

Course of "Industrial Automation"

Discrete-Time LTI systems analysis – part 1

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: vgxlryz

LTI systems in the discrete time domain

▲ Let's assume the LTI time discrete system:

$$x(k+1) = Ax(k) + Bu(k), \quad x(k_0) = x_0$$

 $y(k) = Cx(k) + Du(k)$ (1)

The solution of the linear difference equation (1) defines the *time evolution* of the state variables and it is given

$$x(k) = A^{k-k_0} x_0 + \sum_{h=k_0}^{k-k_0-1} A^{k-k_0-h-1} Bu(h), \quad k \ge k_0$$
 (2)

▲ The time evolution of the outputs is

$$y(k) = CA^{k-k_0}x_0 + C\sum_{h=k_0}^{k-k_0-1} A^{k-k_0-h-1}Bu(h) + Du(k), \quad k \ge k_0 \quad (3)$$

Free and forced responses of LTI system

The *time evolution of the state and output variables* can be conceptually divided in two parts:

- The *free evolution* indicate the evolution of state and output vectors that would be obtained in the absence of input (u(t) = 0).
- The *forced evolution* indicate the evolution of state and output vectors that would be obtained in the presence of input and null initial conditions ($x_0 = 0$)

Free evolution

 \triangle The free evolution can be achieved by setting in (1) u(k) = 0

$$x(k+1) = Ax(k), \quad x(k_0) = x_0$$
$$y(k) = Cx(k)$$

By iterations,
$$k = k_0$$
, $k = k_0 + 1$, ... $k = k_0 + n$, it follows
$$x(k_0 + 1) = Ax(k_0) = Ax_0$$
$$x(k_0 + 2) = Ax(k_0 + 1) = A^2x_0$$
...
$$x(k_0 + n) = A^nx_0$$

 $^{\wedge}$ The solution for a general k is given by

$$x(k) = A^{k-k_0} x_0$$

Free evolution: matrix 'A' diagonalizable

- $^{\wedge}$ The free evolution of a discrete-time LTI system is determined by A^k
- $^{\wedge}$ In case the matrix A has real and distinct eigenvalues, it is diagonalizable and A^k

$$A^k = U\Lambda^k U^{-1} = U \operatorname{diag}\{\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k\}V$$

where $\lambda_1, \lambda_2 \dots \lambda_n$ are the eigenvalues of the A matrix, U is eigenvector matrix and $V = U^{-1}$ is the left eigenvector matrix.

Free evolution: real egeinvalues

▲ The free evolution of a discrete LTI system when the matrix A is diagonalizable turns out to be

$$A^{k}x_{0} = U \operatorname{diag}\{\lambda_{1}^{k}, \lambda_{2}^{k}, \dots, \lambda_{n}^{k}\} V x_{0}$$

$$= (u_{1} \dots u_{n}) \begin{pmatrix} \lambda_{1}^{k} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}^{k} \end{pmatrix} \begin{pmatrix} v_{1}^{T} \\ \vdots \\ v_{n}^{T} \end{pmatrix} x_{0}$$

$$= \sum_{i=1}^{n} \lambda_{i}^{k} u_{i} v_{i}^{T} x_{0}$$

$$= \sum_{i=1}^{n} \lambda_{i}^{k} u_{i} c_{i}$$
An aperiodic modes

where the coefficient $c_i \in \mathbb{R}^n$ are the projection of the initial state x_0 on the eigenvector u_i .

Aperiodic evolution modes (1/4)

An aperiodic mode is an evolution mode of a linear system related to a real eigenvalue of the matrix A of multiplicity 1. It can be written in the form

$$c_i \lambda_i^k u_i$$

- A It gives us the evolution of the state along the direction defined by the eigenvector u_i starting from an initial value c_i (projection of the initial state x_0 on the eigenvalue u_i).
- \wedge Depending on the value of the eigenvalue λ_i , an aperiod evolution modes can be
 - \Rightarrow convergent for $|\lambda_i| < 1$;
 - \Rightarrow constant for $|\lambda_i| = 1$;
 - \Rightarrow divergent for $|\lambda_i| > 1$.

Aperiodic evolution modes (2/4)

♦ Convergent aperiodic mode

♦ Constant aperiodic mode

♦ Divergent aperiodic mode

Aperiodic evolution modes (3/4)

♦ Convergent mode in one step

♣ In the case of negative eigenvalues, the mode exhibits an alternating behavior

$$\lambda^k = (-|\lambda|)^k = (-1)^k |\lambda|^k$$

♦ Aperiodic convergent mode with oscillation behavior

Aperiodic evolution modes (4/4)

♦ Constant mode with oscillation behavior

♦ Divergent aperiodic mode with oscillation behavior

Free evolution: complex egeinvaues

- In the case of complex conjugate eigenvalues $\rho_1 e^{\pm j\theta_1}$, $\rho_2 e^{\pm j\theta_2}$, ... $\rho_\nu e^{\pm j\theta_\nu}$, complex conjugate eigenvalues, the free evolution exhibits a pseudo-periodic mode
- \land Convergent iff $\rho_i < 1$.

Modi di evoluzione pseudo-periodici

♦ Convergent pseudo-periodic mode

♦ Constant pseudo-periodic mode

♦ Divergent pseudo-periodic mode

