

Artificial Intelligence

Uniformed Search

LESSON 4

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Search Strategies

• Search algorithms differ only in the criterion to select one of the partial solutions to pursue at each step

which of the six partial solutions should one choose?

- Two kinds of strategies exist, depending on the available information about which choice is better than another
 - No information: Uninformed search strategies must be used
 - Some information: Informed search strategies can be used

Uninformed Search Strategies

- Rationale
 - In absence of any information about the best partial solution, systematically explore the state space
- Main strategies
 - Breadth-first
 - Depth-first
 - Uniform-cost
 - Depth-limited
 - Iterative-deepening depth first

Avoiding repeated states

- Search algorithms may waste time by expanding different nodes associated with the same state
 - Actions are reversible, allowing loops
 - Arad -> Zerind -> Arad-> Zerind ...
 - Different paths can lead to the same state, e.g., (redundant paths)
 - Arad -> Sibiu, and Arad -> Zerind -> Oradea -> Sibiu
 - Cyclical paths exist (loopy path)
 - Arad -> Zerind -> Oradea -> Sibiu -> Arad
 - Special case of a redundant path

Avoiding repeated states

• Three approaches possible

- Remember all previously reached states
 - Allows us to detect redundant paths
 - Appropriate for state spaces with many redundant paths
 - It is the choice when the list of the reached states fits in memory
- Don't worry about the past
 - For some problems, where two paths can't reach the same state
 - e.g., an assembly problem
- Compromise and check for cycles but not for redundant paths in general

Tree-like and Graph Search

- When looking for a path toward a goal state the search is
 - A tree-like search, if we don't worry about possibly repeated states
 - This could lead to a cycle or repeated paths toward a solution
 - A graph search if we try to avoid repeated states

Measuring Search Strategies Performance

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions
 - Effectiveness: how good is the solution found?
 - Completeness: is the algorithm guaranteed to find a solution, when there is one?
 - Optimality: when a solution is found, is its path cost minimal?
 - Efficiency: what is the processing cost of finding a solution (computational complexity)?
 - Time complexity: how long does it take to find a solution?
 - Space complexity: how much memory is needed?
 - Time and space complexity are measured in terms of
 - b maximum branching factor of a node that needs to be considered
 - d depth of the least-cost solution
 - m maximum depth of the state space
- Often a trade-off between effectiveness and efficiency is required

Computational complexity of search algorithms

- Worst-case time complexity
 - The highest number of nodes that are generated before a solution is found (if any)
- Worst-case space complexity:
 - The highest number of nodes that must be simultaneously stored in memory

Evaluating BFS

- In terms of effectiveness, it can be easily shown that BFS is
 - Complete: a solution is always found if one exists
 - Non-optimal: it is not guaranteed that the solution with minimum path cost is found (if any) unless the path cost is a non-decreasing function of depth
 - Instead, is cost-optimal for all problems where actions have the same cost

- In the specific case of BSF, it is not difficult to see that computational complexity depends on two main factors
 - The number of successors of each node of the search tree
 - The depth d of the shallowest solution, which is the one found by BFS
- Since different nodes can have a different number of successors (see e.g., 8puzzle and route finding on maps), to simplify computations a constant number of successors b, named branching factor, is considered
- For instance, for b=2, we have a binary tree

- Fixed **b**, the computational complexity can be evaluated as a function of **d** only
- Time complexity
 - In the worst case, the goal state is in the last node to be expanded among all the ones at depth d
 - This means that all the other nodes at depth d are expanded before
 - The number of generated nodes can be computed by evaluating the number of nodes that are generated at each depth

Depth	Number of generated nodes				
0	1 (root node)				
1	b				
2	<i>b</i> ²				
3	b^3				
•••	•••				
d	b^d				
Total:	$1 + b + b^2 + b^3 + \ldots + b^d = O(b^d)$				

- Space complexity
 - All generated nodes in memory until a solution is found
 - It follows that the space complexity equals the time complexity
- The worst-case time and space complexity of BFS, given b and the shallowest solution at depth d, are

$$1 + b + b^2 + b^3 + \ldots + b^d = O(b^d)$$

- As an example of what exponential complexity means, consider a search problem with the following settings
 - Branching factor b = 10
 - Time for generating one node: 10⁻⁶ s
 - Storage required for a single node: 1 Kb
- A search to d=10 would take less than 3 hours with 10 TB of memory
 - Memory is a bigger problem than time
 - However, for d=14 would take 3.5 years to find the solution

Summarizing properties of BFS

- Complete
 - A solution is always found if any
- Non-optimal
 - It is not guaranteed that the solution with minimum path cost is found (if any) unless the path cost is a non-decreasing function of depth
- Exponential time and space complexity w.r.t. the depth of the shallowest solution

What about DFS?

• DFS effectiveness

- DFS can get stuck carrying on with very long paths
 - Infinite paths possible
- DFS has limited memory requirements
 - If all paths from a given node are all explored with no solutions found, the sub-tree rooted in that node is removed from memory
 - Only a single path from the root to a leaf node needs to be stored in memory during the search

- DFS complexity is evaluated by assuming
 - All nodes have the same number of successors b (branching factor)
 - All solutions have the same depth m
 - m is also the maximum depth of the search tree, when loops are avoided (worst case)
- In the worst case, the goal state is in the last path explored
- Time complexity
 - All nodes up to length m are generated before the solution is found
- Space complexity
 - Only a single path from the root to a leaf node needs to be stored

	Time complexity	Space complexity		
Depth	N. of generated nodes	N. of stored nodes		
0	1 (root node)	1 (root node)		
1	Ь	b		
2	b^2	b		
т	b ^m	b		
Total:	$1+b+\ldots+b^m=\mathcal{O}(b^m)$	$1 + mb = \mathcal{O}(m)$		

- Time complexity exponential w.r.t. depth m
- Space complexity linear

Properties of DFS

- Complete
 - Unless there are infinite paths
- Non-optimal
 - A deeper, suboptimal solution can be found along a path that is explored before an optimal solution path at a smaller depth
- Exponential time complexity and linear space complexity

Other strategies

- Uniform-cost
 - Expands the leaf node with the lowest path cost
- Depth-limited
 - Depth-first search with a predefined depth limit (avoid infinite paths, but not complete)
- Iterative-deepening depth-first
 - Repeated depth-limited search with depth limit 1, 2, 3, ..., until a solution is found (avoid infinite paths and complete)
- Bidirectional
 - Simultaneously searching forward from the initial state and backwards from the goal sate, until the two searches meet

Uniform-cost Search

- When actions have different costs the node to expand is the one with minimal cost, where the cost of the path from the root to the current node is considered
- Expand the least-cost unexpanded node
 - The frontier is ordered by path cost, the lowest first
 - Equivalent to BFS if step costs are all equal

- Time and space complexity
 - $O(b^{1+\left\lfloor\frac{C^*}{\epsilon}\right\rfloor})$
 - C* optimal solution
 - $\epsilon > 0$ lower bound on cost action
- Complete
- Cost-optimal

Depth-limited Search

- The depth-limited search keeps DFS from wandering down an infinite path, setting a depth limit
 - It treats all nodes at depth I as if they had no further nodes to move on
- Sometimes a good depth limit can be chosen based on knowledge of the problem
 - For example, on the map of Romania, there are 20 cities, so I=19 is a valid limit
 - However, any city can be reached from any other city in at most 9 actions. This number, known as the diameter of the state-space graph, gives us a better depth limit
- For most problems, we will not know a good depth limit until we have solved the problem
- Time complexity is O(b^I)
- Space complexity is O(bl)

Iterative Deepening Search

- Iterative deepening search solves the problem of choosing a good value for I by trying all values: first 0, then 1, then 2, and so on
 - until either a solution is found, or the depth-limited search returns the failure value
- Iterative deepening combines many of the advantages of depth-first and breadth-first search
 - Like DFS memory requirements are linear, i.e., O(bd) when there is a solution and O(bm) when there is no solution and finite state spaces
 - Like BFS is optimal for problems with all equal-cost actions and complete on acyclic finite state space

Iterative Deepening Search

• Time Complexity

- O(b^d) when there is a solution
- O(b^m) when there is no solution
- In general, iterative deepening is the preferred uninformed search method when
 - the search state space is larger than can fit in memory and
 - the depth of the solution is unknown

Bidirectional Search

- An alternative approach called bidirectional search simultaneously searches forward from the initial state and backward from the goal state(s), hoping that the two searches will meet
- We need to track of two frontiers and two tables of explored states
- Reasoning backwards
 - if state t is a successor of s in the forward direction, then we need to know that s is a successor of t in the backward direction
 - A solution is when the two frontiers collide
- Time complexity
 - O(b^{d/2})
- Space complexity
 - O(b^{d/2})

Uninformed search algorithms

• Comparisons for tree-like search versions

• Don't check for repeated states

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Optimal cost? Time Space	Yes ¹ Yes ³ $O(b^d)$ $O(b^d)$	$ ext{Yes}^{1,2} \ ext{Yes} \ O(b^{1+\lfloor C^*/\epsilon floor}) \ O(b^{1+\lfloor C^*/\epsilon floor}) \ ext{O}(b^{1+\lfloor C^*/\epsilon floor})$	No No $O(b^m)$ O(bm)	$egin{array}{c} \operatorname{No} & & \ \operatorname{No} & & \ O(b^\ell) & & \ O(b\ell) & & \ O(b\ell) \end{array}$	Yes ¹ Yes ³ $O(b^d)$ O(bd)	Yes ^{1,4} Yes ^{3,4} $O(b^{d/2})$ $O(b^{d/2})$

Figure 3.15 Evaluation of search algorithms. *b* is the branching factor; *m* is the maximum depth of the search tree; *d* is the depth of the shallowest solution, or is *m* when there is no solution; ℓ is the depth limit. Superscript caveats are as follows: ¹ complete if *b* is finite, and the state space either has a solution or is finite. ² complete if all action costs are $\geq \epsilon > 0$; ³ cost-optimal if action costs are all identical; ⁴ if both directions are breadth-first or uniform-cost.

Effectiveness of uninformed search

- One may think that the high computational complexity of uninformed search strategies is an issue only for real-world problems, not for toy ones
- Consider again 8-puzzle, apparently a very simple toy problem:

• How long does it take to solve it using, for instance, BFS?

Effectiveness of uninformed search

- 8-puzzle
 - the state space contains 9! = 362.880 distinct states (only 9!/2 = 181.440 are reachable from any given initial state)
 - it can be shown that the average solution depth (over all possible pairs of initial and goal states) is about 22
 - the average branching factor *b* (over all possible states) is about 3 (each state 2 to 4 actions can be performed)
- How many nodes does BFS generate and store, when the shallowest solution has depth d = 22 (i.e., in the average case)?
- Remember that the worst-case time and space complexity of BFS is $O(b^d)$, which in this case amounts to $3^{22} \approx 3 \times 10^{10}$...
- For instance, considering that representing a state requires at least $[log_2 9!] = 19$ bits, storing 3²² states requires about 19 × 3 × 10¹⁰ bits, i.e., more than 200 GB...

Suggested exercises

- 1.Implement the **general tree-search algorithm**, and the related data structures, in Python
- 2.Implement the **additional**, specific functions for breadth-first, depth-first, uniform-cost search, and bidirectional search
- 3.Implement the **additional**, specific data structures and functions for the 8puzzle problem, and the route-finding problem in the Romania map
- 4.Run the above search algorithms on specific problem instances, and evaluate the number of generated and stored nodes