
Uniformed Search

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 4

Artificial Intelligence



Search Strategies
• Search algorithms differ only in the criterion to select one of the partial 

solutions to pursue at each step

• Two kinds of strategies exist, depending on the available information about 
which choice is better than another

• No information: Uninformed search strategies must be used
• Some information: Informed search strategies can be used

50

Search strategies

Search algorithms di�er only in the criterion to choose one of the
partial solutions to follow up at each step. An example:

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

current search tree:

which of the six partial solutions
should one choose?

Two kinds of strategies exist, depending on the available
information about which choice is “better” than another:
I no information: uninformed search strategies must be used
I some information: informed search strategies can be used



Uninformed Search Strategies

• Rationale
• In absence of any information about the best partial solution, 

systematically explore the state space

• Main strategies
• Breadth-first
• Depth-first
• Uniform-cost
• Depth-limited
• Iterative-deepening depth first



Avoiding repeated states

• Search algorithms may waste time by expanding different nodes associated 
with the same state

• Actions are reversible, allowing loops 
• Arad -> Zerind -> Arad-> Zerind …

• Different paths can lead to the same state, e.g., (redundant paths)
• Arad -> Sibiu, and Arad -> Zerind -> Oradea -> Sibiu

• Cyclical paths exist (loopy path)
• Arad -> Zerind -> Oradea -> Sibiu -> Arad

• Special case of a redundant path



Avoiding repeated states

• Three approaches possible
• Remember all previously reached states

• Allows us to detect redundant paths

• Appropriate for state spaces with many redundant paths

• It is the choice when the list of the reached states fits in memory

• Don’t worry about the past
• For some problems, where two paths can't reach the same state

• e.g., an assembly problem

• Compromise and check for cycles but not for redundant paths in general



Tree-like and Graph Search

• When looking for a path toward a goal state the search is 
• A tree-like search, if we don’t worry about possibly repeated states

• This could lead to a cycle or repeated paths toward a solution

• A graph search if we try to avoid repeated states

E

A
B

C D

F

Frontier

Find a path from A to E. A

B C

D E F G

A



Measuring Search Strategies Performance
• A strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions
• Effectiveness: how good is the solution found?

• Completeness: is the algorithm guaranteed to find a solution, when there is one?
• Optimality: when a solution is found, is its path cost minimal?

• Efficiency: what is the processing cost of finding a solution (computational 
complexity)?
• Time complexity: how long does it take to find a solution?

• Space complexity: how much memory is needed?

• Time and space complexity are measured in terms of 
• b – maximum branching factor of a node that needs to be considered 

• d – depth of the least-cost solution

• m – maximum depth of the state space

• Often a trade-off between effectiveness and efficiency is required



Computational complexity of search algorithms

• Worst-case time complexity
• The highest number of nodes that are generated before a solution is 

found (if any)

• Worst-case space complexity:
• The highest number of nodes that must be simultaneously stored in 

memory



Evaluating BFS

• In terms of effectiveness, it can be easily shown that BFS is
• Complete: a solution is always found if one exists
• Non-optimal: it is not guaranteed that the solution with minimum path 

cost is found (if any) unless the path cost is a non-decreasing function of 
depth

• Instead, is cost-optimal for all problems where actions have the same cost



BFS: computational complexity

• In the specific case of BSF, it is not difficult to see that computational 
complexity depends on two main factors

• The number of successors of each node of the search tree
• The depth d of the shallowest solution, which is the one found by BFS

• Since different nodes can have a different number of successors (see e.g., 8-
puzzle and route finding on maps), to simplify computations a constant 
number of successors b, named branching factor, is considered

• For instance, for b=2, we have  a binary tree

70

Breadth-first search: computational complexity

In the specific case of BSF, it is not di�cult to see that computational
complexity depends on two main factors:
I the number of successors of each node of the search tree
I the depth d of the shallowest solution, which is the one found by

BFS

Since di�erent nodes can have a di�erent number of successors (see, e.g.,
8-puzzle and route finding on maps), to simplify computations a
constant number of successors b, named branching factor, is
considered.

For instance, for b = 2 we have a binary tree:

22 Chapter 3. Solving Problems by Searching

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

Figure 3.12 FILES: figures/bfs-progress.eps (Tue Nov 3 16:22:26 2009). Breadth-first search on
a simple binary tree. At each stage, the node to be expanded next is indicated by a marker.



BFS: computational complexity

• Fixed b, the computational complexity can be evaluated as a function of d only

• Time complexity
• In the worst case, the goal state is in the last node to be expanded among all the ones at 

depth d
• This means that all the other nodes at depth d are expanded before

• The number of generated nodes can be computed by evaluating the number of nodes 
that are generated at each depth

71

Breadth-first search: computational complexity
For a fixed branching factor, computational complexity can be evaluated
as a function of d only.

Time complexity: in the worst case the goal state is in the last node
that is selected in step 2.2 to be expanded, among all the ones at depth
d . This means that all the other nodes at depth d are expanded before.

The number of generated nodes can be computed by evaluating the
number of nodes that are generated at each depth:

Depth Number of generated nodes
0 1 (root node)
1 b
2 b2

3 b3

. . . . . .
d bd

d + 1 bd+1
≠ b

Total: 1 + b + b2 + b3 + . . . + bd + (bd+1
≠ b)

71

Breadth-first search: computational complexity
For a fixed branching factor, computational complexity can be evaluated
as a function of d only.

Time complexity: in the worst case the goal state is in the last node
that is selected in step 2.2 to be expanded, among all the ones at depth
d . This means that all the other nodes at depth d are expanded before.

The number of generated nodes can be computed by evaluating the
number of nodes that are generated at each depth:

Depth Number of generated nodes
0 1 (root node)
1 b
2 b2

3 b3

. . . . . .
d bd

d + 1 bd+1
≠ b

Total: 1 + b + b2 + b3 + . . . + bd + (bd+1
≠ b)= O(bd)



BFS: computational complexity

• Space complexity
• All generated nodes in memory until a solution is found

• It follows that the space complexity equals the time complexity

• The worst-case time and space complexity of BFS, given b and the shallowest 
solution at depth d, are

72

Breadth-first search: computational complexity

To evaluate space complexity it su�ces to notice that all generated
nodes must remain in memory until a solution is found. It follows that
space complexity equals time complexity.

The worst case time and space complexity of BFS, for a search tree with
a given branching factor b and shallowest solution at depth d , are
therefore given by:

1 + b + b2 + b3 + . . . + bd + (bd+1
≠ b) .

It easily follows that the asymptotic complexity of BFS is O(bd+1), i.e., it
is exponential with respect to the depth of the shallowest solution.

In general, an exponential computational complexity denotes a very low
e�ciency.

= O(bd)



BFS: computational complexity

• As an example of what exponential complexity means, consider a search 
problem with the following settings

• Branching factor b = 10
• Time for generating one node: 10-6 s
• Storage required for a single node: 1 Kb

• A search to d=10 would take less than 3 hours with 10 TB of memory
• Memory is a bigger problem than time

• However, for d=14 would take 3.5 years to find the solution



Summarizing properties of BFS

• Complete
• A solution is always found if any

• Non-optimal
• It is not guaranteed that the solution with minimum path cost is found (if 

any) unless the path cost is a non-decreasing function of depth

• Exponential time and space complexity w.r.t. the depth of the 
shallowest solution



What about DFS?

• DFS effectiveness
• DFS can get stuck carrying on with very long paths

• Infinite paths possible

• DFS has limited memory requirements
• If all paths from a given node are all explored with no solutions found, the sub-tree 

rooted in that node is removed from memory
• Only a single path from the root to a leaf node needs to be stored in memory during 

the search



DFS: Computational complexity

• DFS complexity is evaluated by assuming
• All nodes have the same number of successors b (branching factor)

• All solutions have the same depth m
• m is also the maximum depth of the search tree, when loops are avoided (worst case)

• In the worst case, the goal state is in the last path explored 

• Time complexity
• All nodes up to length m are generated before the solution is found

• Space complexity
• Only a single path from the root to a leaf node needs to be stored



DFS: Computational complexity

• Time complexity exponential w.r.t. depth m

• Space complexity linear

85

Depth-first search: computational complexity

Under the above assumptions, the computational complexity of DFS as a
function of the solution depth m is given by:

Time complexity Space complexity
Depth N. of generated nodes N. of stored nodes
0 1 (root node) 1 (root node)
1 b b
2 b2 b
. . . . . . . . .
m bm b
Total: 1 + b + . . . + bm = O(bm) 1 + mb = O(m)

Time complexity is therefore exponential with respect to the solution
depth m, as that of BFS, but space complexity is linear.



Properties of DFS

• Complete
• Unless there are infinite paths

• Non-optimal
• A deeper, suboptimal solution can be found along a path that is explored 

before an optimal solution path at a smaller depth

• Exponential time complexity and linear space complexity



Other strategies

• Uniform-cost
• Expands the leaf node with the lowest path cost

• Depth-limited
• Depth-first search with a predefined depth limit (avoid infinite paths, but 

not complete)

• Iterative-deepening depth-first
• Repeated depth-limited search with depth limit 1, 2, 3, …, until a solution 

is found  (avoid infinite paths and complete)

• Bidirectional
• Simultaneously searching forward from the initial state and backwards 

from the goal sate, until the two searches meet



Uniform-cost Search

• When actions have different costs the node to expand is the one with minimal 
cost, where the cost of the path from the root to the current node is 
considered

• Expand the least-cost unexpanded node
• The frontier is ordered by path cost, the lowest first
• Equivalent to BFS if step costs are all equal

• Time and space complexity

• 𝑂(𝑏!"
!∗

# )
• 𝐶∗ optimal solution

• 𝜖 > 0 lower bound on cost action

• Complete

• Cost-optimal



Depth-limited Search
• The depth-limited search keeps DFS from wandering down an infinite path, 

setting a depth limit l
• It treats all nodes at depth l as if they had no further nodes to move on

• Sometimes a good depth limit can be chosen based on knowledge of the 
problem

• For example, on the map of Romania, there are 20 cities, so l=19 is a valid limit
• However, any city can be reached from any other city in at most 9 actions. This number, 

known as the diameter of the state-space graph, gives us a better depth limit

• For most problems, we will not know a good depth limit until we have solved 
the problem

• Time complexity is O(bl) 

• Space complexity is O(bl)



Iterative Deepening Search

• Iterative deepening search solves the problem of choosing a good value for l 
by trying all values: first 0, then 1, then 2, and so on

• until either a solution is found, or the depth-limited search returns the failure value 

• Iterative deepening combines many of the advantages of depth-first and 
breadth-first search

• Like DFS memory requirements are linear, i.e., O(bd) when there is a solution and O(bm) 
when there is no solution and finite state spaces

• Like BFS is optimal for problems with all equal-cost actions and complete on acyclic finite 
state space



Iterative Deepening Search

• Time Complexity
• O(bd) when there is a solution
• O(bm) when there is no solution

• In general, iterative deepening is the preferred uninformed search 
method when 
• the search state space is larger than can fit in memory and 
• the depth of the solution is unknown



Bidirectional Search

• An alternative approach called bidirectional search simultaneously searches 
forward from the initial state and backward from the goal state(s), hoping that 
the two searches will meet

• We need to track of two frontiers and two tables of explored states

• Reasoning backwards
• if state t is a successor of s in the forward direction, then we need to know that s 

is a successor of t in the backward direction
• A solution is when the two frontiers collide

• Time complexity
• O(bd/2)

• Space complexity
• O(bd/2)



Uninformed search algorithms

• Comparisons for tree-like search versions
• Don’t check for repeated states 



Effectiveness of uninformed search

• One may think that the high computational complexity of uninformed search 
strategies is an issue only for real-world problems, not for toy ones

• Consider again 8-puzzle, apparently a very simple toy problem: 

• How long does it take to solve it using, for instance, BFS?

91

E�ectiveness of uninformed search: an example

One may think that the high computational complexity of
uninformed search strategies is an issue only for real-world
problems, not for toy ones.

Consider again 8-puzzle, apparently a very simple toy problem:

16 Chapter 3. Solving Problems by Searching

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.

How long does it take to solve it using, e.g., BFS?



Effectiveness of uninformed search

• 8-puzzle
• the state space contains 9! = 362.880 distinct states (only 9!/2 = 181.440 are reachable from any 

given initial state) 

• it can be shown that the average solution depth (over all possible pairs of initial and goal states) is 
about 22 

• the average branching factor b (over all possible states) is about 3 (each state 2 to 4 actions can be 
performed) 

• How many nodes does BFS generate and store, when the shallowest solution has 
depth d = 22 (i.e., in the average case)? 

• Remember that the worst-case time and space complexity of BFS is O(bd ), which in 
this case amounts to 322 ≈3×1010 ... 

• For instance, considering that representing a state requires at least ⌈log2 9!⌉ = 19 
bits, storing 322 states requires about 19 × 3 × 1010 bits, i.e., more than 200 GB... 



Suggested exercises

1.Implement the general tree-search algorithm, and the related data 
structures, in Python

2.Implement the additional, specific functions for breadth-first, depth-first, 
uniform-cost search, and bidirectional search

3.Implement the additional, specific data structures and functions for the 8-
puzzle problem, and the route-finding problem in the Romania map 

4.Run the above search algorithms on specific problem instances, and evaluate 
the number of generated and stored nodes 


