UNIVERSITA DEGLI STUDI DI NAPOLI

PARTHENOPE

Artificial Intelligence

Uniformed Search

LESSON 4

prof. Antonino Staiano

M.Sc. In “Machine Learning e Big Data" - University Parthenope of Naples

Search Strategies

* Search algorithms differ only in the criterion to select one of the partial
solutions to pursue at each step

current search tree:

Cand D Cagarad COradead rmien VD

which of the six partial solutions
should one choose?

* Two kinds of strategies exist, depending on the available information about
which choice is better than another
* No information: Uninformed search strategies must be used
« Some information: Informed search strategies can be used

Uninformed Search Strategies

* Rationale
* In absence of any information about the best partial solution,
systematically explore the state space
* Main strategies
* Breadth-first
* Depth-first
* Uniform-cost
* Depth-limited
* |terative-deepening depth first

Avoiding repeated states

* Search algorithms may waste time by expanding different nodes associated
with the same state

* Actions are reversible, allowing loops
e Arad -> Zerind -> Arad-> Zerind ...

* Different paths can lead to the same state, e.g., (redundant paths)
e Arad -> Sibiu, and Arad -> Zerind -> Oradea -> Sibiu oreen

* Cyclical paths exist (loopy path)
* Arad -> Zerind -> Oradea -> Sibiu -> Arad Arad
 Special case of a redundant path

118 Vaslui

Timisoara

Lugoj

Hirsova

Mehadia Urziceni

75 86

Drobeta

Bucharest

120

2iov: P, Eforie
Craiova Giurgiu

Avoiding repeated states

* Three approaches possible

* Remember all previously reached states

* Allows us to detect redundant paths

« Appropriate for state spaces with many redundant paths

* Itis the choice when the list of the reached states fits in memory
« Don't worry about the past

* For some problems, where two paths can't reach the same state

e.g., an assembly problem

« Compromise and check for cycles but not for redundant paths in general

Tree-like and Graph Search

* When looking for a path toward a goal state the search is
* A tree-like search, if we don't worry about possibly repeated states

* This could lead to a cycle or repeated paths toward a solution

* A graph search it we try to avoid repeated states

(4)
(B) (O
o ® ©O @

Measuring Search Strategies Performance

* A strategy is defined by picking the order of node expansion

* Strategies are evaluated along the following dimensions

* Effectiveness: how good is the solution found?
« Completeness: is the algorithm guaranteed to find a solution, when there is one?
« Optimality: when a solution is found, is its path cost minimal?

« Efficiency: what is the processing cost of finding a solution (computational
complexity)?
« Time complexity: how long does it take to find a solution?
* Space complexity: how much memory is needed?

« Time and space complexity are measured in terms of
* b —maximum branching factor of a node that needs to be considered

* d - depth of the least-cost solution
* m—maximum depth of the state space

 Often a trade-off between effectiveness and efficiency is required

Computational complexity of search algorithms

* Worst-case time complexity
* The highest number of nodes that are generated before a solution is
found (if any)
* Worst-case space complexity:

* The highest number of nodes that must be simultaneously stored in
memory

Evaluating BFS

* In terms of effectiveness, it can be easily shown that BFS is
« Complete: a solution is always found if one exists

* Non-optimal: it is not guaranteed that the solution with minimum path
cost is found (if any) unless the path cost is a non-decreasing function of
depth

* Instead, is cost-optimal for all problems where actions have the same cost

BFS: computational complexity

* In the specific case of BSF, it is not difficult to see that computational
complexity depends on two main factors

* The number of successors of each node of the search tree
* The depth d of the shallowest solution, which is the one found by BFS

* Since different nodes can have a different number of successors (see e.g., 8-

puzzle and route finding on maps), to simplity computations a constant
number of successors b, named branching factor, is considered

* For instance, for b=2, we have a binary tree

© ® ® ©

BFS: computational complexity

* Fixed b, the computational complexity can be evaluated as a function of d only

« Time complexity
* In the worst case, the goal state is in the last node to be expanded among all the ones at

depth d
* This means that all the other nodes at depth d are expanded before

* The number of generated nodes can be computed by evaluating the number of nodes
that are generated at each depth

Depth Number of generated nodes

0 1 (root node)
1 b

2 b

3 b3

d b?

Total: 1+b+b*+b°+...+b% = O(bd)

BFS: computational complexity

* Space complexity
« All generated nodes in memory until a solution is found

* It follows that the space complexity equals the time complexity

* The worst-case time and space complexity of BFS, given b and the shallowest
solution at depth d, are

1+ b+b2+bB3+...+b% =0(b9)

BFS: computational complexity

 As an example of what exponential complexity means, consider a search
problem with the following settings
* Branching factor b = 10
« Time for generating one node: 10¢ s
« Storage required for a single node: 1 Kb

* A search to d=10 would take less than 3 hours with 10 TB of memory

« Memory is a bigger problem than time

* However, for d=14 would take 3.5 years to find the solution

Summarizing properties of BFS

* Complete
* A solution is always found if any
* Non-optimal

* |t is not guaranteed that the solution with minimum path cost is found (if
any) unless the path cost is a non-decreasing function of depth

* Exponential time and space complexity w.r.t. the depth of the
shallowest solution

What about DFS?

e DFS effectiveness

* DFS can get stuck carrying on with very long paths
* Infinite paths possible

* DFS has limited memory requirements
* If all paths from a given node are all explored with no solutions found, the sub-tree
rooted in that node is removed from memory
* Only a single path from the root to a leaf node needs to be stored in memory during
the search

DFS: Computational complexity

* DFS complexity is evaluated by assuming
 All nodes have the same number of successors b (branching factor)

 All solutions have the same depth m
* m is also the maximum depth of the search tree, when loops are avoided (worst case)

* In the worst case, the goal state is in the last path explored

* Time complexity
 All nodes up to length m are generated before the solution is found

* Space complexity
* Only a single path from the root to a leaf node needs to be stored

DFS: Computational complexity

Time complexity Space complexity
Depth N. of generated nodes N. of stored nodes
0 1 (root node) 1 (root node)
1 b b
2 b? b
m b™ b

Total: 1+b+...+b"=0(b") 1+ mb=0O(m)

* Time complexity exponential w.r.t. depth m

* Space complexity linear

Properties of DFS

* Complete
* Unless there are infinite paths

* Non-optimal

* A deeper, suboptimal solution can be found along a path that is explored
before an optimal solution path at a smaller depth

* Exponential time complexity and linear space complexity

Other strategies

 Uniform-cost
* Expands the leaf node with the lowest path cost
* Depth-limited

* Depth-first search with a predefined depth limit (avoid infinite paths, but
not complete)

* [terative-deepening depth-first
* Repeated depth-limited search with depth limit 1, 2, 3, ..., until a solution
is found (avoid infinite paths and complete)

» Bidirectional

* Simultaneously searching forward from the initial state and backwards
from the goal sate, until the two searches meet

Uniform-cost Search

* When actions have different costs the node to expand is the one with minimal
cost, where the cost of the path from the root to the current node is
considered

* Expand the least-cost unexpanded node
« The frontier is ordered by path cost, the lowest first

* Equivalent to BFS if step costs are all equal
* Time and space complexity

Sibiu Fagaras

C*
. o(b“[?l)
* C”* optimal solution

Rimnicu Vilcea

* € > 0 lower bound on cost action

« Complete

Bucharest ° Cost—optlmal

Depth-limited Search

* The depth-limited search keeps DFS from wandering down an infinite path,
setting a depth limit |
* It treats all nodes at depth | as if they had no further nodes to move on

* Sometimes a good depth limit can be chosen based on knowledge of the

problem
* For example, on the map of Romania, there are 20 cities, so |=19 is a valid limit

« However, any city can be reached from any other city in at most 9 actions. This number,
known as the diameter of the state-space graph, gives us a better depth limit

* For most problems, we will not know a good depth limit until we have solved
the problem

 Time complexity is O(b)
* Space complexity is O(bl)

Iterative Deepening Search

* |terative deepening search solves the problem of choosing a good value for |
by trying all values: first 0, then 1, then 2, and so on

* until either a solution is found, or the depth-limited search returns the failure value

* |terative deepening combines many of the advantages of depth-first and
breadth-first search

* Like DFS memory requirements are linear, i.e., O(bd) when there is a solution and O(bm)
when there is no solution and finite state spaces

* Like BFS is optimal for problems with all equal-cost actions and complete on acyclic finite
state space

Iterative Deepening Search

* Time Complexity
* O(b9 when there is a solution
* O(b™) when there is no solution

* In general, iterative deepening is the preferred uninformed search
method when
* the search state space is larger than can fit in memory and
* the depth of the solution is unknown

Bidirectional Search

* An alternative approach called bidirectional search simultaneously searches
forward from the initial state and backward from the goal state(s), hoping that
the two searches will meet

* We need to track of two frontiers and two tables of explored states

* Reasoning backwards

* if state tis a successor of s in the forward direction, then we need to know that s
is a successor of t in the backward direction

A solution is when the two frontiers collide
* Time complexity

. Q(bd/Z)
* Space complexity

. Q(bd/Z)

Uninformed search algorithms

 Comparisons for tree-like search versions

* Don't check for repeated states

Criterion Breadth- Uniform- Depth- Depth- [terative Bidirectional
First Cost First Limited Deepening (if applicable)
Complete? Yes! Yes'? No No Yes! Yes'#
Optimal cost? Yes® Yes No No Yes® Yes’*
Time op?)y oy o™y o) o(bh?) O(b%/?)
Space o) o'ty obm) O(bl) O(bd) O(b%/?)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum
depth of the search tree; d is the depth of the shallowest solution, or is m when there is
no solution; 7 is the depth limit. Superscript caveats are as follows: ! complete if b is
finite, and the state space either has a solution or is finite. > complete if all action costs are
> € > 0; ® cost-optimal if action costs are all identical; * if both directions are breadth-first
or uniform-cost.

Effectiveness of uninformed search

* One may think that the high computational complexity of uninformed search
strategies is an issue only for real-world problems, not for toy ones

* Consider again 8-puzzle, apparently a very simple toy problem:

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8

Start State Goal State

* How long does it take to solve it using, for instance, BFS?

Effectiveness of uninformed search

* 8-puzzle

* the state space contains 9! = 362.880 distinct states (only 9!1/2 = 181.440 are reachable from any
given initial state)

* it can be shown that the average solution depth (over all possible pairs of initial and goal states) is
about 22

* the average branching factor b (over all possible states) is about 3 (each state 2 to 4 actions can be
performed)

* How many nodes does BFS generate and store, when the shallowest solution has
depth d = 22 (i.e., in the average case)?

 Remember that the worst-case time and space complexity of BFS is O(b?), which in
this case amounts to 322 =3x 1010 ...

* For instance, considering that representing a state requires at least [log, 9!] = 19
bits, storing 3% states requires about 19 x 3 x 109 bits, i.e., more than 200 GB...

Suggested exercises

T.Implement the general tree-search algorithm, and the related data
structures, in Python

2 Implement the additional, specific functions for breadth-first, depth-first,
uniform-cost search, and bidirectional search

3.Implement the additional, specific data structures and functions for the 8-
puzzle problem, and the route-finding problem in the Romania map

4.Run the above search algorithms on specific problem instances, and evaluate
the number of generated and stored nodes

