# BIG DATA STATISTICS FOR BUSINESS 

## AY 2023-24

## Giovanni De Luca

Parthenope University of Naples

1

## Example of multiple regression (two predictors)

- Suppose we want to study the consumption in mpg for some automobiles as a function of horsepower and displacement
- $Y=m p g$
- $\mathrm{X}_{1}$ = horsepower
- $\mathrm{X}_{2}=$ displacement


## Multiple linear regression (two predictors)

- Multiple linear regression with two predictors is given by

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+e
$$

- $Y=\mathrm{mpg}$ (response variable)
- $X_{1}=$ horsepower (1st predictor)
- $X_{2}=$ displacement (2nd predictor)
- $\beta_{0}, \beta_{1}$ and $\beta_{2}$ are parameters of the model
- $e=$ error
- $n$ statistical units

3

## Error

- $e$ is the error which prevents from defining a deterministic relationship between $Y$ and the predictors.
- The error $e$ is a continuous random variable with an average value equal to 0 .


## Estimate

- Parameters $\beta_{0}, \beta_{1}$ and $\beta_{2}$ are estimated using the Ordinary Least Squares (OLS) method.

5

## Predicted values

- Predicted values are given by

$$
\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}
$$

- This is not a regression line, but a regression plane!


## Parameters

- Parameter $b_{0}$ (also known as intercept) is the predicted value of $Y$ when $\mathrm{X}_{1}=\mathrm{X}_{2}=0$.
- Parameter $b_{1}$ is the predicted change of $Y$ when $X_{1}$ increases by one unit, if $X_{2}$ remains constant.
- If $b_{1}>0(<0)$, there is a positive (negative) association between Y and $\mathrm{X}_{1}$.
- Parameter $b_{2}$ is the predicted change of $Y$ when $X_{2}$ increases by one unit, if $X_{1}$ remains constant
- If $b_{2}>0(<0)$, there is a positive (negative) association between Y and $\mathrm{X}_{2}$.


## Inference on the parameters

- t-test
$\mathrm{H}_{0}: \beta_{1}=0$ (lack of association between Y and $\mathrm{X}_{1}$ )
$H_{1}: \beta_{1} \neq 0$ (positive or negative association between $Y$ and $X_{1}$ )
- $t$-test
$\mathrm{H}_{0}: \beta_{2}=0$ (lack of association between Y and $\mathrm{X}_{2}$ )
$\mathrm{H}_{1}: \beta_{2} \neq 0$ (positive or negative association between Y and $\mathrm{X}_{2}$ )


## Inference on the parameters

- F-test
$\mathrm{H}_{0}: \beta_{1}=\beta_{2}=0$ (No overall significance in regression)
$\mathrm{H}_{1}$ : Overall significance in regression

9

## Adjusted R-squared

- The goodness of fit is measured using $\bar{R}^{2}$ which is a measure of the fit but also takes into account the number of the parameters of the model (model complexity).


## Example

- Let's try to predict the variable mpg using horsepower and displacement.

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+e \\
\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2} \\
\widehat{m p g}=b_{0}+b_{1} \text { horsepower }+b_{2} \text { displacement }
\end{gathered}
$$

## Coefficients:

F-statistic: 384.9 on 2 and $389 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-16$

## Predicted values

$$
\begin{aligned}
& \text { horsepower }=100 \\
& \text { displacement }=150 \\
& \widehat{m p g}(100,150)=37.47-0.06 \cdot 100-0.04 \cdot 150=25.52
\end{aligned}
$$

## Multiple linear regression ( $p$ predictors)

- Multiple linear regression with $p$ predictors is given by

$$
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+e
$$

- $Y=$ response variable
- $X_{1}=1$ st predictor
- ...
- $X_{p}=p$-th predictor
- $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ are the parameters of the model


## Model selection

- To better predict the response variable according to the values of some predictors, we have to search for the best model, that is the best subset of predictors.
- Selection is usually based on the Adjusted $\bar{R}^{2}$ or the Akaike Information Criterion (AIC): we select the model with the highest $\bar{R}^{2}$ or the lowest AIC.
- The function step in $R$ uses the AIC.


## Model selection

- AIC uses the Sum of Squared Errors (SSE)

$$
A I C=n \log (S S E)+2(p+1)
$$

- $n$ is the number of observations
- $p$ is the number of predictors
- $S S E$ is given by

$$
S S E=\sum(Y-\hat{Y})^{2}
$$

