Course of "Industrial Automation"

Discrete-time LTI systems - part B

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences
Università degli Studi di Napoli Parthenope
francesco.montefusco@uniparthenope.it

Team code: vgxlryz

Forced response

A The forced evolution of a discrete-time LTI system, $\left(k_{0}=0\right)$

$$
\begin{equation*}
y(k)=C \sum_{h=0}^{k-1} A^{k-h-1} B u(h)+D u(k), \quad k \geq 0 \tag{1}
\end{equation*}
$$

A Hard problem to solve:
$\&$ Calculus of A^{k}
\& Compute a solution in a closed form due to the discrete convolution .
A Easy calculus for standard canonical signals, as unit pulse and step signal
A Otherwise we use ₹-Transform

Response to unit pulse

A In the case of pulse signal, $\boldsymbol{u}(\boldsymbol{k})=\boldsymbol{\delta}(\boldsymbol{k})$
A It is possible to compute the impulse response, $w_{y}(k)$, as

$$
\begin{equation*}
w_{y}(k)=C \sum_{h=0}^{k-1} A^{k-h-1} B \delta(h)+D \delta(k)=C A^{k-1} B+D \delta(k) \tag{2}
\end{equation*}
$$

A By exploiting (2), it is possible to rewrite (1), that is

$$
y(k)=C \sum_{h=0}^{k-1} A^{k-h-1} B u(h)+D u(k), \quad k \geq 0
$$

A as

$$
\begin{equation*}
y(k)=\sum_{h=0}^{k} w_{y}(k-h) u(h) \tag{3}
\end{equation*}
$$

Impulse response fully characterizes the system

A Therefore, by (3), we can get the response to a general signal
A The impulse response is unique.
A Let us assume to have two equivalent state space representations of a given system. The relationship between these two representation is given by

$$
\bar{A}=T^{-1} A T, \quad \bar{B}=T^{-1} B, \quad \bar{C}=C T, \quad \bar{D}=D
$$

A For both cases, the impulse response is given by

$$
\begin{aligned}
w_{y}(k) & =C A^{k-1} B+D \delta(k) \\
\bar{w}_{y}(k) & =\bar{C} \bar{A}^{k-1} \bar{B}+\bar{D} \delta(k) \\
= & C T\left(T^{-1} A T\right)^{k-1} T^{-1} B+D \delta(k) \\
& =C T T^{-1} A^{k-1} T T^{-1} B+D \delta(k)=w_{y}(k)
\end{aligned}
$$

Step response

A Let us assume an input step signal $\boldsymbol{u}(\boldsymbol{k})=\overline{\boldsymbol{u}} \cdot \mathbf{1}(\boldsymbol{k})$
A In this case, it is possible to compute the response as it follows

$$
\begin{gathered}
y(k)=C \sum_{h=0}^{k-1} A^{k-h-1} B \bar{u}+D \bar{u}=C\left(A^{k-1}+A^{k-2}+\cdots I\right) B \bar{u}+D \bar{u} \\
=C\left(A^{k}-I\right)(A-I)^{-1} B \bar{u}+D \bar{u}=C A^{k}(A-I)^{-1} B \bar{u}+\left[C(I-A)^{-1} B+D\right] \bar{u}
\end{gathered}
$$

If all the modes are convergent, then

$$
\bar{y}=\lim _{k \rightarrow \infty} y(k)=\left[C(I-A)^{-1} B+D\right] \bar{u}
$$

A The term

$$
C(I-A)^{-1} B+D
$$

is the static gain of the system.

