Artificial Intelligence

Uniformed Search

LESSON 4

Search Strategies

- Search algorithms differ only in the criterion to select one of the partial solutions to pursue at each step

current search tree:

which of the six partial solutions should one choose?
- Two kinds of strategies exist, depending on the available information about which choice is better than another
- No information: Uninformed search strategies must be used
- Some information: Informed search strategies can be used

Uninformed Search Strategies

- Rationale
- In absence of any information about the best partial solution, systematically explore the state space
- Main strategies
- Breadth-first
- Depth-first
- Uniform-cost
- Depth-limited
- Iterative-deepening depth first

Avoiding repeated states

- Search algorithms may waste time by expanding different nodes associated with the same state
- Actions are reversible, allowing loops
- Arad -> Zerind -> Arad-> Zerind ...
- Different paths can lead to the same state, e.g., (redundant paths)
- Arad -> Sibiu, and Arad -> Zerind -> Oradea -> Sibiu
- Cyclical paths exist (loopy path)
- Arad -> Zerind -> Oradea -> Sibiu -> Arad
- Special case of a redundant path

Avoiding repeated states

- Three approaches possible
- Remember all previously reached states
- Allows us to detect redundant paths
- Appropriate for state spaces with many redundant paths
- It is the choice when the list of the reached states fits in memory
- Don't worry about the past
- For some problems, where two paths can't reach the same state
- e.g., an assembly problem
- Compromise and check for cycles but not for redundant paths in general

Tree-like and Graph Search

- When looking for a path toward a goal state the search is
- A tree-like search, if we don't worry about possibly repeated states
- This could lead to a cycle or repeated paths toward a solution
- A graph search if we try to avoid repeated states

Measuring Search Strategies Performance

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions
- Effectiveness: how good is the solution found?
- Completeness: is the algorithm guaranteed to find a solution, when there is one?
- Optimality: when a solution is found, is its path cost minimal?
- Efficiency: what is the processing cost of finding a solution (computational complexity)?
- Time complexity: how long does it take to find a solution?
- Space complexity: how much memory is needed?
- Time and space complexity are measured in terms of
- b - maximum branching factor of a node that needs to be considered
- d-depth of the least-cost solution
- m - maximum depth of the state space
- Often a trade-off between effectiveness and efficiency is required

Computational complexity of search algorithms

- Worst-case time complexity
- The highest number of nodes that are generated before a solution is found (if any)
- Worst-case space complexity:
- The highest number of nodes that must be simultaneously stored in memory

Evaluating BFS

- In terms of effectiveness, it can be easily shown that BFS is
- Complete: a solution is always found if one exists
- Non-optimal: it is not guaranteed that the solution with minimum path cost is found (if any) unless the path cost is a non-decreasing function of depth
- Instead, is cost-optimal for all problems where actions have the same cost

BFS: computational complexity

- In the specific case of BSF, it is not difficult to see that computational complexity depends on two main factors
- The number of successors of each node of the search tree
- The depth d of the shallowest solution, which is the one found by BFS
- Since different nodes can have a different number of successors (see e.g., 8puzzle and route finding on maps), to simplify computations a constant number of successors b, named branching factor, is considered
- For instance, for $b=2$, we have a binary tree

BFS: computational complexity

- Fixed b, the computational complexity can be evaluated as a function of d only
- Time complexity
- In the worst case, the goal state is in the last node to be expanded among all the ones at depth d
- This means that all the other nodes at depth d are expanded before
- The number of generated nodes can be computed by evaluating the number of nodes that are generated at each depth

Depth	Number of generated nodes
0	1 (root node)
1	b
2	b^{2}
3	b^{3}
\cdots	\cdots
d	b^{d}
Total:	$1+b+b^{2}+b^{3}+\ldots+b^{d}=\mathrm{O}\left(\mathrm{b}^{\mathrm{d}}\right)$

BFS: computational complexity

- Space complexity
- All generated nodes in memory until a solution is found
- It follows that the space complexity equals the time complexity
- The worst-case time and space complexity of BFS, given b and the shallowest solution at depth d , are

$$
1+b+b^{2}+b^{3}+\ldots+b^{d}=O\left(\mathrm{~b}^{\mathrm{d}}\right)
$$

BFS: computational complexity

- As an example of what exponential complexity means, consider a search problem with the following settings
- Branching factor $b=10$
- Time for generating one node: $10^{-6} \mathrm{~s}$
- Storage required for a single node: 1 Kb
- A search to $d=10$ would take less than 3 hours with 10 TB of memory
- Memory is a bigger problem than time
- However, for $\mathrm{d}=14$ would take 3.5 years to find the solution

Summarizing properties of BFS

- Complete
- A solution is always found if any
- Non-optimal
- It is not guaranteed that the solution with minimum path cost is found (if any) unless the path cost is a non-decreasing function of depth
- Exponential time and space complexity w.r.t. the depth of the shallowest solution

What about DFS?

- DFS effectiveness
- DFS can get stuck carrying on with very long paths
- Infinite paths possible
- DFS has limited memory requirements
- If all paths from a given node are all explored with no solutions found, the sub-tree rooted in that node is removed from memory
- Only a single path from the root to a leaf node needs to be stored in memory during the search

DFS: Computational complexity

- DFS complexity is evaluated by assuming
- All nodes have the same number of successors b (branching factor)
- All solutions have the same depth m
- m is also the maximum depth of the search tree, when loops are avoided (worst case)
- In the worst case, the goal state is in the last path explored
- Time complexity
- All nodes up to length m are generated before the solution is found
- Space complexity
- Only a single path from the root to a leaf node needs to be stored

DFS: Computational complexity

	Time complexity	Space complexity
Depth	\mathbf{N}. of generated nodes	\mathbf{N}. of stored nodes
0	1 (root node)	1 (root node)
1	b	b
2	b^{2}	b
\ldots	\ldots	\ldots
m	b^{m}	b
Total:	$1+b+\ldots+b^{m}=\mathcal{O}\left(b^{m}\right)$	$1+m b=\mathcal{O}(m)$

- Time complexity exponential w.r.t. depth m
- Space complexity linear

Properties of DFS

- Complete
- Unless there are infinite paths
- Non-optimal
- A deeper, suboptimal solution can be found along a path that is explored before an optimal solution path at a smaller depth
- Exponential time complexity and linear space complexity

Other strategies

- Uniform-cost
- Expands the leaf node with the lowest path cost
- Depth-limited
- Depth-first search with a predefined depth limit (avoid infinite paths, but not complete)
- Iterative-deepening depth-first
- Repeated depth-limited search with depth limit $1,2,3, \ldots$, until a solution is found (avoid infinite paths and complete)
- Bidirectional
- Simultaneously searching forward from the initial state and backwards from the goal sate, until the two searches meet

Uniform-cost Search

- When actions have different costs the node to expand is the one with minimal cost, where the cost of the path from the root to the current node is considered
- Expand the least-cost unexpanded node
- The frontier is ordered by path cost, the lowest first
- Equivalent to BFS if step costs are all equal

- Time and space complexity
- $O\left(b^{1+\left[\frac{c^{*}}{\epsilon}\right]}\right)$
- C^{*} optimal solution
- $\epsilon>0$ lower bound on cost action
- Complete
- Cost-optimal

Depth-limited Search

- The depth-limited search keeps DFS from wandering down an infinite path, setting a depth limit I
- It treats all nodes at depth I as if they had no further nodes to move on
- Sometimes a good depth limit can be chosen based on knowledge of the problem
- For example, on the map of Romania, there are 20 cities, sol=19 is a valid limit
- However, any city can be reached from any other city in at most 9 actions. This number, known as the diameter of the state-space graph, gives us a better depth limit
- For most problems, we will not know a good depth limit until we have solved the problem
- Time complexity is $\mathrm{O}\left(\mathrm{b}^{\prime}\right)$
- Space complexity is O(bl)

Iterative Deepening Search

- Iterative deepening search solves the problem of choosing a good value for I by trying all values: first 0 , then 1 , then 2 , and so on
- until either a solution is found, or the depth-limited search returns the failure value
- Iterative deepening combines many of the advantages of depth-first and breadth-first search
- Like DFS memory requirements are linear, i.e., $O(b d)$ when there is a solution and $O(b m)$ when there is no solution and finite state spaces
- Like BFS is optimal for problems with all equal-cost actions and complete on acyclic finite state space

Iterative Deepening Search

- Time Complexity
- $O\left(b^{d}\right)$ when there is a solution
- $O\left(b^{m}\right)$ when there is no solution
- In general, iterative deepening is the preferred uninformed search method when
- the search state space is larger than can fit in memory and
- the depth of the solution is unknown

Bidirectional Search

- An alternative approach called bidirectional search simultaneously searches forward from the initial state and backward from the goal state(s), hoping that the two searches will meet
- We need to track of two frontiers and two tables of explored states
- Reasoning backwards
- if state t is a successor of \mathbf{s} in the forward direction, then we need to know that s is a successor of t in the backward direction
- A solution is when the two frontiers collide
- Time complexity
- $O\left(b^{d / 2}\right)$
- Space complexity
- $O\left(b^{d / 2}\right)$

Uninformed search algorithms

- Comparisons for tree-like search versions
- Don't check for repeated states

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	Yes 1	Yes 1,2	No	No	Yes 1	Yes 1,4
Optimal cost?	Yes 3	Yes	No	No	Yes 3	Yes 3,4
Time	$O\left(b^{d}\right)$	$O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$	$O\left(b^{m}\right)$	$O\left(b^{\ell}\right)$	$O\left(b^{d}\right)$	$O\left(b^{d / 2}\right)$
Space	$O\left(b^{d}\right)$	$O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$	$O(b m)$	$O(b \ell)$	$O(b d)$	$O\left(b^{d / 2}\right)$

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum depth of the search tree; d is the depth of the shallowest solution, or is m when there is no solution; ℓ is the depth limit. Superscript caveats are as follows: ${ }^{1}$ complete if b is finite, and the state space either has a solution or is finite. ${ }^{2}$ complete if all action costs are $\geq \epsilon>0 ;{ }^{3}$ cost-optimal if action costs are all identical; ${ }^{4}$ if both directions are breadth-first or uniform-cost.

Effectiveness of uninformed search

- One may think that the high computational complexity of uninformed search strategies is an issue only for real-world problems, not for toy ones
- Consider again 8 -puzzle, apparently a very simple toy problem:

Start State

Goal State

- How long does it take to solve it using, for instance, BFS?

Effectiveness of uninformed search

- 8 -puzzle
- the state space contains $9!=362.880$ distinct states (only $9!/ 2=181.440$ are reachable from any given initial state)
- it can be shown that the average solution depth (over all possible pairs of initial and goal states) is about 22
- the average branching factor b (over all possible states) is about 3 (each state 2 to 4 actions can be performed)
- How many nodes does BFS generate and store, when the shallowest solution has depth $d=22$ (i.e., in the average case)?
- Remember that the worst-case time and space complexity of BFS is $O\left(b^{d}\right)$, which in this case amounts to $3^{22} \approx 3 \times 10^{10} \ldots$
- For instance, considering that representing a state requires at least $\left[\log _{2} 9!\right]=19$ bits, storing 3^{22} states requires about $19 \times 3 \times 10^{10}$ bits, i.e., more than 200 GB...

Suggested exercises

1.Implement the general tree-search algorithm, and the related data structures, in Python
2.Implement the additional, specific functions for breadth-first, depth-first, uniform-cost search, and bidirectional search
3.Implement the additional, specific data structures and functions for the 8puzzle problem, and the route-finding problem in the Romania map
4.Run the above search algorithms on specific problem instances, and evaluate the number of generated and stored nodes

