BIG DATA STATISTICS FOR BUSINESS

AY 2023-24

Giovanni De Luca

Parthenope University of Naples

1

Supervised learning

- Many problems of statistical learning require a supervised learning technique.
- Supervised learning: for each statistical unit we know the response variable, Y and p predictors $X_{1}, X_{2}, \ldots, X_{p}$.
- The interest lies in the analysis of the relationship between the predictors and the response variable with the aim of predicting the latter for new observations.

Unsupervised learning

- Unsupervised learning: for each statistical unit we have p variables, but no response variable is observed.
- In this case, the goal is the study of the relationship between the variables or between the observations, or grouping the observations into distinct groups.

Supervised learning techniques

- Classical linear regression, polynomial regression, logistic regression.

Linear regression

- Linear regression is a useful and widely used statistical learning method.
- Linear regression analyzes the response of a numerical variable (response variable or dependent variable) to p numerical variables (predictors or explanatory variables).
- Simple linear regression: 1 predictor.
- Multiple linear regression: p predictors.

5

Simple linear regression

- In simple linear regression, we denote
$\mathrm{Y}=$ response variable
X = predictor

Example of simple linear regression

- Suppose we want to study the consumption in mpg for some automobiles as a function of horsepower.
- $Y=m p g$
- X = horsepower

Simple linear regression

- Simple linear regression is given by

$$
Y=\beta_{0}+\beta_{1} X+e
$$

- $Y=\mathrm{mpg}$ (response variable)
- $X=$ horsepower
- β_{0} and β_{1} are parameters of the model
- $e=$ error
- n statistical units

Error

- e is the error which prevents from defining a deterministic relationship between Y and the predictor.
- Deterministic relationship between Y and X : only one value of Y is associated to a specific value of X.
- The error e is a continuous random variable with null average.

9

Estimate

- Parameters β_{0} and β_{1} are estimated using the Ordinary Least Squares (OLS) method.
- OLS method identifies the values of β_{0} and β_{1} which minimize the sum of the squares of the differences between observed values Y and the predicted values \hat{Y},

$$
\min \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
$$

- Predicted values are $\hat{Y}=b_{0}+b_{1} X$
- b_{0} and b_{1} are the estimates of the parameters β_{0} and β_{1}
- $\hat{Y}=b_{0}+b_{1} X$ is equation of the regression line.

Parameters

- Parameter b_{0} (also known as intercept) is the predicted value of Y when $\mathrm{X}=0$.
- Parameter b_{1} is the predicted change of Y when X increases by one unit.
- If $b_{1}>0(<0)$, there is a positive (negative) association between \hat{Y} and X .

Example

$$
\hat{Y}=39.9-0.16 X
$$

$\widehat{m p g}=39.9-0.16$ horsepower

Inference on the parameter

- t-test
$\mathrm{H}_{0}: \beta_{1}=0$ (lack of association between Y and X)
$H_{1}: \beta_{1} \neq 0$ (positive or negative association between Y and X)
- Look at the p-value.
- We reject the H_{0} if the p-value of the test is less than 0.05 ,

$$
p \text {-value }<0.05
$$

R-squared

- $\quad R^{2}$ is a statistical measure of fit (how close the predicted values of the model are to the observed data).
- $0 \leq R^{2} \leq 1$
- \quad Simple rule: the higher R^{2}, the better the model fits the data.
- After multiplying by 100 , it provides the percentage of the response variable variation that is explained by the linear model (between 0 and 100\%).
- It is also known as coefficient of determination.

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\mid \mathrm{t\mid})$			
(Intercept)	39.935861	0.717499	55.66	$<2 \mathrm{e}-16$
horsepower	-0.157845	0.006446	-24.49	$<2 \mathrm{e}-16$
how				

Signif. codes: 0 ‘***' 0.001 ‘\%*' 0.01 ‘*’ 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

Prediction

- The prediction for new data is easily obtained applying the regression equation.
- For the value x, the prediction is

$$
\hat{Y}(x)=b_{0}+b_{1} x
$$

Predicted values

- horsepower $=70$
- $\widehat{m p g}(70)=39.9-0.16 \cdot 70=28.7$

Predicted values

- horsepower $=100$
- $\widehat{m p g}(100)=39.9-0.16 \cdot 100=23.9$

Polynomial regression

- Linear regression involves a linear relationship between the response variable and the predictors.
- Sometimes, the relationship is not linear.
- Polynomial regression is a simple strategy to extend a linear model to capture a non-linear relationship.
- In practice, polynomial regression adds further terms given by some power of the original predictors.
- Non-linear relationship: relationship not adequately represented by a straight line.

23

Polynomial regression (order 2)

- Polynomial regression of order 2 is given by

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+e \\
\hat{Y}=b_{0}+b_{1} X+b_{2} X^{2}
\end{gathered}
$$

$$
\widehat{m p g}=b_{0}+b_{1} \text { horsepower }+b_{2} \text { horsepower }{ }^{2}
$$

Polynomial regression (order 3)

- Polynomial regression of order 3 is given by

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+e \\
\hat{Y}=b_{0}+b_{1} X+b_{2} X^{2}+b_{3} X^{3}
\end{gathered}
$$

$\widehat{m p g}=b_{0}+b_{1}$ horsepower $+b_{2}$ horsepower ${ }^{2}+b_{3}$ horsepower 3

Polynomial regression (order d)

- In general, polynomial regression of order d is given by

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\cdots+\beta_{d} X^{d}+e \\
\hat{Y}=b_{0}+b_{1} X_{i}+b_{2} X^{2}+\cdots+b_{d} X^{d}
\end{gathered}
$$

- d is usually not larger than 3 .

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	56.9000997	1.8004268	31.60	$<2 e-16$
poly (horsepower, 2, raw = T)1	-0.4661896	0.0311246	-14.98	$<2 \mathrm{e}-16$
poly (horsepower, 2, raw = T)2	0.0012305	0.0001221	10.08	$<2 \mathrm{e}-16$

Signif. codes: 0 ‘***' 0.001 ‘**’ 0.01 ‘*, 0.05 '.' 0.1 ', 1
Residual standard error: 4.374 on 389 degrees of freedom Multiple R-squared: 0.6876, Adjusted R-squared: 0.686 F-statistic: 428 on 2 and 389 DF, p-value: $<2.2 e-16$

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+e \\
\widehat{Y}=b_{0}+b_{1} X+b_{2} X^{2}+b_{3} X^{3}
\end{gathered}
$$

$$
\widehat{m p g}=b_{0}+b_{1} \text { horsepower }+b_{2} \text { horsepower }^{2}+b_{3} \text { horsepower }^{3}
$$


```
Coefficients:
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
(Intercept) \(\quad 6.068 \mathrm{e}+01 \quad 4.563 \mathrm{e}+0013.298<2 \mathrm{e}-16\) ***
poly(horsepower, 3, raw = T) 1 -5.689e-01 \(1.179 \mathrm{e}-01 \quad-4.8242 .03 \mathrm{e}-06\) ***
poly (horsepower, 3, raw \(=T\) )2 \(2.079 \mathrm{e}-03 \quad 9.479 \mathrm{e}-04 \quad 2.193 \quad 0.0289\) *
poly(horsepower, 3, raw \(=\) T) 3 -2.147e-06 \(2.378 \mathrm{e}-06\)-0.903 0.3673
---
```



```
Residual standard error: 4.375 on 388 degrees of freedom
Multiple R-squared: 0.6882, Adjusted R-squared: 0.6858
F-statistic: 285.5 on 3 and \(388 \mathrm{DF}, \mathrm{p}\)-value: \(<2.2 \mathrm{e}-16\)
```


Order of the polynomial

- The selection of the order of the polynomial is usually based on Adjusted $R^{2}\left(\bar{R}^{2}\right)$.
- $\quad \bar{R}^{2}$ is a measure of the fit that replace R^{2} (which always increases with the addition of further predictors).
- \bar{R}^{2} takes into account the fit but also the number of the parameters of the model (model complexity).
- \bar{R}^{2} may decrease upon adding a new predictor if this is poorly relevant (a negligible increase of R^{2}).
- For the selection of the order of the polynomial, we select the model with the highest \bar{R}^{2}.

Model selection

- The formulation uses the Sum of Squared Errors (SSE)

$$
\bar{R}^{2}=1-\frac{\operatorname{SSE}(n-1)}{\operatorname{SST}(n-d-1)}
$$

- n is the number of observations
- d is the order of the polynomial
- $S S E$ is given by

$$
S S E=\sum(Y-\hat{Y})^{2}
$$

Improvement of the predictions

- The choice of a better model involves an improvement of the predictions.

Improvement in predictions

- horsepower $=50$
- $\widehat{m p g}(50)=39.9-0.16 \cdot 50=32.04$
- $\widehat{m p g}(50)=56.9-0.466 \cdot 50+0.001 \cdot 50^{2}=36.67$

Improvement in predictions

- horsepower $=100$
- $\widehat{m p g}(100)=39.9-0.16 \cdot 100=24.15$
- $\widehat{m p g}(100)=56.9-0.466 \cdot 100+0.001 \cdot 100^{2}=22.58$

Improvement in predictions

- horsepower $=200$
- $\widehat{m p g}(200)=39.9-0.16 \cdot 200=8.37$
- $\overline{m p g}(200)=56.9-0.466 \cdot 200+0.001 \cdot 200^{2}=12.88$

