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Search Strategies
• Search algorithms differ only in the criterion to select one of the partial 

solutions to pursue at each step

• Two kinds of strategies exist, depending on the available information about 
which choice is better than another

• No information: Uninformed search strategies must be used
• Some information: Informed search strategies can be used
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Search strategies

Search algorithms di�er only in the criterion to choose one of the
partial solutions to follow up at each step. An example:
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

current search tree:

which of the six partial solutions
should one choose?

Two kinds of strategies exist, depending on the available
information about which choice is “better” than another:
I no information: uninformed search strategies must be used
I some information: informed search strategies can be used



Uninformed Search Strategies

• Rationale
• In absence of any information about the best partial solution, 

systematically explore the state space

• Main strategies
• Breadth-first
• Depth-first
• Uniform-cost
• Depth-limited
• Iterative-deepening depth first



Avoiding repeated states

• Search algorithms may waste time by expanding different nodes associated 
with the same state

• Actions are reversible, allowing loops 
• Arad -> Zerind -> Arad-> Zerind …

• Different paths can lead to the same state, e.g., (redundant paths)
• Arad -> Sibiu, and Arad -> Zerind -> Oradea -> Sibiu

• Cyclical paths exist (loopy path)
• Arad -> Zerind -> Oradea -> Sibiu -> Arad

• Special case of a redundant path



Avoiding repeated states

• Three approaches possible
• Remember all previously reached states

• Allows us to detect redundant paths

• Appropriate for state spaces with many redundant paths

• It is the choice when the list of the reached states fits in memory

• Don’t worry about the past
• For some problems, where two paths can't reach the same state

• e.g., an assembly problem

• Compromise and check for cycles but not for redundant paths in general



Tree-like and Graph Search

• When looking for a path toward a goal state the search is 
• A tree-like search, if we don’t worry about possibly repeated states

• This could lead to a cycle or repeated paths toward a solution

• A graph search if we try to avoid repeated states
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Measuring Search Strategies Performance
• A strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions
• Effectiveness: how good is the solution found?

• Completeness: is the algorithm guaranteed to find a solution, when there is one?
• Optimality: when a solution is found, is its path cost minimal?

• Efficiency: what is the processing cost of finding a solution (computational 
complexity)?
• Time complexity: how long does it take to find a solution?

• Space complexity: how much memory is needed?

• Time and space complexity are measured in terms of 
• b – maximum branching factor of a node that needs to be considered 

• d – depth of the least-cost solution

• m – maximum depth of the state space

• Often a trade-off between effectiveness and efficiency is required



Computational complexity of search algorithms

• Worst-case time complexity
• The highest number of nodes that are generated before a solution is 

found (if any)

• Worst-case space complexity:
• The highest number of nodes that must be simultaneously stored in 

memory



Evaluating BFS

• In terms of effectiveness, it can be easily shown that BFS is
• Complete: a solution is always found if one exists
• Non-optimal: it is not guaranteed that the solution with minimum path 

cost is found (if any) unless the path cost is a non-decreasing function of 
depth

• Instead, is cost-optimal for all problems where actions have the same cost



BFS: computational complexity

• In the specific case of BSF, it is not difficult to see that computational 
complexity depends on two main factors

• The number of successors of each node of the search tree
• The depth d of the shallowest solution, which is the one found by BFS

• Since different nodes can have a different number of successors (see e.g., 8-
puzzle and route finding on maps), to simplify computations a constant 
number of successors b, named branching factor, is considered

• For instance, for b=2, we have  a binary tree
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Breadth-first search: computational complexity

In the specific case of BSF, it is not di�cult to see that computational
complexity depends on two main factors:
I the number of successors of each node of the search tree
I the depth d of the shallowest solution, which is the one found by

BFS

Since di�erent nodes can have a di�erent number of successors (see, e.g.,
8-puzzle and route finding on maps), to simplify computations a
constant number of successors b, named branching factor, is
considered.

For instance, for b = 2 we have a binary tree:
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Figure 3.12 FILES: figures/bfs-progress.eps (Tue Nov 3 16:22:26 2009). Breadth-first search on
a simple binary tree. At each stage, the node to be expanded next is indicated by a marker.



BFS: computational complexity

• Fixed b, the computational complexity can be evaluated as a function of d only

• Time complexity
• In the worst case, the goal state is in the last node to be expanded among all the ones at 

depth d
• This means that all the other nodes at depth d are expanded before

• The number of generated nodes can be computed by evaluating the number of nodes 
that are generated at each depth
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Breadth-first search: computational complexity
For a fixed branching factor, computational complexity can be evaluated
as a function of d only.

Time complexity: in the worst case the goal state is in the last node
that is selected in step 2.2 to be expanded, among all the ones at depth
d . This means that all the other nodes at depth d are expanded before.

The number of generated nodes can be computed by evaluating the
number of nodes that are generated at each depth:

Depth Number of generated nodes
0 1 (root node)
1 b
2 b2

3 b3

. . . . . .
d bd

d + 1 bd+1
≠ b

Total: 1 + b + b2 + b3 + . . . + bd + (bd+1
≠ b)
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Breadth-first search: computational complexity
For a fixed branching factor, computational complexity can be evaluated
as a function of d only.

Time complexity: in the worst case the goal state is in the last node
that is selected in step 2.2 to be expanded, among all the ones at depth
d . This means that all the other nodes at depth d are expanded before.

The number of generated nodes can be computed by evaluating the
number of nodes that are generated at each depth:

Depth Number of generated nodes
0 1 (root node)
1 b
2 b2

3 b3

. . . . . .
d bd

d + 1 bd+1
≠ b

Total: 1 + b + b2 + b3 + . . . + bd + (bd+1
≠ b)= O(bd)



BFS: computational complexity

• Space complexity
• All generated nodes in memory until a solution is found

• It follows that the space complexity equals the time complexity

• The worst-case time and space complexity of BFS, given b and the shallowest 
solution at depth d, are
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Breadth-first search: computational complexity

To evaluate space complexity it su�ces to notice that all generated
nodes must remain in memory until a solution is found. It follows that
space complexity equals time complexity.

The worst case time and space complexity of BFS, for a search tree with
a given branching factor b and shallowest solution at depth d , are
therefore given by:

1 + b + b2 + b3 + . . . + bd + (bd+1
≠ b) .

It easily follows that the asymptotic complexity of BFS is O(bd+1), i.e., it
is exponential with respect to the depth of the shallowest solution.

In general, an exponential computational complexity denotes a very low
e�ciency.

= O(bd)



BFS: computational complexity

• As an example of what exponential complexity means, consider a search 
problem with the following settings

• Branching factor b = 10
• Time for generating one node: 10-6 s
• Storage required for a single node: 1 Kb

• A search to d=10 would take less than 3 hours with 10 TB of memory
• Memory is a bigger problem than time

• However, for d=14 would take 3.5 years to find the solution



Summarizing properties of BFS

• Complete
• A solution is always found if any

• Non-optimal
• It is not guaranteed that the solution with minimum path cost is found (if 

any) unless the path cost is a non-decreasing function of depth

• Exponential time and space complexity w.r.t. the depth of the 
shallowest solution



What about DFS?

• DFS effectiveness
• DFS can get stuck carrying on with very long paths

• Infinite paths possible

• DFS has limited memory requirements
• If all paths from a given node are all explored with no solutions found, the sub-tree 

rooted in that node is removed from memory
• Only a single path from the root to a leaf node needs to be stored in memory during 

the search



DFS: Computational complexity

• DFS complexity is evaluated by assuming
• All nodes have the same number of successors b (branching factor)

• All solutions have the same depth m
• m is also the maximum depth of the search tree, when loops are avoided (worst case)

• In the worst case, the goal state is in the last path explored 

• Time complexity
• All nodes up to length m are generated before the solution is found

• Space complexity
• Only a single path from the root to a leaf node needs to be stored



DFS: Computational complexity

• Time complexity exponential w.r.t. depth m

• Space complexity linear

85

Depth-first search: computational complexity

Under the above assumptions, the computational complexity of DFS as a
function of the solution depth m is given by:

Time complexity Space complexity
Depth N. of generated nodes N. of stored nodes
0 1 (root node) 1 (root node)
1 b b
2 b2 b
. . . . . . . . .
m bm b
Total: 1 + b + . . . + bm = O(bm) 1 + mb = O(m)

Time complexity is therefore exponential with respect to the solution
depth m, as that of BFS, but space complexity is linear.



Properties of DFS

• Complete
• Unless there are infinite paths

• Non-optimal
• A deeper, suboptimal solution can be found along a path that is explored 

before an optimal solution path at a smaller depth

• Exponential time complexity and linear space complexity



Other strategies

• Uniform-cost
• Expands the leaf node with the lowest path cost

• Depth-limited
• Depth-first search with a predefined depth limit (avoid infinite paths, but 

not complete)

• Iterative-deepening depth-first
• Repeated depth-limited search with depth limit 1, 2, 3, …, until a solution 

is found  (avoid infinite paths and complete)

• Bidirectional
• Simultaneously searching forward from the initial state and backwards 

from the goal sate, until the two searches meet



Uniform-cost Search

• When actions have different costs the node to expand is the one with minimal 
cost, where the cost of the path from the root to the current node is 
considered

• Expand the least-cost unexpanded node
• The frontier is ordered by path cost, the lowest first
• Equivalent to BFS if step costs are all equal

• Time and space complexity

• 𝑂(𝑏!"
!∗

# )
• 𝐶∗ optimal solution

• 𝜖 > 0 lower bound on cost action

• Complete

• Cost-optimal



Depth-limited Search
• The depth-limited search keeps DFS from wandering down an infinite path, 

setting a depth limit l
• It treats all nodes at depth l as if they had no further nodes to move on

• Sometimes a good depth limit can be chosen based on knowledge of the 
problem

• For example, on the map of Romania, there are 20 cities, so l=19 is a valid limit
• However, any city can be reached from any other city in at most 9 actions. This number, 

known as the diameter of the state-space graph, gives us a better depth limit

• For most problems, we will not know a good depth limit until we have solved 
the problem

• Time complexity is O(bl) 

• Space complexity is O(bl)



Iterative Deepening Search

• Iterative deepening search solves the problem of choosing a good value for l 
by trying all values: first 0, then 1, then 2, and so on

• until either a solution is found, or the depth-limited search returns the failure value 

• Iterative deepening combines many of the advantages of depth-first and 
breadth-first search

• Like DFS memory requirements are linear, i.e., O(bd) when there is a solution and O(bm) 
when there is no solution and finite state spaces

• Like BFS is optimal for problems with all equal-cost actions and complete on acyclic finite 
state space



Iterative Deepening Search

• Time Complexity
• O(bd) when there is a solution
• O(bm) when there is no solution

• In general, iterative deepening is the preferred uninformed search 
method when 
• the search state space is larger than can fit in memory and 
• the depth of the solution is unknown



Bidirectional Search

• An alternative approach called bidirectional search simultaneously searches 
forward from the initial state and backward from the goal state(s), hoping that 
the two searches will meet

• We need to track of two frontiers and two tables of explored states

• Reasoning backwards
• if state t is a successor of s in the forward direction, then we need to know that s 

is a successor of t in the backward direction
• A solution is when the two frontiers collide

• Time complexity
• O(bd/2)

• Space complexity
• O(bd/2)



Uninformed search algorithms

• Comparisons for tree-like search versions
• Don’t check for repeated states 



Effectiveness of uninformed search

• One may think that the high computational complexity of uninformed search 
strategies is an issue only for real-world problems, not for toy ones

• Consider again 8-puzzle, apparently a very simple toy problem: 

• How long does it take to solve it using, for instance, BFS?
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E�ectiveness of uninformed search: an example

One may think that the high computational complexity of
uninformed search strategies is an issue only for real-world
problems, not for toy ones.

Consider again 8-puzzle, apparently a very simple toy problem:
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.

How long does it take to solve it using, e.g., BFS?



Effectiveness of uninformed search

• 8-puzzle
• the state space contains 9! = 362.880 distinct states (only 9!/2 = 181.440 are reachable from any 

given initial state) 

• it can be shown that the average solution depth (over all possible pairs of initial and goal states) is 
about 22 

• the average branching factor b (over all possible states) is about 3 (each state 2 to 4 actions can be 
performed) 

• How many nodes does BFS generate and store, when the shallowest solution has 
depth d = 22 (i.e., in the average case)? 

• Remember that the worst-case time and space complexity of BFS is O(bd ), which in 
this case amounts to 322 ≈3×1010 ... 

• For instance, considering that representing a state requires at least ⌈log2 9!⌉ = 19 
bits, storing 322 states requires about 19 × 3 × 1010 bits, i.e., more than 200 GB... 



Suggested exercises

1.Implement the general tree-search algorithm, and the related data 
structures, in Python

2.Implement the additional, specific functions for breadth-first, depth-first, 
uniform-cost search, and bidirectional search

3.Implement the additional, specific data structures and functions for the 8-
puzzle problem, and the route-finding problem in the Romania map 

4.Run the above search algorithms on specific problem instances, and evaluate 
the number of generated and stored nodes 


