Artificial Intelligence

Search in Complex Environments

LESSON 6

prof. Antonino Staiano

M.Sc. In “"Machine Learning e Big Data” - University Parthenope of Naples

Informed Search

* Uniformed and informed search concern with finding a solution as a sequence
of actions

* The environments are fully observable, deterministic, static, and known

* Now, we want to relax some of those constraints
* Finding a good state without considering the path to get there

* Discrete and continuous states

« Nondeterministic environments

What we are going to learn today

Local Search and Optimization Problems
* Hill-climbing

* Simulated annealing

Genetic algorithms

Local search in continuous spaces

Belief states and conditional plans

Optimization Problems

* In search problems examined so far, the agent needed to find a path
from a source to a destination
 E.g., a path from Arad to Bucharest

* In many optimization problems, the path is irrelevant

* The goal state itself is the solution, that is, the objective is to choose
the best option from a set of possible options
* We care only about finding a valid final configuration
* 8-queens
* Integrated-circuits design
* Job shop scheduling
+ Telecommunications network optimization

+ Crop planning

Local Search and Optimization Problems

* Local search algorithms operate by searching from a start state to
neighboring states, without keeping track of the paths nor the set of states
that have been reached

* local search is interested in finding the best answer to a question

* The state space is a set of “complete” configurations
* find the optimal configuration, e.g., TSP
* find configuration satisfying constraints, e.g., timetable

* We can use iterative improvement algorithms

* keep a single “current” state and try to improve it

» Often, local search will bring to an answer that is not optimal but “good

enough”

* They are not systematic; they might never explore a portion of the search space where a
solution actually resides

Example

* We have four houses in set locations

* Goal: build two hospitals such that the distance from each house to a
hospital is

A state is any configuration of houses and hospitals

State-space Landscape

* We can represent each configuration of houses and hospitals as a

* Each of the bars represents a value of a state, e.g., the cost of a certain
configuration of houses and hospitals

state-space landscape

Local Search and optimization ingredients

 Objective function or Cost function

« A function that we use to maximize (minimize) the value (the cost) of the
solution

* Current state
* The state that is currently being considered by the function

* Neighbor state

» A state that the current state can transition to
* Usually similar to the current state, so its value is close to the current state's value

* Local search algorithms work by considering one node in a current
state and then moving to a node of the current state’s neighbors

Maximization problem

* Optimal solution: global maximum

global maximum

objective
function

Minimization problem

* Optimal solution: global minimum

global minimum

cost
function

Current state

current state

Current state’s neighbors

neighbors

Example: TSP

e Start with any complete tour, perform pairwise exchange

* Variants of this approach get within 1% of optimal very quickly with
thousands of cities

Example: n-Queens

* Put n-queens on a nxn board, with no queen on the same row,
column or diagonal

* Move a queen to reduce the number of conflicts

v
[B

h=5 h=2 h=0

Local Search

* Local search algorithms solve optimization problems
* Find the best state according to an objective function

objective function

\ lobal maximum

shoulder
local maximum

"flat" local maximum

»state space
current P

state

Hill-climbing Search

* It keeps track of one current state and on each iteration moves to the neighboring
state with the highest value
* It heads in the direction that provides the steepest ascent
+ Stops at a peak with no neighbor with a higher value

* Does not look ahead beyond the immediate neighbors of the current state

* In a Hill-climbing search, the negative of a heuristic cost function can be used as the
objective function

* that will climb locally to the state with the smallest heuristic distance to the goal

function HILL-CLIMBING(problem) returns a state that is a local maximum abjective function
current <— problem INITIAL
while true do
neighbor < a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <—neighbor

e global maximum

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.

Hill-climbing Search and 8-Queens

* The initial state is chosen at random

* The successors of a state are all possible states generated by moving one queen to
another square in the same column (56 successors)

 The heuristic cost function h is the number of pairs of queens that are attacking each
other

« Zero only for solutions
« Count as an attack if two pieces in the same line with an intervening piece between them

Figure 4.3 (a) The 8-queens problem: place 8 queens on a chess board so that no queen
attacks another. (A queen attacks any piece in the same row, column, or diagonal.) This
position is almost a solution, except for the two queens in the fourth and seventh columns
that attack each other along the diagonal. (b) An 8-queens state with heuristic cost estimate
h=17. The board shows the value of h for each possible successor obtained by moving a
queen within its column. There are 8 moves that are tied for best, with #=12. The hill-
climbing algorithm will pick one of these.

Properties of Hill-climbing

objective function

* Sometimes called greedy local search

* Hill-climbing can get stuck for several reasons

e Local maxima

« A peak higher than each of its neighbors but lower than the global maximum
* Ridges

+ A sequence of local maxima that is difficult for greedy algorithms to navigate
* Plateau

* Flat area of the state-space landscape

* Local maximum from which no uphill exists

« Shoulder from which progress is possible

* In each case, the algorithm reaches a point at which no progress is
being made

Hill-Climbing Improvements

Sideways move
* When a plateau is reached keep going (works only for a shoulder)

* We can limit the number of consecutive sideways moves

It raises the percentage of problem instances solved (8-queens) from 14% to 94%

Stochastic hill-climbing

* Randomly chooses among uphill moves with a probability of selection varying with their steepness
+ Slower convergence, but better solutions (sometimes)

First-choice hill climbing

A stochastic hill climbing that generates successors randomly until one is better than the current state
* Good strategy when state as many (e.g., thousands) of successors

* Random-restart hill climbing
A series of hill-climbing searches from randomly generated initial state, until a goal is found

Hill-climbing performance depends upon the shape of the landscape

Simulated Annealing

* Hill-climbing is always vulnerable to getting stuck in a local
maximum

* At the other extreme, a pure random walk will eventually reach the global
maximum

* However, extremely inefficient

* Simulated annealing combines both worlds for yielding both
efficiency and completeness

* Annealing is the process to harden metals and glass by heating them to a
high temperature

* Then, gradually cooling the material allows it to reach a low-energy crystalline state

Simulated Annealing

* To understand simulated annealing let’s view the problem as a gradient
descent (that is, minimizing the cost)

% D & NED
Temperature
A

]] i t t » Time

Simulated Annealing Algorithm

* Pick a random move
* If the move leads to an improvement, accept it

* Otherwise, the move is accepted with some probability p < 1
* The probability decreases exponentially according to the badness of a move

|dea: escape local maxima by allowing some “bad” movesbut gradually decrease their size and frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
current < problem INITIAL
fort=1tocdo

T « schedule(t) The probability decreases exponentially with the amount
if T = 0 then return current AE by which the evaluation is worsened.

next < a randomly selected successor of current The probability also decreases as the “temperature” T
AE « VALUE(current) — VALUE(next) goes down: “bad” moves are more likely to be allowed
if AE > 0 then current < next at the start when T is high, and they become more

else current < next only with probability ¢*/7 unlikely as T decreases.

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. The schedule input determines the value of the “tempera-
ture” T as a function of time.

Local Beam Search

* The local beam search algorithm keeps track of k states rather than just one

* Randomly generates k states
At each step, all the successors of all k are generated

* If anyone is a goal, stop
« Otherwise, select the k best successors from the complete list and repeat

* A local beam search with k states might seem as running parallel k random

restarts instead of in sequence

* However, in a random-restart search, each search process runs independently of the
others, whereas, in a local beam search, useful information is passed among the parallel

search threads
* The algorithm quickly leaves unfruitful searches and moves its resources to where the

most progress is being made
* A variant called stochastic beam search chooses successors with probability
proportional to the successor’s value to increase diversity

Evolutionary Algorithms

* Motivated by the metaphor of natural selection in biology
* Itis created a population of individuals (the state, that is, the solutions)
* The fittest individuals (highest value) produce offspring (successor states)
 This process is called recombination
* The offspring after recombination form the next generation population
* Several variants of this evolutionary scheme exist
* Genetic algorithms
* Evolutionary strategy
* Genetic programming

Genetic Algorithms (GAs)

* The population has a fixed size (number of individuals)

* Each individual, called a chromosome, is represented by a string
over a finite alphabet (usually, a binary string)

* Each chromosome has a fitness value determining its goodness

* The population evolves through several generations

* In each generation, the chromosomes are applied to three genetic
operators
* Selection
» Crossover
* Mutation

GA Operators: Selection

* Selects the chromosomes who will become parents of the next
generation

 The individuals are chosen with a probability proportional to their fitness
value

* This basic scheme is called roulette-wheel selection

| Feness
Vake
82

Crromosome

+
14
12
1
42
03

mwmo|lno|>

Spin the
roulette
wheel

GA Operators: Crossover

* Crossover is the operator for recombination

* Once selected a pair of parents, it is randomly selected a crossover point
where each parent string is split

* The split substrings of one parent are recombined with the ones of the
other parent to recombine and form the children (that, is the chromosome
of the next generation)

* one with the first part of parent 1 and the second part of parent 2
* the other with the second part of parent 1 and the first part of parent 2

GA Operators: Mutation

* Mutation randomly changes a symbol in the chromosome
representation with a given probability

* Once the offspring are generated, every bit in its representation is flipped
with probability equal to a mutation rate

* Eventually, the next generation is formed

* It could be just the newly formed offspring or
* A few top-scoring parents from the previous generation are hold

* Elitism

« Guarantees that the overall fitness will never decrease over time

The Genetic Algorithm

* A GA with chromosomes representing 8-queens states
* The initial population is ranked by a fitness function
* The parents are then chosen for reproduction
* The offspring are generated

* Mutation possibly arises

24748552 | 24 3% 32752411 327 48552 }——= 327482

32752 124}—={ 3252124

24415124 | 20 26% 32752411

32752411 [23 29% 247;48552 >_< 24752411 |———=| 24752411

32543213 | 11 14% 24415E124 24415411 ——- 2441541

Each state is rated by the fitness
function: Higher fitness values are better, Fitness Selection Pairs Cross-Over

so we use the number of nonattacking

pairs of queens, which has a value of
8x7/2 = 28 for a solution

How Gas Works

* Schema
* a substring in which some of the positions can be left unspecified

* the schema 246***** describes all 8-queens states in which the first three queens are
in positions 2, 4, and 6, respectively (they don't attack each other)

* Strings that match the schema (such as 24613578) are called instances of the schema
* |t can be shown that if the average fitness of the instances of a schema is
above the mean, then the number of instances of the schema will grow
over time

GA Implementation

function GENETIC-ALGORITHM(population, fitness) returns an individual
repeat
weights < WEIGHTED-BY(population, fitness)
population2 + empty list
for i = 1 to S1ZE(population) do
parentl, parent2 +— WEIGHTED-RANDOM-CHOICES(population, weights, 2)
child +— REPRODUCE(parentl, parent2)
if (small random probability) then child <+~ MUTATE(child)
add child o population2
population «— population2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function REPRODUCE(parentl, parent2) returns an individual
n+ LENGTH(parentl)
¢ +—random number from 1 to n
return APPEND(SUBSTRING(parentl, 1, c), SUBSTRING(parent2,c + 1,n))

Figure 4.8 A genetic algorithm. Within the function, population is an ordered list of indi-
viduals, weights is a list of corresponding fitness values for each individual, and fitness is a
function to compute these values.

Local Search in Continuous Spaces

When the environment is continuous the branching factor is infinite, so the algorithms
described so far are unsuitable

* Suppose we want to site three airports in Romania:
« 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
* objective function f (x1, y2, x2, y2, x3, y3) = sum of squared distances from each city to the nearest airport
* This equation is correct for the state x and states in the local neighborhood of x

* However, it is not correct globally; if we stray too far from x then the set of closest cities for that airport changes,
and we need to recompute the nearest airports

Discretization methods turn continuous space into discrete space and consider =8 changes in
each coordinate. Alternatively, empirical gradient methods

Gradient methods compute (f is expressed in analytical mathematical form)
Vf= af}ﬁf)af’@f)af’af
ox' oy1 0x2 0y2 0x3 8y3

Sometimes can solve for Vf (x) = O exactly (e.g., with one city). Newton—
Raphson (1664, 1690) iterates x «— x — Hf'(x)Vf (x) to solve Vf (x) = 0, where
Hij =32f AOxid x

to increase/reduce f bi x < x + aVf(x)

Nondeterministic Actions

* When the environment is partially observable and nondeterministic
* the agent doesn’t know for sure what state it is in
* the agent doesn’t know what state it transitions to after taking an action

* Rather, it will know the possible states it will be in, which is called “belief state”

* The solution to a problem is, rather than a longer sequence, a

* It specifies what to do based on what it perceives while executing the plan

J B
* Let's consider the erratic vacuum world = =
* The suck action is — —
. . . " .] B
* In a dirty square, clean it, and sometimes clean up dirt in an adjacent square = =
* In a clean square the action sometimes dirt on the carpet " i o I

» To precisely define the problem, a generalized transition model should be accounted

The Erratic Vacuum World

* The Result function returns a set of possible outcome states
¢ Results(1,Suck) = {5,7}

« Starting in state 1, no single sequence solves the problem, instead, a conditional plan
should be followed

. L |=A| 2|, |=A
* [Suck, if State=5 then [Right, Suck] else []] BB |5 i
* The plan contains if-then-else statement, so the solutions are trees ° — + [
* The if statement tests to see what the current state is s [] A
¢ Observe it at a runtime — —
* It doesn’t know it at planning time " i —

* Alternatively, we could have a formulation where the agent tests the percepts rather than
the state

AND-OR Search Trees

* How do we find these solutions to nondeterministic problems?

* We build search trees

+ AND-OR search trees. Two possible actions: agent choice, OR nodes, and branching that happens from a choice (environment’s
choice of outcome for each action), AND nodes

function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem, problem.INITIAL, [])

function OR-SEARCH(problem, state, path) returns a conditional plan, or failure
if problem.1S-GOAL(state) then return the empty plan
if IS-CYCLE(state, path) then return failure
for each action in problem.ACTIONS(state) do
plan < AND-SEARCH(problem, RESULTS (state, action), [state] + [path])
if plan # failure then return [action] + [plan]
return failure

S‘A-n 1‘646 6|

LooP Loop Suk

= F] [=

Lt Loop GOAL

function AND-SEARCH(problem, states, path) returns a conditional plan, or failure
for each s; in states do
plan; < OR-SEARCH(problem, s;, path)
if plan; = failure then return failure
return [if s; then plan, else if s then plan, else ...if 5,_; then plan,_, else plan,|

-]

Figure 4.11 An algorithm for searching AND—OR graphs generated by nondeterministic en-
GOAL LOOP

vironments. A solution is a conditional plan that considers every nondeterministic outcome
Figure 4.10 The first two levels of the search tree for the erratic vacuum world. State nodes and makes a plan for each one.

are OR nodes where some action must be chosen. At the AND nodes, shown as circles, every

outcome must be handled, as indicated by the arc linking the outgoing branches. The solution

found is shown in bold lines.

Try, try again

* Slippery vacuum world

« Movement actions sometimes fall

* The agent remains in the same location

Figure 4.12 Part of the search graph for a slippery vacuum world, where we have shown

° Th ere are no | on g er an y a CyCl | C SO | Utl ons Som[e) cycles explicitly. All solutions for this problem are cyclic plans because there is no

ay to move reliably.

* A cyclic plan solution where a minimum condition to hold is that every
leat is a goal state and that a leaf is reachable from every point in the
plan

* E.g., from state 1, the possible actions are {1,2}
+ Keep trying Right until it works
* [Suck, while State = 5 do Right, Suck]

* A cyclic plan is a solution if (minimum condition)

* Every leaf is a goal state, and that leaf is reachable from every point in the plan

