

BIG DATA STATISTICS FOR BUSINESS

AY 2023-24

Giovanni De Luca

Parthenope University of Naples

1

Supervised learning

- Many problems of statistical learning require a supervised learning technique.
- Supervised learning: for each statistical unit we know the response variable, Y and p predictors $X_1, X_2, ..., X_p$.
- The interest lies in the analysis of the relationship between the predictors and the response variable with the aim of predicting the latter for new observations.

Unsupervised learning

- Unsupervised learning: for each statistical unit we have *p* variables, but no response variable is observed.
- In this case, the goal is the study of the relationship between the variables or between the observations, or grouping the observations into distinct groups.

3

3

Supervised learning techniques

• Classical linear regression, polynomial regression, logistic regression.

4

Linear regression

- Linear regression is a useful and widely used statistical learning method.
- Linear regression analyzes the response of a numerical variable (response <u>variable</u> or dependent variable) to p numerical variables (<u>predictors</u> or explanatory variables).
- Simple linear regression: 1 predictor.
- Multiple linear regression: *p* predictors.

5

5

Simple linear regression

• In simple linear regression, we denote

Y = response variable

X = predictor

6

Example of simple linear regression

- Suppose we want to study the consumption in mpg for some automobiles as a function of horsepower.
- Y = mpg
- X = horsepower

7

7

Simple linear regression

• Simple linear regression is given by

$$Y = \beta_0 + \beta_1 X + e$$

- *Y* = mpg (response variable)
- *X* = horsepower
- β_0 and β_1 are parameters of the model
- *e* = error
- *n* statistical units

Error

- *e* is the error which prevents from defining a deterministic relationship between *Y* and the predictor.
- Deterministic relationship between *Y* and *X*: only one value of *Y* is associated to a specific value of *X*.
- The error *e* is a continuous random variable with null average.

9

9

Estimate

- Parameters β_0 and β_1 are estimated using the Ordinary Least Squares (OLS) method.
- OLS method identifies the values of β_0 and β_1 which minimize the sum of the squares of the differences between observed values Y and the predicted values \hat{Y} ,

$$min\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Predicted values are $\hat{Y} = b_0 + b_1 X$
- b_0 and b_1 are the estimates of the parameters eta_0 and eta_1
- $\hat{Y} = b_0 + b_1 X$ is equation of the regression line.

Parameters

- Parameter b_0 (also known as intercept) is the predicted value of Y when X = 0.
- Parameter b_1 is the predicted change of Y when X increases by one unit.
- If $b_1 > 0$ (< 0), there is a positive (negative) association between \hat{Y} and X.

11

11

Inference on the parameter

t-test

 $H_0: \beta_1 = 0$ (lack of association between Y and X) $H_1: \beta_1 \neq 0$ (positive or negative association between Y and X)

- Look at the *p*-value.
- We reject the H_0 if the p-value of the test is less than 0.05,

p-value < 0.05

15

15

R-squared

- R^2 is a statistical measure of fit (how close the predicted values of the model are to the observed data).
- $0 \le R^2 \le 1$
- Simple rule: the higher R^2 , the better the model fits the data.
- After multiplying by 100, it provides the percentage of the <u>response</u> variable variation that is explained by the linear model (between 0 and 100%).
- It is also known as coefficient of determination.

17

17

Prediction

- The prediction for new data is easily obtained applying the regression equation.
- For the value x, the prediction is

$$\widehat{Y}(x) = b_0 + b_1 x$$

19

19

Predicted values

- horsepower = 70
- $\widehat{mpg}(70) = 39.9 0.16 \cdot 70 = 28.7$

20

- horsepower = 100
- $\widehat{mpg}(100) = 39.9 0.16 \cdot 100 = 23.9$

21

Polynomial regression

- Linear regression involves a linear relationship between the response variable and the predictors.
- Sometimes, the relationship is not linear.
- Polynomial regression is a simple strategy to extend a linear model to capture a non-linear relationship.
- In practice, polynomial regression adds further terms given by some power of the original predictors.
- Non-linear relationship: relationship not adequately represented by a straight line.

22

Polynomial regression (order 2)

Polynomial regression of order 2 is given by

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + e$$

$$\widehat{Y} = b_0 + b_1 X + b_2 X^2$$

 $\widehat{mpg} = b_0 + b_1 horsepower + b_2 horsepower^2$

25

25

Polynomial regression (order 3)

• Polynomial regression of order 3 is given by

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + e$$

$$\hat{Y} = b_0 + b_1 X + b_2 X^2 + b_3 X^3$$

 $\widehat{mpg} = b_0 + b_1 horsepower + b_2 horsepower^2 + b_3 horsepower^3$

26

Polynomial regression (order d)

• In general, polynomial regression of order d is given by

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_d X^d + e$$

$$\hat{Y} = b_0 + b_1 X_i + b_2 X^2 + \dots + b_d X^d$$

• *d* is usually not larger than 3.

27

27

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + e$$
$$\hat{Y} = b_0 + b_1 X + b_2 X^2$$

 $\widehat{mpg} = b_0 + b_1 horsepower + b_2 \ horsepower^2$

28

Order of the polynomial

- The selection of the order of the polynomial is usually based on Adjusted R^2 (\bar{R}^2).
- \bar{R}^2 is a measure of the fit that replace R^2 (which always increases with the addition of further predictors).
- \bar{R}^2 takes into account the fit but also the number of the parameters of the model (model complexity).
- \bar{R}^2 may decrease upon adding a new predictor if this is poorly relevant (a negligible increase of R^2).
- For the selection of the order of the polynomial, we select the model with the highest \bar{R}^2 .

Model selection

• The formulation uses the Sum of Squared Errors (SSE)

$$\bar{R}^2 = 1 - \frac{SSE(n-1)}{SST(n-d-1)}$$

- *n* is the number of observations
- ullet d is the order of the polynomial
- SSE is given by

$$SSE = \sum (Y - \hat{Y})^2$$

33

33

Improvement of the predictions

• The choice of a better model involves an improvement of the predictions.

Improvement in predictions

- horsepower = 50
- $\widehat{mpg}(50) = 39.9 0.16 \cdot 50 = 32.04$
- $\widehat{mpg}(50) = 56.9 0.466 \cdot 50 + 0.001 \cdot 50^2 = 36.67$

35

35

Improvement in predictions

- horsepower = 100
- $\widehat{mpg}(100) = 39.9 0.16 \cdot 100 = 24.15$
- $\widehat{mpg}(100) = 56.9 0.466 \cdot 100 + 0.001 \cdot 100^2 = 22.58$

36

Improvement in predictions

- horsepower = 200
- $\widehat{mpg}(200) = 39.9 0.16 \cdot 200 = 8.37$
- $\widehat{mpg}(200) = 56.9 0.466 \cdot 200 + 0.001 \cdot 200^2 = 12.88$

37