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Evaluation of an LTI system response

A Tet us consider a Linear Time Invariant (IL'TT) system in the state space form
x(t) = Ax(t) + Bu(t), x(ty) = xg (1.2)
y(t) = Cx(t) + Du(t) (1.b)

A The Evaluation of an LTT system response in a transformed domain is convenient
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LTI systems in the Laplace domain

A Tet us indicate with X(s),U(s) and Y(S) the Laplace transforms of the
signals x(t), u(t) and y(t).

A Transforming both the sides of the equation (1), we have
L(x(t)) = L(Ax(t) + Bu(t))
L(y(t)) = L(Cx(t) + Du(t))

A Using the time domain detivation property of the Laplace transform, a
linear system in the Laplace domain can be written has

X(s) = (sl —A) 1xy + (sI — A)~1BU(s) (2.1)
Y(s) =C(sl —A) txq + C(sI — A)~1BU(s) + DU(s) (2.2)

A Note that in the Laplace domain the dependency of the state variables
X (s) from the input U(S) is expressed by a matrix product instead of a
convolution
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LTI systems in the Laplace domain

A The matrix function ®(s) = (sI — A) ™ Lis called Transition matrix whose
dimension is given by the dimension of the A matrix.

A The matrix function W(s) = C(sI — A)™'B + D is called Transfer
function.

X(s) = &(s)xg + P(s)BU(s) (3.1)

Y(s) = CO(s)xg + W(s)U(s) (3.2)

A For Single Input Single Output (SISO) systems the transfer function W(s)

is a scalar function;

A For Multiple Input Multiple Output (MIMO) systems the transfer
function W(s) is a matrix whose element W(s); j will connect the output i

with the input j.
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Transfer function

A For SISO systems the scalar transfer function is given by the ratio of two
polynomial functions

N(s) apms™+an,_1s™1+-+a;s+ag
D(s) b,s"+a,_4S"14+--+b;s+bg

W(s) =

where m < n.

A If m < n the system is said strictly proper. 1t happens when the D matrix
of the L'TT system in the state space is zero.

A If m = n the system is said proper. 1t happens when the D matrix of the
L'TT system 1in the state space 1s different from zero zero.

W(s)=C(sI—A)™'B+D
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Transition matrix

A Given a transfer function

N(G) aps™+a,_1s™t+-+a;s+ag
D(s) b,s"+a,_4S"14+--+b;s+bg

W(s) =

A The roots of the N(S) are said geros.
A The roots of the D(S) are said poles.

A The polynomial D(s) is defined as D(s) = det(sI — A) , hence
<+ D(s) coincides with the characteristic polynomial of the system

<+ the poles coincide with the eigenvalues of the system except for
possible pole-zero cancellation
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Laplace antitransform

A For SISO systems the free evolution in the Laplace domain is given by the
ratio of polynomial functions

Yiree (s) = CP(s)x

A This is also true for the forced evolution in case we restrict our attention to
the case of polynomial and sinusoidal inputs

onrced(s) =W(s)U(s)

A Tt is convenient to antitransform Y (s) by reducing the ratio of high degree
polynomial functions to the sum of selected signals transform such as

L(e"” cos(a)t) - l(t)) = (s —Sa_)2a+ e L(e‘”sen (a)t) - l(t)) = (S B a)2 g
ot 1
L(e”1(1)) = E
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Laplace antitransform

A Different methods can be used to reduce the ratio of high degree polynomial
functions to the sum polynomial functions of degree one or two, such as zke
residual method (see the book for details).

Residual method for veal and distinct eigenvalues

(see the book for the other cases)

_N(s) _  N(s) _ _ .
W(s) = D) — T 5-pp) p; = pjfor [ # ]

A In case of real and distinct eigenvalues, W (s) can be also written as
noo4.
i=1S — Di

where A = lim (s — pp)W(s). Hence
S—Pk

n
W(t) = . 1Ai epit
=
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Laplace antitransform: example 1

CASE 1: real and distinct eigenvalues
s —10
(s+2)(s+5)

Yeree (s) = CP(s)xy =

A Appling the residual method we have
Aq Az

Y, = +
free (5) 5+2) (s+5)
with
A, = li +2)Y, — im0y
1 _5—1>I—nz (s )free(S) —S_l)r_nz st 5
_ - s—10
A2=SEI_115 (S+5)Yfree(s)=sl_1)r_ns s+ 2 =9
Hence

Viree(t) = (—4e™ %t 4+ 5e7°) - 1(1)
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Laplace antitransform: example 2

CASE 2: real multiple eigenvalues

S+18

Yeorcea () = W(s)U(s) = U(s) with u(t) = 1(t)

(s+3)2

A 'This function can be written as the sum of three terms
s+ 18 _ Al + AZ + A3
s(s+3)2 s (s+3) (s+3)2

onrced (s) =

A The residual method can be applied to evaluate A and Az, while A, can be
evaluated by substitution

Ay = sh—>nol sYrorcea(s) = 2 Az = lir% (s +3)* Yeorcea(s) = —5

S——

while 4, = —2. (By residual method for pole with multiplicity 7, the I-th residual K,

_ 1 art d(s+3)%Y forcea(s)
1—1,...,1', byKl — (T'—l)! dsr_l (S - pi)TY(S)|S=pil theﬁ AZ — dSO = |S=—3>

Hence, Vforcea(t) = (2 — 273t — 5te3) - 1(¢t)
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Laplace antitransform: example 3

CASE 3: complex conjugate eigenvalues

100
(s + 1)(s? + 4s + 13)

Yeree (s) = CP(s)xy =

A 'This function can be written as the sum of two terms
Aq Ars + Aj

Y —
ree () (s+1) * (s2 + 4s + 13)

A The residual method can be applied to evaluate A1, while A, and A3 can be
evaluated by substitution. A1 = 10, 4, = —10, Az = —30.

10 S+2 10 3

(s+1) (s+2)%2+49 3 (s+2)%2+49

and

A Hence, Yrree (s) =

10
Viree(t) = (IOe‘t — 10e~%t cos(3t) — ?e‘Ztsin(Bt)) - 1(t)
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Appendix 1

INVERSE OF A MATRIX NXN
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Inverse of a matrix

its inverse is defined as

g cof(A,r11) ... cof(A ;) g

/ -1 —
A det(A)

cof(A,r;1) ... cof(A, x;;)

where the cofactor is
cof(4,i, j)=(~1)"/ det(minor(A4,i,))

and the minor (i, J) is the determinant of the matrix obtained excluding the
row [ and the column j.
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A Given a matrix

1ts inverse 1S
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1ts inverse 1S

det(A)

An A A
Ag]_ A')') A23
An Az A
A2 A
Azy Asg
n An A
Az Asg
A A
Az Ag
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Appendix 2

EIGENVALUES AND EIGENVECTORS
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Eigenvalues and eigenvectors

Rnxn

A Given a matrix A € ,ascalar A € C is said ezgenvalue of the matrix A

if there exists a vector v € C™, said ezgenvector, such that

Av = Av

A Taking into account account that eigenvalues and eigenvectors of a matrix
verify the equation

(A—ADv = 0.

The eigenvalues can be found evaluating the roots of the characteristic

polynomial p(A) defined as
p(1) = det(A — Al).

A 'The poles of W(s) coincide to the eigenvalues of the matrix A.
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19 (1 2 3
A:( j A=|4 -5 6
3 —4 =14 -

7 -8 9,
2
p(s)=s"+3s-10 . ,
p(s)=s"—5s" —22s-24
Eigenvalues Eigenvalues
A =2,4=-5 4, =8.09

A, =-154 + j0.765
A, =-1.54- j0.765
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