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Supervised learning

Many problems of statistical learning require a supervised
learning technique.

Supervised learning: for each statistical unit we know the
response variable, Y and p predictors X1, X5, ...,Xp.

The interest lies in the analysis of the relationship
between the predictors and the response variable with
the aim of predicting the latter for new observations.




Unsupervised learning

e Unsupervised learning: for each statistical unit we have p
variables, but no response variable is observed.

e Inthis case, the goal is the study of the relationship
between the variables or between the observations, or
grouping the observations into distinct groups.

Supervised learning techniques

e Classical linear regression, polynomial regression, logistic
regression.




Linear regression

e Linear regression is a useful and widely used statistical
learning method.

e Linear regression analyzes the response of a numerical
variable (response variable or dependent variable) to p
numerical variables (predictors or explanatory variables).

e Simple linear regression: 1 predictor.

e Multiple linear regression: p predictors.

Simple linear regression
e Insimple linear regression, we denote

Y = response variable

X = predictor




Example of simple linear regression

Suppose we want to study the consumption in mpg for
some automobiles as a function of horsepower.

Y =mpg

X = horsepower

Simple linear regression

Simple linear regression is given by

Y=,[)’0+[)’1X+e

Y = mpg (response variable)

X = horsepower

Bo and f; are parameters of the model
e = error

n statistical units




Error

e ¢ is the error which prevents from defining a deterministic
relationship between Y and the predictor.

e Deterministic relationship between Y and X: only one value of Y
is associated to a specific value of X.

e The error e is a continuous random variable with null average.

Estimate

e Parameters B, and [; are estimated using the Ordinary Least
Squares (OLS) method.

e OLS method identifies the values of S, and f; which
minimize the sum of the squares of the differences between

observed values Y and the predicted values Y,
n

min Y (%, = 7,)’
i=1
* Predicted valuesare ¥ = by + b, X
e by and by are the estimates of the parameters 5, and ;
Y = by + by X is equation of the regression line.
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Parameters

e Parameter by (also known as intercept) is the predicted value

of Y when X =0.

e Parameter b4 is the predicted change of Y when X increases by

one unit.

e If b; >0(<0), there is a positive (negative) association between

Y and X.
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Example
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mpg = by + byhorsepower 13
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Example

mpg

horsepower

~

Y =399-016X

mpg = 39.9 — 0.16 horsepower
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Inference on the parameter

= t-test
Ho : B, = 0 (lack of association between Y and X)
H; : B, # O (positive or negative association between Y and X)

= Look at the p-value.
= We reject the H, if the p-value of the test is less than 0.05,

p-value < 0.05
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.935861 0.717499 E5.66 <2e-16 *
horsepower -0.157845 0.006446 -24.49 <2e-16 *
Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.0l ‘*’ 0.05 “.” 0.1 * ' 1
Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16 16
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R-squared

R? is a statistical measure of fit (how close the predicted values
of the model are to the observed data).

0<R?’<1
Simple rule: the higher R?, the better the model fits the data.

After multiplying by 100, it provides the percentage of
the response variable variation that is explained by the linear
model (between 0 and 100%).

Itis also known as coefficient of determination.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.935861 0.717499 E5.66 <2e=16 **%%
horsepower -0.157845 0.006446 -24.49 <2e-16 **=
Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.0l ‘*’ 0.05 “.” 0.1 * ' 1
Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16 18

18



https://statisticsbyjim.com/glossary/response-variables/
https://statisticsbyjim.com/glossary/regression-coefficient/

Prediction

e  The prediction for new data is easily obtained applying the
regression equation.
e  For the value x, the prediction is

Y(x) = by + byx
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Predicted values
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e mpg(70) =39.9—-0.16 - 70 = 28.7
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Predicted values

mpg

50 100 150 200

horsepower

* horsepower = 100

 mpg(100) = 39.9 — 0.16- 100 = 23.9
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Polynomial regression
e Linear regression involves a linear relationship between
the response variable and the predictors.
e Sometimes, the relationship is not linear.
e Polynomial regression is a simple strategy to extend a
linear model to capture a non-linear relationship.
e In practice, polynomial regression adds further terms given
by some power of the original predictors.
e Non-linear relationship: relationship not adequately
represented by a straight line.
22
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Polynomial regression (order 2)

e Polynomial regression of order 2 is given by
Y=,BO+,31X+,32X2+6
? = bo +b1X+ b2X2

mpg = by + b;horsepower + b,horsepower?
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Polynomial regression (order 3)

Polynomial regression of order 3 is given by
Y =80+ X+ BX?+BsX3+e
Y = bg+ b X + byX? + b3 X3

mpg = by + byhorsepower + b,horsepower? + bshorsepower?
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Polynomial regression (order d)

e In general, polynomial regression of order d is given by
Y=ﬁ0+ﬁ1X+ﬁ2X2 ++ﬁdXd+e

Y = by + by X; + b, X% + -+ by X¢

e dis usually not larger than 3.
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mpg = by + byhorsepower + b, horsepower? 28
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Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 56.9000997 1.8004268 31.60 <2e-16
polyChorsepower, 2, raw T)1 -0.4661896 (0.0311246 -14.98 <2e-16
poly(horsepower, 2, raw = T)2 0.0012305 0.0001221 10.08 <2e-16

Signif. codes: 0 ‘#%%’

o

.001 “*=’ 0.01 “*’ 0.05 “.” 0.1 * " 1

Residual standard error: 4.374 on 389 degrees of freedom
Multiple R-squared: 0.6876, Adjusted R-squared: 0.686
F-statistic: 428 on 2 and 389 DF, p-value: < 2.2e-16

29

(=
=
o
o
E 8 -
[
(3]
4*%? 80 o
o - : J%mb °©
| | | I
50 100 150 200

horsepower
Y=ﬁ0+ﬁ1X+,B2X2+ﬁ3X3+e
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mpg = by + byhorsepower + b, horsepower? + b horsepower3
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Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 6.068e+01 4.563e+00 13.298 < 2e-16
poly(horsepower, 3, raw T)1 -5.689e-01 1.179e-01 -4.824 2.03e-06 °
polyChorsepower, 3, raw T)2 2.079e-03 9.479e-04 2.193 0.0289 *
poly(horsepower, 3, raw T)3 -2.147e-06 2.378e-06 -0.903 0.3673

Signif. codes: 0

o

.001 *=’ 0.01 ‘*’ 0.05 ‘." 0.1 ¢ ' 1

Residual standard error: 4.375 on 388 degrees of freedom
Multiple R-squared: 0.6882, Adjusted R-squared: 0.6858
F-statistic: 285.5 on 3 and 388 DF, p-value: < 2.2e-16
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Order of the polynomial

e The selection of the ord_er of the polynomial is usually
based on Adjusted R? (R?).

e RZ?is a measure of the fit that replace R? (which always
increases with the addition of further predictors).

e R?takes into account the fit but also the number of the
parameters of the model (model complexity).

e R? may decrease upon adding a new predictor if this is
poorly relevant (a negligible increase of R?).

For the selection of the orde_r of the polynomial, we select
the model with the highest R?.
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Model selection

The formulation uses the Sum of Squared Errors (SSE)

SSE(n — 1)

.
7 SST(n—d-—1)

n is the number of observations
d is the order of the polynomial
SSE is given by

SSE = Z(Y _ 72
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Improvement of the predictions
e The choice of a better model involves an improvement of
the predictions.
34
34
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Auto$mpg

Improvement in predictions

Auto$mpg
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50 100

AutoShorsepower AutoShorsepower

horsepower = 50

mpg(50) = 39.9 — 0.16 - 50 = 32.04

mpg (50) = 56.9 — 0.466 - 50 + 0.001 - 502 = 36.67
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Auto$mpg

Improvement in predictions

Auto$mpg
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Auto$Shorsepower AutoShorsepower
horsepower = 100
mpg(100) = 39.9 — 0.16 - 100 = 24.15
mpg(100) = 56.9 — 0.466 - 100 + 0.001 - 1002 = 22.58
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Auto$mpg

Improvement in predictions

Auto$mpg
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Auto$Shorsepower AutoShorsepower
horsepower = 200
mpg(200) = 39.9 — 0.16 - 200 = 8.37

mpg(200) = 56.9 — 0.466 - 200 + 0.001 - 200% = 12.88
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