Course of
 "Automatic Control Systems"
 2023/24

Laplace domain analysis of LTI systems

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences
Università degli studi di Napoli Parthenope francesco.montefusco@uniparthenope.it

Team code: mfs 9 zfr

Evaluation of an LTI system response

A Let us consider a Linear Time Invariant (LTI) system in the state space form

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t), \quad x\left(t_{0}\right)=x_{0} \tag{1.a}\\
& y(t)=C x(t)+D u(t) \tag{1.b}
\end{align*}
$$

A The Evaluation of an LTI system response in a transformed domain is convenient only if

LTI systems in the Laplace domain

A Let us indicate with $X(s), U(s)$ and $Y(s)$ the Laplace transforms of the signals $x(t), u(t)$ and $y(t)$.

A Transforming both the sides of the equation (1), we have

$$
\begin{aligned}
& L(\dot{x}(t))=L(A x(t)+B u(t)) \\
& L(y(t))=L(C x(t)+D u(t))
\end{aligned}
$$

A Using the time domain derivation property of the Laplace transform, a linear system in the Laplace domain can be written has

$$
\begin{align*}
& X(s)=(s I-A)^{-1} x_{0}+(s I-A)^{-1} B U(s) \tag{2.1}\\
& Y(s)=C(s I-A)^{-1} x_{0}+C(s I-A)^{-1} B U(s)+D U(s) \tag{2.2}
\end{align*}
$$

A Note that in the Laplace domain the dependency of the state variables $X(s)$ from the input $U(s)$ is expressed by a matrix product instead of a convolution

LTI systems in the Laplace domain

A The matrix function $\Phi(s)=(s I-A)^{-1}$ is called Transition matrix whose dimension is given by the dimension of the A matrix.

A The matrix function $\mathrm{W}(s)=C(s I-A)^{-1} B+D$ is called Transfer function.

$$
\begin{align*}
& X(s)=\Phi(s) x_{0}+\Phi(s) B U(s) \tag{3.1}\\
& Y(s)=C \Phi(s) x_{0}+W(s) U(s) \tag{3.2}
\end{align*}
$$

A For Single Input Single Output (SISO) systems the transfer function W (s) is a scalar function;

A For Multiple Input Multiple Output (MIMO) systems the transfer function $\mathrm{W}(s)$ is a matrix whose element $\mathrm{W}(s)_{i j}$ will connect the output i with the input j.

Transfer function

A For SISO systems the scalar transfer function is given by the ratio of two polynomial functions

$$
W(s)=\frac{N(s)}{D(s)}=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+a_{0}}{b_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}
$$

where $m \leq n$.
A If $\boldsymbol{m}<\boldsymbol{n}$ the system is said strictly proper. It happens when the D matrix of the LTI system in the state space is zero.

A If $\boldsymbol{m}=\boldsymbol{n}$ the system is said proper. It happens when the D matrix of the LTI system in the state space is different from zero zero.

$$
\mathrm{W}(s)=C(s I-A)^{-1} B+D
$$

Transition matrix

A Given a transfer function

$$
W(s)=\frac{N(s)}{D(s)}=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+a_{0}}{b_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}
$$

A The roots of the $\mathrm{N}(\mathrm{s})$ are said zeros.
A The roots of the $\mathrm{D}(\mathrm{s})$ are said poles.
A The polynomial $\mathrm{D}(\mathrm{s})$ is defined as $D(s)=\operatorname{det}(s I-A)$, hence
$\notin D(s)$ coincides with the characteristic polynomial of the system
\& the poles coincide with the eigenvalues of the system except for possible pole-zero cancellation

Laplace antitransform

A For SISO systems the free evolution in the Laplace domain is given by the ratio of polynomial functions

$$
Y_{\text {free }}(s)=C \Phi(s) x_{0}
$$

A This is also true for the forced evolution in case we restrict our attention to the case of polynomial and sinusoidal inputs

$$
Y_{\text {forced }}(s)=W(s) U(s)
$$

A It is convenient to antitransform $Y(s)$ by reducing the ratio of high degree polynomial functions to the sum of selected signals transform such as

$$
\begin{gathered}
L\left(e^{\alpha t} \cos (\omega t) \cdot 1(t)\right)=\frac{s-\alpha}{(s-\alpha)^{2}+\omega^{2}} \quad L\left(e^{\alpha t} \operatorname{sen}(\omega t) \cdot 1(t)\right)=\frac{\omega}{(s-\alpha)^{2}+\omega^{2}} \\
L\left(e^{\alpha t} 1(t)\right)=\frac{1}{s-\alpha}
\end{gathered}
$$

Laplace antitransform

A Different methods can be used to reduce the ratio of high degree polynomial functions to the sum polynomial functions of degree one or two, such as the residual method (see the book for details).

Residual method for real and distinct eigenvalues
(see the book for the other cases)

$$
W(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \quad p_{i} \neq p_{j} \text { for } i \neq j
$$

A In case of real and distinct eigenvalues, $W(s)$ can be also written as

$$
W(s)=\sum_{i=1}^{n} \frac{A_{i}}{s-p_{i}}
$$

where $A_{k}=\lim _{s \rightarrow p_{k}}\left(s-p_{k}\right) W(s)$. Hence

$$
w(t)=\sum_{i=1}^{n} A_{i} e^{p_{i} t}
$$

Laplace antitransform: example 1

CASE 1: real and distinct eigenvalues

$$
Y_{\text {free }}(s)=C \Phi(s) x_{0}=\frac{s-10}{(s+2)(s+5)}
$$

A Appling the residual method we have

$$
Y_{\text {free }}(s)=\frac{A_{1}}{(s+2)}+\frac{A_{2}}{(s+5)}
$$

with

$$
\begin{aligned}
A_{1} & =\lim _{s \rightarrow-2}(s+2) Y_{\text {free }}(s)=\lim _{s \rightarrow-2} \frac{s-10}{s+5}=-4 \\
A_{2} & =\lim _{s \rightarrow-5}(s+5) Y_{\text {free }}(s)=\lim _{s \rightarrow-5} \frac{s-10}{s+2}=5
\end{aligned}
$$

Hence

$$
y_{f r e e}(t)=\left(-4 e^{-2 t}+5 e^{-5 t}\right) \cdot 1(t)
$$

Laplace antitransform: example 2

CASE 2: real multiple eigenvalues

$$
Y_{\text {forced }}(s)=W(s) U(s)=\frac{s+18}{(s+3)^{2}} U(s) \quad \text { with } u(t)=1(t)
$$

A This function can be written as the sum of three terms

$$
Y_{\text {forced }}(s)=\frac{s+18}{s(s+3)^{2}}=\frac{A_{1}}{s}+\frac{A_{2}}{(s+3)}+\frac{A_{3}}{(s+3)^{2}}
$$

A The residual method can be applied to evaluate A_{1} and A_{3}, while A_{2} can be evaluated by substitution
$A_{1}=\lim _{s \rightarrow 0} s Y_{\text {forced }}(s)=2 \quad A_{3}=\lim _{s \rightarrow-3}(s+3)^{2} Y_{\text {forced }}(s)=-5$
while $A_{2}=-2$. (By residual method for pole with multiplicity r, the l-th residual K_{l},
$\mathrm{l}=1, \ldots, \mathrm{r}$, by $K_{l}=\left.\frac{1}{(r-l)!} \frac{d^{r-l}}{d s^{r-l}}\left(s-p_{i}\right)^{r} Y(s)\right|_{s=p_{i}}$, then $\left.A_{2}=\left.\frac{d(s+3)^{2} Y_{\text {forced }}(s)}{d s}\right|_{s=-3}\right)$
Hence,

$$
y_{\text {forced }}(t)=\left(2-2 e^{-3 t}-5 t e^{-3 t}\right) \cdot 1(t)
$$

Laplace antitransform: example 3

CASE 3: complex conjugate eigenvalues

$$
Y_{\text {free }}(s)=C \Phi(s) x_{0}=\frac{100}{(s+1)\left(s^{2}+4 s+13\right)}
$$

A This function can be written as the sum of two terms

$$
Y_{\text {free }}(s)=\frac{A_{1}}{(s+1)}+\frac{A_{2} s+A_{3}}{\left(s^{2}+4 s+13\right)}
$$

A The residual method can be applied to evaluate A_{1}, while A_{2} and A_{3} can be evaluated by substitution. $A_{1}=10, A_{2}=-10, A_{3}=-30$.

A Hence, $\quad Y_{\text {free }}(s)=\frac{10}{(s+1)}-10 \frac{s+2}{(s+2)^{2}+9}-\frac{10}{3} \frac{3}{(s+2)^{2}+9} \quad$ and

$$
y_{\text {free }}(t)=\left(10 e^{-t}-10 e^{-2 t} \cos (3 t)-\frac{10}{3} e^{-2 t} \sin (3 t)\right) \cdot 1(t)
$$

Appendix 1

INVERSE OF A MATRIX $\quad N \times N$

Inverse of a matrix

A Given a quadratic and invertible matrix

$$
A=\left(\begin{array}{ccc}
x_{1,1} & \ldots & x_{1, j} \\
\vdots & \ddots & \vdots \\
x_{i, 1} & \ldots & x_{i, j}
\end{array}\right)
$$

its inverse is defined as

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{ccc}
\operatorname{cof}\left(A, x_{1,1}\right) & \ldots & \operatorname{cof}\left(A, x_{1, j}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{cof}\left(A, x_{i, 1}\right) & \ldots & \operatorname{cof}\left(A, x_{i, j}\right)
\end{array}\right)^{T}
$$

where the cofactor is

$$
\operatorname{cof}(A, i, j)=(-1)^{i+j} \operatorname{det}(\operatorname{minor}(A, i, j))
$$

and the minor (i, j) is the determinant of the matrix obtained excluding the row i and the column j.

Inverse of a 2×2 matrix

A Given a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

its inverse is

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Inverse of a 3×3 matrix

A Given a matrix

$$
A=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)
$$

its inverse is

$$
\frac{1}{\operatorname{det}(A)}\left(\begin{array}{lll}
+\left|\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right| & -\left|\begin{array}{ll}
A_{12} & A_{13} \\
A_{32} & A_{33}
\end{array}\right| & +\left|\begin{array}{ll}
A_{12} & A_{13} \\
A_{22} & A_{23}
\end{array}\right| \\
-\left|\begin{array}{ll}
A_{21} & A_{23} \\
A_{31} & A_{33}
\end{array}\right| & +\left|\begin{array}{ll}
A_{11} & A_{13} \\
A_{31} & A_{33}
\end{array}\right| & -\left|\begin{array}{ll}
A_{11} & A_{13} \\
A_{21} & A_{23}
\end{array}\right| \\
+\left|\begin{array}{ll}
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right| & -\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{31} & A_{32}
\end{array}\right| & +\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|
\end{array}\right)
$$

Appendix 2

EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors

A Given a matrix $A \in R^{n \times n}$, a scalar $\lambda \in C$ is said eigenvalue of the matrix A if there exists a vector $v \in C^{n}$, said eigenvector, such that

$$
A v=\lambda v
$$

A Taking into account account that eigenvalues and eigenvectors of a matrix verify the equation

$$
(A-\lambda I) v=0 .
$$

The eigenvalues can be found evaluating the roots of the characteristic polynomial $\boldsymbol{p}(\boldsymbol{\lambda})$ defined as

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

A The poles of $\boldsymbol{W}(\boldsymbol{s})$ coincide to the eigenvalues of the matrix A.

Examples

$$
\begin{array}{cc}
A=\left(\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right) & A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & -5 & 6 \\
7 & -8 & 9
\end{array}\right) \\
p(s)=s^{2}+3 s-10 & p(s)=s^{3}-5 s^{2}-22 s-24 \\
\text { Eigenvalues } & \text { Eigenvalues } \\
\lambda_{1}=2, \lambda_{2}=-5 & \lambda_{1}=8.09 \\
& \lambda_{2}=-1.54+j 0.765 \\
\lambda_{3}=-1.54-j 0.765
\end{array}
$$

