

## Course of "Industrial Automation" Discrete-time LTI systems – part B

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope francesco.montefusco@uniparthenope.it

Team code: **vgxlryz** 



## Forced response

▲ The forced evolution of a discrete-time LTI system,  $(k_0 = 0)$ 

$$y(k) = C \sum_{h=0}^{k-1} A^{k-h-1} B u(h) + D u(k), \quad k \ge 0$$
<sup>(1)</sup>

- ▲ Hard problem to solve:
  - $\Rightarrow$  Calculus of  $A^k$
  - ✤ Compute a solution in a closed form due to the discrete convolution .
- ▲ Easy calculus for standard canonical signals, as unit pulse and step signal
- ▲ Otherwise we use z-Transform



## Response to unit pulse

- ▲ In the case of pulse signal,  $u(k) = \delta(k)$
- A It is possible to compute the impulse response,  $w_y(k)$ , as

$$w_{y}(k) = C \sum_{h=0}^{k-1} A^{k-h-1} B\delta(h) + D \,\delta(k) = C A^{k-1} B + D\delta(k) \tag{2}$$

A By exploiting (2), it is possible to rewrite (1), that is

$$y(k) = C \sum_{h=0}^{k-1} A^{k-h-1} B u(h) + D u(k), \ k \ge 0$$

🔺 as

$$y(k) = \sum_{h=0}^{k} w_y(k-h)u(h)$$
(3)



- $\checkmark$  Therefore, by (3), we can get the response to a general signal
- ▲ The impulse response is unique.
- ▲ Let us assume to have two equivalent state space representations of a given system. The relationship between these two representation is given by

$$\bar{A} = T^{-1}AT$$
,  $\bar{B} = T^{-1}B$ ,  $\bar{C} = CT$ ,  $\bar{D} = D$ 

 $\checkmark$  For both cases, the impulse response is given by

$$w_{y}(k) = CA^{k-1}B + D\delta(k)$$
  

$$\overline{w}_{y}(k) = \overline{C}\overline{A}^{k-1}\overline{B} + \overline{D}\delta(k)$$
  

$$= CT(T^{-1}AT)^{k-1}T^{-1}B + D\delta(k)$$
  

$$= CTT^{-1}A^{k-1}TT^{-1}B + D\delta(k) = w_{y}(k)$$



## Step response

▲ Let us assume an input step signal  $u(k) = \overline{u} \cdot \mathbf{1}(k)$ 

 $\checkmark$  In this case, it is possible to compute the response as it follows

$$y(k) = C \sum_{h=0}^{k-1} A^{k-h-1} B \,\overline{u} + D \,\overline{u} = C (A^{k-1} + A^{k-2} + \dots I) B \,\overline{u} + D \,\overline{u}$$

$$= C(A^{k} - I)(A - I)^{-1}B\bar{u} + D\bar{u} = CA^{k}(A - I)^{-1}B\bar{u} + [C(I - A)^{-1}B + D]\bar{u}$$

If all the modes are convergent, then

$$\overline{y} = \lim_{k \to \infty} y(k) = \left[ C(I - A)^{-1}B + D \right] \overline{u}$$

 $\checkmark$  The term

$$C(I-A)^{-1}B+D$$

is the static gain of the system.