
Informed Search

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 5

Artificial Intelligence

Informed Search

• Uninformed search is based on systematically exploring the search space
without using any information (if any) about which nodes are more
"promising" than others for the solution

• When some knowledge is available, it can be exploited to improve the
effectiveness and efficiency of tree search
• Uses domain-specific hints about the location of the goals

• Idea
• Use the available problem-specific knowledge to identify the best node to expand at

each step of the general tree-search algorithm
• This general approach is named best-first search

Uninformed Best-first search

• Recall that the uniformed search algorithms we have seen are a kind of best-
first search algorithms
• A node n with a minimum value of some evaluation function f(n) is selected for expansion

• However, no information on the closeness of the goal node is exploited,
rather
• Uniform-cost search, for instance, expands the least-cost unexpanded node

Informed Best-First Search

• It is based on quantitatively evaluating how promising a given node n is
toward a solution
• It uses a suitable node evaluation function f(n)

• Different definitions of f(n) correspond to different specific best-first
strategies, i.e.,
• Greedy search

• A* search and its many variants

• Given a suitable f(n) the search algorithm can be implemented based on the
general tree-search algorithm

• Best-first search can be implemented by sorting nodes in the frontier for
increasing values of f(n)
• This means that the node n with the lowest f(n) will be selected for expansion at each

iteration

Best-First Search

• To define f(n), the cost of the actions that will lead from any given node n to a
goal state might be used

• The exact cost is usually unknown, thus an estimate can be easily computed
• The estimated cost, a function of the nodes, is denoted with h(n)

• Note that, by definition, h(n) = 0 if n contains a goal state (this is the only case in which the cost is exactly
known)

• For historical reasons h(n) is named the heuristic function, and search
strategies are named heuristic search

• Heuristic search is one of the earlier achievements of AI (50’s) and is still
widely used in real-world problems and investigated by researchers in AI

Heuristic Function: Example

• Let’s consider the shortest route findings on maps
• From Arad to Bucharest, using the information on the map

• The actions’ cost is evaluated as the route length

• A heuristic function is defined as estimating the distance between any given
city and the destination

Heuristic Function: Example

• An easy-to-compute estimate is a straight-line distance (using the
geographical coordinates of each city)

• If the destination is Bucharest, the heuristic function h(n) can be defined as
the straight-line distance from the node n city to Bucharest

• The values of h(n) are

99

Heuristic functions: an example

An easy to compute estimate for this kind of problem is the
straight-line distance (e.g., using the geographical coordinates of
each city).
If the destination is Bucharest, the heuristic function h(n) can
therefore be defined as the straight-line distance from the city of
node n to Bucharest.
The values of h(n), considering Bucharest as the destination are
reported below (they will be used later on):

27

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.

Greedy Best-First Search

• It is the simplest best-first search strategy
• Expanding the node closest to the solution, that is, the node with the

lowest h(n)
• f(n) = h(n)

• It’s a greedy strategy since it favors partial solutions that seem the
closest to the actual solution
• However, that’s not an optimal choice

Greedy Best-First Search: Example

• Consider again the problem of finding the shortest route from
Arad to Bucharest, using the straight-line distance as a heuristic
• In the following, a greedy strategy is used to build the search tree
• It is shown the value of f(n)
• An arrow denotes the node chosen for the expansion

Arad

Sibiu
253

Timisoara
329

Zerind
374

Greedy search example

99

Heuristic functions: an example

An easy to compute estimate for this kind of problem is the
straight-line distance (e.g., using the geographical coordinates of
each city).
If the destination is Bucharest, the heuristic function h(n) can
therefore be defined as the straight-line distance from the city of
node n to Bucharest.
The values of h(n), considering Bucharest as the destination are
reported below (they will be used later on):

27

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329

80
199

380
234

374

100
193

Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.

Greedy search example

Arad

Sibiu Timisoara
329

Zerind
374

Arad
366

Fagaras
176

Oradea
380

RimnicuVilcea

193

99

Heuristic functions: an example

An easy to compute estimate for this kind of problem is the
straight-line distance (e.g., using the geographical coordinates of
each city).
If the destination is Bucharest, the heuristic function h(n) can
therefore be defined as the straight-line distance from the city of
node n to Bucharest.
The values of h(n), considering Bucharest as the destination are
reported below (they will be used later on):

27

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329

80
199

380
234

374

100
193

Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.

Arad

Sibiu

Fagaras

Timisoara
329

Zerind
374

Arad
366

Oradea
380

RimnicuVilcea

193

Sibiu
253

Bucharest
0

Greedy search example

99

Heuristic functions: an example

An easy to compute estimate for this kind of problem is the
straight-line distance (e.g., using the geographical coordinates of
each city).
If the destination is Bucharest, the heuristic function h(n) can
therefore be defined as the straight-line distance from the city of
node n to Bucharest.
The values of h(n), considering Bucharest as the destination are
reported below (they will be used later on):

27

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329

80
199

380
234

374

100
193

Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.

Properties of greedy best-first search

• Complete
• Unless there are infinite paths or without repeated state-checking (can get stuck in loops)

• Non-optimal
• For instance, a shorter route exists between Arad and Bucharest (through Sibiu and

Rimnicu Vilcea)

• Exponential worst-case time and space complexity, O(bm)
• Time complexity could be lowered to O(bm), with good heuristic

Greedy Best-Search Example

B

D

C

A

Heuristic function? Manhattan distance.• Heuristic function? Manhattan Distance

Greedy Best-First Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

13 11 5

A 16 15 14 12 11 10 9 8 7 6

Greedy Best-First Search

Greedy Best-Search is non-optimal

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

13 11 5

A 16 15 14 12 11 10 9 8 7 6

Greedy Best-First Search

Greedy Best-Search is non-optimal

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

13 11 5

A 16 15 14 12 11 10 9 8 7 6

Greedy Best-First Search

A* Search

• A* is the most relevant best-first search strategy
• Devised for robot navigation in ‘60s

• Many variants proposed to tune the trade-off between its effectiveness
and efficiency

107

A* search

A* is the most relevant best-first search strategy. It was devised in
the 1960s for robot navigation tasks.

Many variants of A* have been proposed since then to tune the
trade-o� between its e�ectiveness and e�ciency.

A* Search

• A greedy search estimates the costs of the actions from a node n
to expand to a solution and chooses the closest one

• Idea
• Avoid expanding paths that are already expensive

• A* estimates the total cost of the action sequence from the root to
the goal state through n

• Sum of the path cost to n and the estimated cost from n to a solution
• The node evaluation function is defined as

108

A* search

Greedy search chooses for expansion the node n which appears
closest to a solution, i.e., such that the estimated cost of the
actions from n to a goal state is minimum. However, it disregards
the cost of the actions from the root to n.

A* uses instead an estimate of the total cost of the action
sequence from the root to a goal state through n, defined as the
sum of the path cost of n (which is exactly known) and the
estimated cost from n to the solution.

The corresponding node evaluation function is defined as:

f (n) = g(n)
¸ ˚˙ ˝

path cost from root to n

+ h(n)
¸˚˙˝

estimated cost from n to the solutionpath cost from root to n estimated cost of the shortest path from node n to a goal

A* Search: Example

Arad
366=0+366

• The following search tree built by A* is shown from the previous example
(Arad-Bucharest, using the straight-line distance heuristic)
• The value of f (n) = g(n) + h(n) is also shown for each node

Arad

Timisoara
447=118+329

Zerind
449=75+374

Sibiu
393=140+253

A* Search: Example

Arad

Sibiu

RimnicuVilceaArad Fagaras Oradea

Timisoara
447=118+329

Zerind
449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

A* Search: Example

Arad

Sibiu Timisoara
447=118+329

Zerind
449=75+374

RimnicuVilcea

Craiova Pitesti Sibiu
526=366+160 417=317+100 553=300+253

Arad Fagaras Oradea
646=280+366 415=239+176 671=291+380

A* Search: Example

Arad

Sibiu

RimnicuVilceaFagaras

Timisoara
447=118+329

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Sibiu
553=300+253

Craiova Pitesti
526=366+160 417=317+100

Oradea
671=291+380

A* Search: Example

Arad

Sibiu

RimnicuVilceaFagaras

Pitesti

Bucharest
418=418+0

Timisoara
447=118+329

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Craiova
526=366+160

Sibiu
553=300+253

Craiova
615=455+160

RimnicuVilcea

607=414+193

Oradea
671=291+380

A* Search: Example

Proof (by contradiction) of Optimality of A*

• Let’s pretend the optimal path cost is C*, but algorithm A* returns a path with
cost C > C* (a suboptimal path)
• There must exist some node n which is on the optimal path and unexpanded

A* Conditions for Optimality

• A slightly stronger property is called consistency
• A heuristic h(n) is consistent if, for every node n and every successor n’ of n

generated by an action a, we have: h(n) ≤ c(n,a,n’)+h(n’)

• This is a form of the triangle inequality

• An example of a consistent heuristic is the straight-line distance we
have seen earlier for getting to Bucharest
• Every consistent heuristic is admissible (but not vice versa), so with a consistent

heuristic A∗ is cost-optimal

Optimality of A*: Search contours

• A* expands node in order of increasing f value (if h is consistent)
• Gradually adds f-contours of nodes

• Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S • A∗ expands all nodes with f (n) < C∗
• Surely expanded nodes

• A∗ expands some nodes with f (n) = C∗
• A∗ expands no nodes with f (n) > C∗

Properties of A* Search

• Complete
• Unless there are infinitely many nodes with f ≤ f(goal)

• Optimal
• Provided that the heuristic is admissible

• Optimally efficient
• Expand fewer nodes with respect to other optimal algorithms using the

same heuristic

• Exponential worst-case time and space complexity
• However, A* is much more efficient (generates a much smaller number of

nodes) than other uninformed and informed search strategies

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

13 11 5

A 16 15 14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

13 11 5

A 1+16 15 14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

13 11 5

A 1+16 2+15 14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 10 9 8 7 6 5 4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 9 8 7 6 5 4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 8 7 6 5 4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 7 6 5 4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 6 5 4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 5 4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 12+5 4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

13 6+11 5 3

14 13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

13 6+11 14+5 3

14 6+13 5+12 10 9 8 7 6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

13 6+11 14+5 3

14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

10 9 8 7 6 5 4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 9 8 7 6 5 4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 8 7 6 5 4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 7 6 5 4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 14+7 6 5 4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 14+7 15+6 5 4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 14+7 15+6 16+5 4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 14+7 15+6 16+5 17+4 3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 14+7 15+6 16+5 17+4 18+3 2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 14+7 15+6 16+5 17+4 18+3 19+2 1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

A* Search

11+10 12+9 13+8 14+7 15+6 16+5 17+4 18+3 19+2 20+1 B

10+11 1

9+12 7+10 8+9 9+8 10+7 11+6 12+5 13+4 2

8+13 6+11 14+5 3

7+14 6+13 5+12 10 9 8 7 15+6 4

4+13 11 5

A 1+16 2+15 3+14 12 11 10 9 8 7 6

A* Search

Improving A* Search

• Good heuristics can lower time and memory demand, particularly w.r.t.
uninformed search

• Nonetheless, in many practical problems A* may result unfeasible
• it expands a lot of nodes
• Alternative approaches

• We can explore fewer nodes (taking less time and space) if we are willing to accept solutions
that are suboptimal, but are satisficing solutions (“good enough”)
• Non-optimal A* variants (i.e., find quickly suboptimal solutions)

• Optimal A* variants with reduced memory requirements and a small increase in execution time

Weighted A* Search

• Example (suboptimal solutions)
• road engineers use the detour index, which is a multiplier applied to the

straight-line distance to account for the typical curvature of roads.
• A detour index of 1.3 means that if two cities are 10 miles apart in straight-line

distance, a good estimate of the best path between them is 13 miles
• For most localities, the detour index ranges between 1.2 and 1.6

• Generalizing
• The heuristic value is weighted more heavily

• f(n) = g(n) + W x h(n), for some W > 1
• This is called Weighted A* search

• If the optimal solution cost is C*, the weighted A* solution cost is between C* and W x C*

A* Search and Weighted A* Search

• Two searches on a grid
(a) A* search find the optimal solution exploring a large portion of the state space
(b) Weighted A* search (W=2) finds a costlier solution but with a faster search time

Defining Heuristic Functions

• Intuitively, the more accurate the estimate of the cost to the solution from a
given node provided by the heuristic function, the more efficient a best-first
algorithm is

• Defining a good (i.e., accurate) heuristics is therefore crucial for informed
search

• Moreover, heuristics must be admissible to guarantee the optimality of A*

Defining Heuristic Functions: Example

• We have seen that a possible heuristic for route finding in maps is the
straight-line distance

• Consider now the 8-puzzle problem
• Remember that about 3 × 1010 nodes are generated on average by breadth-first

(uninformed) search therefore a good heuristic can be of great practical help also in this
toy problem

121

Defining heuristic functions: examples

We have seen that a possible heuristic for route finding in maps is
the straight-line distance.

Consider now the 8-puzzle problem. Remember that about
3.1 ◊ 1010 nodes are generated on average by breadth-first
(uninformed) search: therefore a good heuristic can be of great
practical help also in this toy problem.

16 Chapter 3. Solving Problems by Searching

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.As an exercise, try to devise admissible heuristic functions for the

8-puzzle problem.

Defining Heuristic Functions: Example

• Admissible heuristics for 8-puzzle:
• h1: Number of misplaced tiles
• h2: Sum of the distances of each tile from its goal position

• City block or Manhattan distance

• For instance, the value of h1 and h2 for the state (left) w.r.t. the goal
state (right):
• h1(start state): 8 (all 8 tiles are misplaced)
• h2 (start state): 3+1+2+2+2+3+3+2 = 18 (tiles 1 to 8)

122

Defining heuristic functions

Well-known admissible heuristics for k-puzzle are the following:
I number of misplaced tiles (in the following, h1(n))
I sum of the “distances” of each tile from its goal position (city

block or Manhattan distance, h2(n))
For instance, the value of h1 and h2 for the start state below on
the left, with respect to the goal state on the right, is given by:
I h1(start state): 8 (all 8 tiles are misplaced)
I h2(start state): 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 (tiles 1 to 8)

16 Chapter 3. Solving Problems by Searching

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.

Defining Heuristic Functions

• Generally, not straightforward to define a heuristic function
• The approach is to set h(n) to the exact cost of a relaxed version of a

problem at hand

• Examples
• k-puzzle: by relaxing the constraint that tiles can move only to a free

adjacent square, and allowing them to move to any adjacent square, one
obtains h2(n)
• k-puzzle: similarly, allowing tiles to move to any square (even non-adjacent

and occupied ones), one obtains h1(n)
• route finding on maps: by relaxing the constraint that an adjacent city can

be reached only through the corresponding route, and allowing one to
move straight to it, one obtains the straight-line distance heuristic

Choosing Heuristic Functions

• On the other hand, for some problems, it can be possible to define several
admissible heuristics h1,…,hp (e.g., h1 or h2 for 8-puzzle)

• In this case, one can choose or define a single heuristic h which dominates all
the other ones, i.e.:
• For each node n, h(n)>=hi(n), i=1,…, p

• It is easy to see that such a heuristic is admissible, and provides a more
accurate estimate of the cost to the solution than h1,…,hp

• To this aim, h can be defined as follows
• If there is a dominating heuristic among h1,…,hp, choose it as the heuristic for the

problem at hand
• Otherwise, for a given node n use the following heuristic

• h(n) = max {h1(n),…hp(n)}, which dominates by definition h1, …, hp

Evaluating Heuristic Functions

• To evaluate the quality of heuristic functions the concept of effective
branching factor (denoted as b*) is used:
• let N be the number of nodes generated by A* for a given problem, and d be the depth

of the (optimal) solution
• b* is defined as the branching factor of a uniform tree of depth d containing N nodes,

which is the solution of the equation:
• N = 1 + b* + (b*)2 + · · · + (b*)d

• The lower the value of b*, the better the heuristic

• Since b* depends on the problem instance, it is usually evaluated empirically
as the average over a set of instances

Evaluating Heuristic Functions

• Example: Empirical evaluation of the effective branching factor of heuristics h1 and h2 for the
8-puzzle (used in A*), and, for comparison, of an uninformed search strategy, BFS

