf Whe VRlXWiRQ.¶

A CRVW FXQcWLRQ iV a fXQcWiRQ WhaW Ze XVe WR miQimi]e Whe cRVW Rf Whe VRlXWiRQ (WhiV iV Whe
fXQcWiRQ WhaW Ze ZRXld XVe iQ RXU e[amSle ZiWh hRXVeV aQd hRVSiWalV. We ZaQW WR
miQimi]e Whe diVWaQce fURm hRXVeV WR hRVSiWalV).

¶

A CXUUeQW SWaWe iV Whe VWaWe WhaW iV cXUUeQWl\ beiQg cRQVideUed b\ Whe fXQcWiRQ.¶

A NeLJKbRU SWaWe iV a VWaWe WhaW Whe cXUUeQW VWaWe caQ WUaQViWiRQ WR. IQ Whe RQe-dimeQViRQal
VWaWe-VSace laQdVcaSe abRYe, a QeighbRU VWaWe iV Whe VWaWe WR eiWheU Vide Rf Whe cXUUeQW
VWaWe. IQ RXU e[amSle, a QeighbRU VWaWe cRXld be Whe VWaWe UeVXlWiQg fURm mRYiQg RQe Rf
Whe hRVSiWalV WR aQ\ diUecWiRQ b\ RQe VWeS. NeighbRU VWaWeV aUe XVXall\ VimilaU WR Whe
cXUUeQW VWaWe, aQd, WheUefRUe, WheiU YalXeV aUe clRVe WR Whe YalXe Rf Whe cXUUeQW VWaWe.

¶



Local Search and optimization ingredients

• Objective function or Cost function
• A function that we use to maximize (minimize) the value (the cost) of the 

solution

• Current state
• The state that is currently being considered by the function

• Neighbor state
• A state that the current state can transition to

• Usually similar to the current state, so its value is close to the current state's value

• Local search algorithms work by considering one node in a current 
state and then moving to a node of the current state’s neighbors



Maximization problem

global maximumobjective 
function

• Optimal solution: global maximum



Minimization problem 

• Optimal solution: global minimum

global minimumcost 
function



Current state

current state



Current state’s neighbors

neighbors



Example: TSP

• Start with any complete tour, perform pairwise exchange

• Variants of this approach get within 1% of optimal very quickly with 
thousands of cities



Example: n-Queens

• Put n-queens on a nxn board, with no queen on the same row, 
column or diagonal

• Move a queen to reduce the number of conflicts

h = 5 h = 2 h = 0



Local Search

• Local search algorithms solve optimization problems
• Find the best state according to an objective function

current  
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder



Hill-climbing Search
• It keeps track of one current state and on each iteration moves to the neighboring 

state with the highest value
• It heads in the direction that provides the steepest ascent

• Stops at a peak with no neighbor with a higher value

• Does not look ahead beyond the immediate neighbors of the current state

• In a Hill-climbing search, the negative of a heuristic cost function can be used as the 
objective function
• that will climb locally to the state with the smallest heuristic distance to the goal



Hill-climbing Search and 8-Queens

• The initial state is chosen at random

• The successors of a state are all possible states generated by moving one queen to 
another square in the same column (56 successors)

• The heuristic cost function h is the number of pairs of queens that are attacking each 
other
• Zero only for solutions

• Count as an attack if two pieces in the same line with an intervening piece between them



Properties of Hill-climbing

• Sometimes called greedy local search

• Hill-climbing can get stuck for several reasons
• Local maxima

• A peak higher than each of its neighbors but lower than the global maximum

• Ridges
• A sequence of local maxima that is difficult for greedy algorithms to navigate

• Plateau
• Flat area of the state-space landscape

• Local maximum from which no uphill exists

• Shoulder from which progress is possible

• In each case, the algorithm reaches a point at which no progress is 
being made

124 Chapter 4. Beyond Classical Search

Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local
maxima that are not directly connected to each other. From each local maximum, all the
available actions point downhill.

Many variants of hill climbing have been invented. Stochastic hill climbing chooses atSTOCHASTIC HILL

CLIMBING

random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes, it finds better solutions. First-choice hill climbing implements stochasticFIRST-CHOICE HILL

CLIMBING

hill climbing by generating successors randomly until one is generated that is better than the
current state. This is a good strategy when a state has many (e.g., thousands) of successors.

The hill-climbing algorithms described so far are incomplete—they often fail to find
a goal when one exists because they can get stuck on local maxima. Random-restart hill
climbing adopts the well-known adage, “If at first you don’t succeed, try, try again.” It con-RANDOM-RESTART

HILL CLIMBING

ducts a series of hill-climbing searches from randomly generated initial states,1 until a goal
is found. It is trivially complete with probability approaching 1, because it will eventually
generate a goal state as the initial state. If each hill-climbing search has a probability p of
success, then the expected number of restarts required is 1/p. For 8-queens instances with
no sideways moves allowed, p ≈ 0.14, so we need roughly 7 iterations to find a goal (6 fail-
ures and 1 success). The expected number of steps is the cost of one successful iteration plus
(1−p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways moves,
1/0.94 ≈ 1.06 iterations are needed on average and (1× 21)+ (0.06/0.94)× 64 ≈ 25 steps.
For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three mil-
lion queens, the approach can find solutions in under a minute.2

1 Generating a random state from an implicitly specified state space can be a hard problem in itself.
2 Luby et al. (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways moves is an example of this idea.



Hill-Climbing Improvements

• Sideways move
• When a plateau is reached keep going (works only for a shoulder)

• We can limit the number of consecutive sideways moves
• It raises the percentage of problem instances solved (8-queens) from 14% to 94%

• Stochastic hill-climbing
• Randomly chooses among uphill moves with a probability of selection varying with their steepness

• Slower convergence, but better solutions (sometimes)

• First-choice hill climbing
• A stochastic hill climbing that generates successors randomly until one is better than the current state

• Good strategy when state as many (e.g., thousands) of successors

• Random-restart hill climbing
• A series of hill-climbing searches from randomly generated initial state, until a goal is found

• Hill-climbing performance depends upon the shape of the landscape



Simulated Annealing

• Hill-climbing is always vulnerable to getting stuck in a local 
maximum
• At the other extreme, a pure random walk will eventually reach the global 

maximum
• However, extremely inefficient

• Simulated annealing combines both worlds for yielding both 
efficiency and completeness
• Annealing is the process to harden metals and glass by heating them to a 

high temperature 
• Then, gradually cooling the material allows it to reach a low-energy crystalline state



Simulated Annealing

• To understand simulated annealing let’s view the problem as a gradient 
descent (that is, minimizing the cost)



Simulated Annealing Algorithm

• Pick a random move
• If the move leads to an improvement, accept it
• Otherwise, the move is accepted with some probability p < 1

• The probability decreases exponentially according to the badness of a move 

Idea: escape local maxima by allowing some “bad” moves but gradually decrease their size and frequency

The probability decreases exponentially with the amount 
∆E by which the evaluation is worsened. 
The probability also decreases as the “temperature” T 
goes down: “bad” moves are more likely to be allowed 
at the start when T is high, and they become more 
unlikely as T decreases. 



Local Beam Search

• The local beam search algorithm keeps track of k states rather than just one
• Randomly generates k states
• At each step, all the successors of all k are generated

• If anyone is a goal, stop
• Otherwise, select the k best successors from the complete list and repeat

• A local beam search with k states might seem as running parallel k random 
restarts instead of in sequence
• However, in a random-restart search, each search process runs independently of the 

others, whereas, in a local beam search, useful information is passed among the parallel 
search threads

• The algorithm quickly leaves unfruitful searches and moves its resources to where the 
most progress is being made 

• A variant called stochastic beam search chooses successors with probability 
proportional to the successor’s value to increase diversity



Evolutionary Algorithms

• Motivated by the metaphor of natural selection in biology
• It is created a population of individuals (the state, that is, the solutions)
• The fittest individuals (highest value) produce offspring (successor states)

• This process is called recombination
• The offspring after recombination form the next generation population

• Several variants of this evolutionary scheme exist
• Genetic algorithms
• Evolutionary strategy
• Genetic programming



Genetic Algorithms (GAs)

• The population has a fixed size (number of individuals)

• Each individual, called a chromosome, is represented by a string 
over a finite alphabet (usually, a binary  string)

• Each chromosome has a fitness value determining its goodness 

• The population evolves through several generations 
• In each generation, the chromosomes are applied to three genetic 

operators
• Selection
• Crossover
• Mutation



GA Operators: Selection

• Selects the chromosomes who will become parents of the next 
generation 
• The individuals are chosen with a probability proportional to their fitness 

value
• This basic scheme is called roulette-wheel selection



GA Operators: Crossover

• Crossover is the operator for recombination
• Once selected a pair of parents, it is randomly selected a crossover point 

where each parent string is split
• The split substrings of one parent are recombined with the ones of the 

other parent to recombine and form the children (that, is the chromosome 
of the next generation)
• one with the first part of parent 1 and the second part of parent 2
• the other with the second part of parent 1 and the first part of parent 2



GA Operators: Mutation

• Mutation randomly changes a symbol in the chromosome 
representation with a given probability
• Once the offspring are generated, every bit in its representation is flipped 

with probability equal to a mutation rate

• Eventually, the next generation is formed
• It could be just the newly formed offspring or
• A few top-scoring parents from the previous generation are hold

• Elitism
• Guarantees that the overall fitness will never decrease over time 



The Genetic Algorithm
• A GA with chromosomes representing 8-queens states

• The initial population is ranked by a fitness function

• The parents are then chosen for reproduction

• The offspring are generated 

• Mutation possibly arises
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Fitness Pairs
Each state is rated by the fitness 
function: Higher fitness values are better, 
so we use the number of nonattacking 
pairs of queens, which has a value of 
8×7/2 = 28 for a solution



How Gas Works

• Schema
• a substring in which some of the positions can be left unspecified

• the schema 246***** describes all 8-queens states in which the first three queens are 
in positions 2, 4, and 6, respectively (they don’t attack each other)

• Strings that match the schema (such as 24613578) are called instances of the schema

• It can be shown that if the average fitness of the instances of a schema is 
above the mean, then the number of instances of the schema will grow 
over time



GA Implementation



Local Search in Continuous Spaces

• When the environment is continuous the branching factor is infinite, so the algorithms 
described so far are unsuitable

• Suppose we want to site three airports in Romania:
• 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)

• objective function f (x1, y2, x2, y2, x3, y3) = sum of squared distances from each city to the nearest airport

• This equation is correct for the state x and states in the local neighborhood of x

• However, it is not correct globally; if we stray too far from x then the set of closest cities for that airport changes, 
and we need to recompute the nearest airports 

• Discretization methods turn continuous space into discrete space and consider ±𝛿 changes in 
each coordinate. Alternatively, empirical gradient methods

• Gradient methods compute (f is expressed in analytical mathematical form)

        to increase/reduce f by 

∇f = , , , , ,
∂f ∂f ∂f ∂f ∂f ∂f

∂x ∂y1 ∂x2 ∂y2 ∂x3 ∂y1 3

x ← x + α∇f (x)

Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city). Newton–
Raphson (1664, 1690) iterates x ← x − H−

f
1(x)∇f (x) to solve ∇f (x ) = 0, where

H i j =∂2f /∂xi∂xj



Nondeterministic Actions

• When the environment is partially observable and nondeterministic
• the agent doesn’t know for sure what state it is in
• the agent doesn’t know what state it transitions to after taking an action

• Rather, it will know the possible states it will be in, which is called “belief state”

• The solution to a problem is, rather than a longer sequence, a conditional plan
• It specifies what to do based on what it perceives while executing the plan

• Let’s consider the erratic vacuum world
• The suck action is

• In a dirty square, clean it, and sometimes clean up dirt in an adjacent square
• In a clean square the action sometimes dirt on the carpet

• To precisely define the problem, a generalized transition model should be accounted 



The Erratic Vacuum World

• The Result function returns a set of possible outcome states
• Results(1,Suck) = {5,7}
• Starting in state 1, no single sequence solves the problem, instead, a conditional plan 

should be followed
• [Suck, if State=5 then [Right, Suck] else []]

• The plan contains if-then-else statement, so the solutions are trees
• The if statement tests to see what the current state is

• Observe it at a runtime

• It doesn’t know it at planning time
• Alternatively, we could have a formulation where the agent tests the percepts rather than 

the state



AND-OR Search Trees

• How do we find these solutions to nondeterministic problems? 
• We build search trees 

• AND-OR search trees. Two possible actions: agent choice, OR nodes, and branching that happens from a choice (environment’s 
choice of outcome for each action), AND nodes



Try, try again

• Slippery vacuum world
• Movement actions sometimes fail

• The agent remains in the same location 

• There are no longer any acyclic solutions

• A cyclic plan solution where a minimum condition to hold is that every 
leaf is a goal state and that a leaf is reachable from every point in the 
plan
• E.g., from state 1, the possible actions are {1,2}

• Keep trying Right until it works

• [Suck, while State = 5 do Right, Suck]

• A cyclic plan is a solution if (minimum condition)
• Every leaf  is a goal state, and that leaf is reachable from every point in the plan


