Course of "Industrial Automation"

z-Transform domain analysis of LTI systems

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences
Università degli Studi di Napoli Parthenope
francesco.montefusco@uniparthenope.it

Team code: vgxlryz

Evaluation of an LTI system response

A Let us consider a Discrete Linear Time Invariant (LTI) system in the state space form

$$
\begin{align*}
& x(k+1)=A x(k)+B u(k), \quad x\left(k_{0}\right)=x_{0} \tag{1.a}\\
& y(k)=C x(k)+D u(k) \tag{1.b}
\end{align*}
$$

A The Evaluation of an LTI system response in a transformed domain is convenient only if

LTI systems in the z-domain - 1

A Let us indicate with $X(z), \boldsymbol{U}(\mathbf{z}) \boldsymbol{e} \boldsymbol{Y}(\mathbf{z})$ the z-Transforms of $\boldsymbol{x}(\boldsymbol{k}), \boldsymbol{u}(\boldsymbol{k})$ and $\boldsymbol{y}(\boldsymbol{k})$.

A Transforming both the sides of the equation (1), we have

$$
\begin{gathered}
Z(x(k+1)=Z(A x(k)+B u(k)) \\
Z(y(k))=Z(C x(k)+D u(k))
\end{gathered}
$$

A By using the properties of z-Transform (e.g., linearity, time shift)

$$
\begin{gather*}
X(z)=z(z I-A)^{-1} x_{0}+(z I-A)^{-1} B U(z) \tag{2.1}\\
Y(z)=C z(z I-A)^{-1} x_{0}+C(z I-A)^{-1} B U(z)+D U(z) \tag{2.2}
\end{gather*}
$$

A Note that in the r-domain the dependency of the state variables $X(s)$ from the input $U(s)$ is expressed by a matrix product instead of a convolution

LTI systems in the z-domain - 2

A The matrix function $\Phi(z)=z(z I-A)^{-1}$ is called Transition matrix whose dimension is given by the dimension of the A matrix.

A The matrix function $W(z)=C(z I-A)^{-1} B+D$ is called Transfer function

$$
\begin{align*}
& X(z)=\Phi(z) x_{0}+\Phi(z) B U(z) \tag{3.1}\\
& Y(z)=C \Phi(z) x_{0}+W(z) U(z) \tag{3.2}
\end{align*}
$$

A For Single Input Single Output (SISO) systems the transfer function W(z) is a scalar function;

A For Multiple Input Multiple Output (MIMO) systems the transfer function $\mathrm{W}(z)$ is a matrix whose element $\mathrm{W}(z)_{i j}$ will connect the output i with the input j.

Transfer function

A For SISO systems the scalar transfer function is given by the ratio of two polynomial functions

$$
W(z)=\frac{\operatorname{num}(z)}{\operatorname{den}(z)}=\frac{a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}}{z^{n}+b_{n-1} z^{n-1}+\cdots+b_{1} z+b_{0}}
$$

where $m \leq n$.
A If $\boldsymbol{m}<\boldsymbol{n}$ the system is said strictly proper. It happens when the D matrix of the LTI system in the state space is zero.

A If $\boldsymbol{m}=\boldsymbol{n}$ the system is said proper. It happens when the D matrix of the LTI system in the state space is different from zero.

Poles and zeros

A Given a transfer function

$$
W(z)=\frac{N(z)}{D(z)}=\frac{a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}}{z^{n}+b_{n-1} z^{n-1}+\cdots+b_{1} z+b_{0}}
$$

A The roots of the $\mathrm{N}(\mathrm{z})$ are said zeros.
A The roots of the $\mathrm{D}(\mathrm{z})$ are said poles
A The polynomial $D(z)$ is defined as $D(z)=\operatorname{det}(z I-A)$, hence
$\notin D(\approx)$ coincides with the characteristic polynomial of the system
\& the poles coincide with the eigenvalues of the system

z-Transform and its antitrasformation

A Then in the z-domain, the free evolution in the Laplace domain is given by the ratio of polynomial functions

$$
Y_{\text {free }}(z)=C \Phi(z) x_{0}
$$

A This is also true for the forced evolution in case we restrict our attention to the case of polynomial and sinusoidal inputs

$$
Y_{\text {forced }}(z)=W(z) U(z)
$$

A It is convenient to antitransform $Y(z)$ by reducing the ratio of high degree polynomial functions to the sum of selected signals transform

