

Course of "Industrial Automation" 2023/24

Introduction

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli studi di Napoli Parthenope francesco.montefusco@uniparthenope.it

Team code: vgxlryz

Course Administration

E-mail: francesco.montefusco@uniparthenope.it

▲ Books

- Introduction to Dynamic Systems: Theory, Models, and Applications, D. G. Luenberger. John Wiley & Sons.
- Fondamenti di Controlli Automatici, 4th Ed, P. Bolzern, R. Scattolini, N. Schiavoni. McGraw-Hill (Italian).
- ✤ Modern Control Engineering, 3rd Edition, K. Ogata, Prentice Hall, 2004.
- Discrete-Time Control Systems, 2nd Edition, K. Ogata, Prentice Hall, 1995.
- Digital Control of Dynamic Systems, 3rd Edition, G. F. Franklin, J. David Powell, M. Workman, Addison Wesley, 1998.

▲ Slides of the lectures

A Prerequisites

✤ Main contents provided by the course of Automatic Control Systems.

▲ Exam

- ✤ Written exam
- Oral exam including discussion of a project report about the device of a closed-loop control system with required characteristics by using Matlab/Simulink

Contents of the course

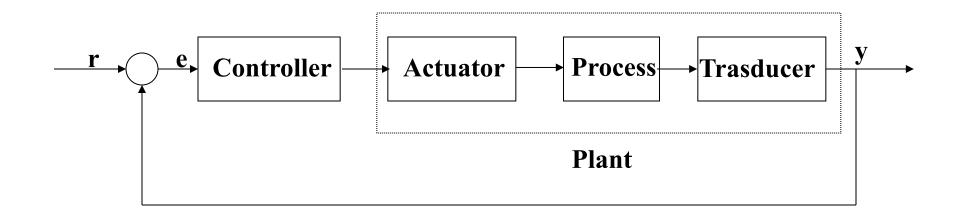
- This course provides the methods to design industrial control systems and PID controllers
- ▲ The course is conceptually divided in three parts:
 - ✤ Discrete time systems
 - Notion of Automatic Control Systems
 - Design of digital control systems and PID implementation
- ▲ Laboratory activities
- ▲ After the course the student should be able
 - * to analyse industrial control systems and evaluate the performance
 - ✤ to design closed-loop systems guaranteeing a set of these properties
 - to use software packages (Matlab and Simulink) to devise and evaluate control systems performance

Introduction

- Automation or automatic control is a discipline whose aim is the study of the methodologies able to reduce or completely eliminate the human intervention in applications of interest.
- ▲ Benefits:
 - ✤ Quality
 - ✤ Accuracy
 - ✤ Reliability
 - ✤ Repeatability
 - ✤ Cost reduction
 - ✤ Security
 - ♦ ...

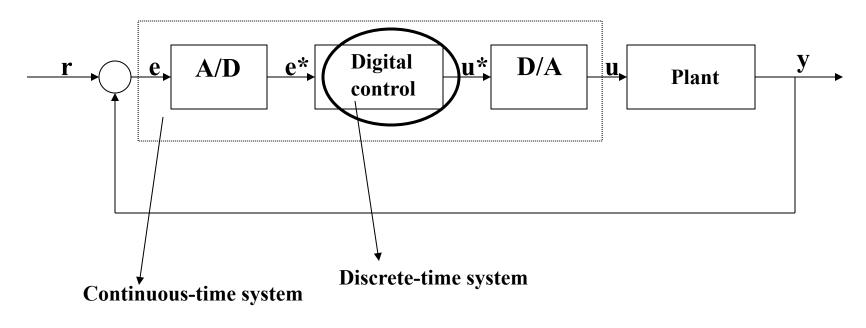
Applications

- ▲ Applications in most engineering domains:
 - ✤ Aerospace
 - ✤ Cars and Vehicles
 - ✤ Process industry
 - ✤ Energy storage and distribution
 - \bullet Home automation
 - ✤ Logistic
 - ✤ Biology
 - ✤ Autonomous systems and robots
 - ✦…



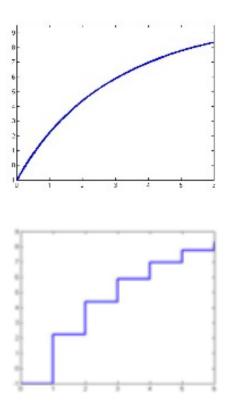
- ▲ Introduction
- ▲ Discrete-time systems
 - ✤ LTI discrete time systems
 - \clubsuit Free and forced evolution
 - ✤ Stability
 - ✤ The Z-transform
- ▲ Notions of automatic control
 - ✤ Nominal and robust stability
 - ✤ Nyquist criterion
 - ✤ Requirements of a control system
- \checkmark The root locus
 - Tracing of the root locus
 - Design of a control system using the root locus

- ▲ Design of digital control systems
 - Analog-to-digital and digital-to-analog converters: their frequency characterization
 - Design through discretization of a time-continuous system. Design using the root locus
- ▲ PID controllers and their implementation
 - ✤ PID controllers
 - ✤ Integral action anti-windup techniques
 - ✤ Bumpless transfer techniques
- ▲ Laboratory activities
 - Use of Matlab and Simulink for the design and verification of the behavior of closed loop systems



Implementation of C(s)

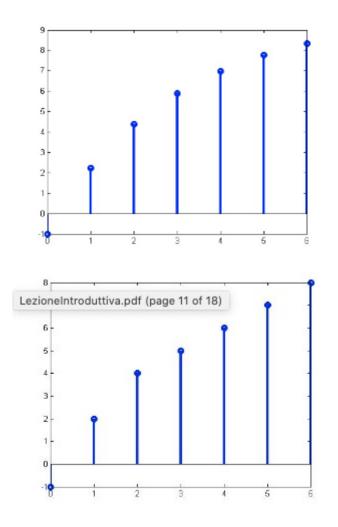
- Past: analog electronic technology (op amps), hydraulic technology, pneumatic technology
- Present: digital technology (microprocessor systems)



Implementation of C(?)

• *C(z)* is an algorithm (sums, products, . . .) that can be implemented in any programming language

The time variable t varies continuously in an interval of \mathbb{R} .


analog signals, if the amplitude can vary continuously in an interval of \mathbb{R}

quantized signals, if the amplitude can assume only a finite set of values

Discrete-time signals

The time variable can assume only a set (even infinite) of discrete values.

sampled data signals, if the amplitude can vary continuously in an interval of \mathbb{R}

digital signals, if the amplitude is quantized.

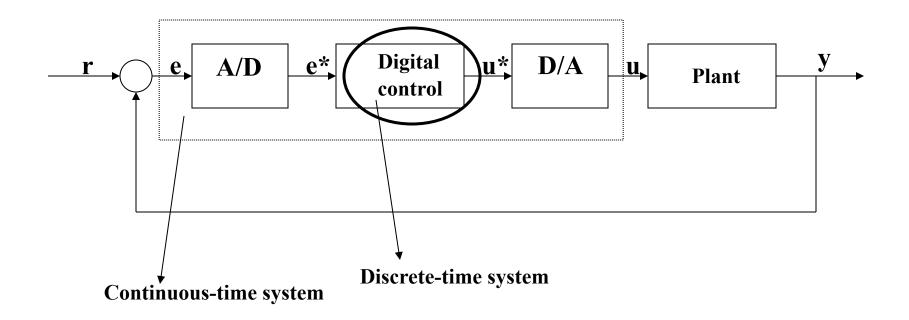
Digital signals are represented with a finite number of binary digits.

- Discrete-time systems are characterized by the fact that the time variable is integer rather than real.
- So input and output are sequences of numbers,

$$\left\{u(k)\right\}_{k\in\mathbb{N}} \qquad \left\{y(k)\right\}_{k\in\mathbb{N}}$$

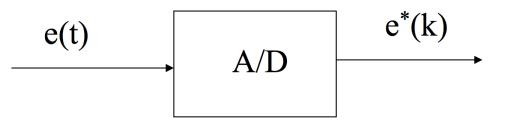
• ... and are denoted by u(k) and y(k).

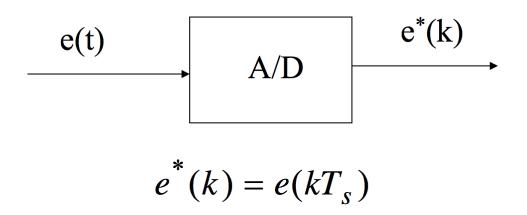
The Z-transform of f(k): $F(z) = Z(f(k)) = \sum_{k=0}^{+\infty} f(k) z^{-k}$


The transfer function W(z)

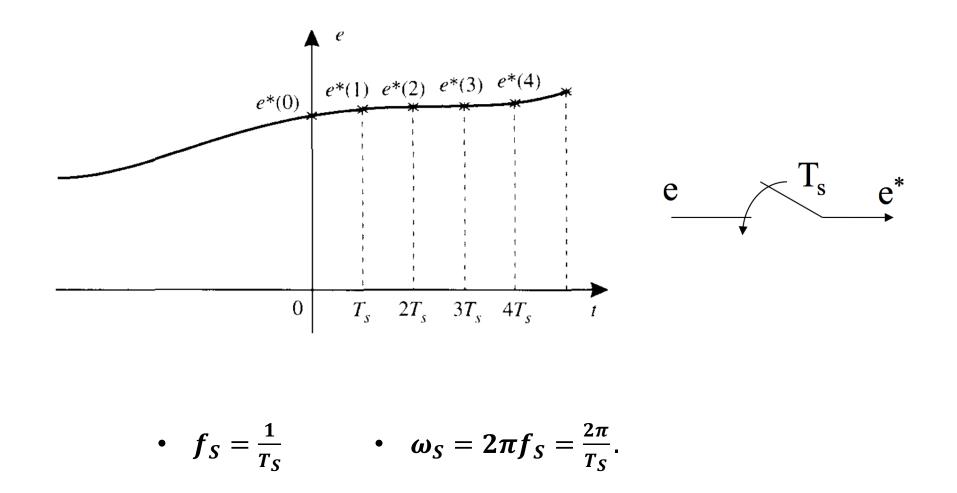
$$U(z)$$

$$W(z)$$


$$W(z) = \frac{Y(z)}{U(z)}$$


- The digital controller is a discrete-time system and the plant to be controlled is a continuous-time system.
- It is needed a device that transforms a continuous signal into a discrete one.

• Such device is the analog-to-digital converter (A/D).


• The most common analog-to-digital converter is the sampler, which does the following

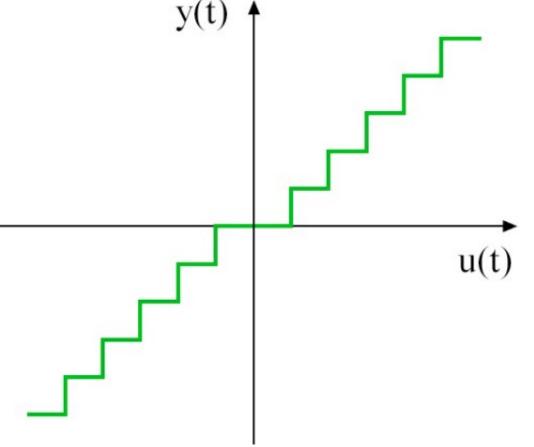
- Periodic sampling: the sampling instants are equally spaced, or k, i.e. $t_k = kT_s$ (k=0,1,2,..), with T_s representing the sampling time.
- The hold circuit holds the value of the sampled signal over a specified period of time.

Sampling operation

• The common problem when sampling a signal is the loss of information.

Indeed, it is obvious that the same signal e*(k) can be generated by infinite continuous-time functions e(t).

Hence, given a signal e^{*}(k) it is impossible to go back to the original signal e(t).

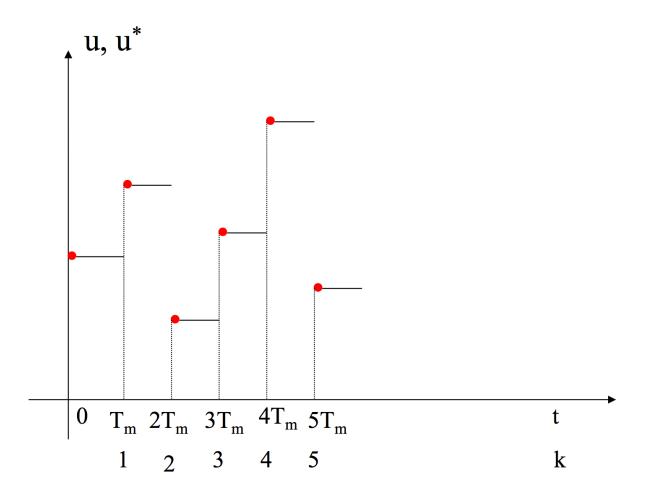


Quantization

- The sampler defined above is ideal.
- It is assumed that in the sampling instants the value of *e** coincides with that of *e*.
- e*(k) is represented by a finite number of discrete states (by a numerical code)
- The process of representing a continuous or analog signal into a set of discrete state is called (amplitude) quantization.
- The output state of each quantized sample is then described by a numerical code (such a binary code): this process is called encoding.

Quantization

- The standard number system used for processing digital system is the binary number system
- *n* bits available, 2^{*n*} amplitude levels represented
- The quantization operation introduces a nonlinearity in the system
- When the number of digits of the binary representation is high enough, it is possible to neglect the effect of quantization


- It is a device that transforms a digital input (binary numbers) to an analog output.
- The most commonly used D/A converter is the zero order hold (ZOH), which operates as follows:

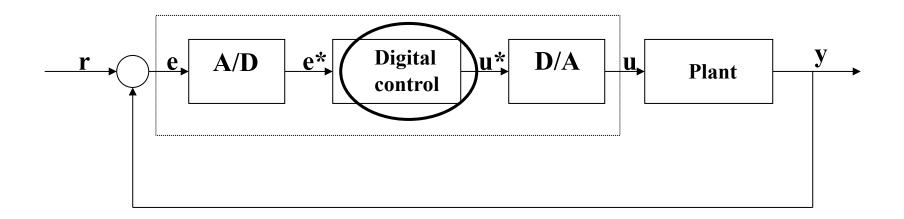
$$u(t) = u^*(k) \quad t \in [kT_m, (k+1)T_m]$$

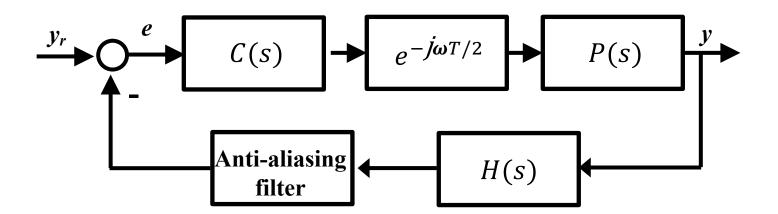
• T_m is the sample time

ZOH circuit

In order for an analog signal (e(t)) to be reconstructed from its sampled version $(e^*(k))$, by Shannon's theorem, it must have a strictly limited bandwidth and $\omega_S > 2\omega_B$ (with ω_B signal bandwidth).

Sampler – ZOH series


• By working in the frequency range $\omega < \frac{\omega_s}{8}$, it is possible to approximate the sampler-zoh series (hp $T_s = T_m = T$) with a delay element


$$\bullet$$
 $e^{-j\omega T/2}$

- where this term introduces a maximum delay equal to $\frac{\omega T}{2}|_{\omega=\frac{\omega s}{8}} \approx 22^{\circ}$
- The presence of a numerical control tends to destabilize the entire system.

Scheme of the digital control system in continuous-time

Analog vs. digital

• From C(s) we want to find an equivalent D(z):

• The transition from continuous time to discrete time is expressed by the following equality:

$$z = e^{sT}$$
$$C(s)|_{s=j\omega} = D(z)|_{z=e} j_{\omega T}$$

• By Euler's method,

$$s = \frac{z-1}{T}$$
 (forward rectangular rule) and $s = \frac{z-1}{zT}$ (backward).

• Bilinear transformation: $s = \frac{2}{s}$

$$s = \frac{2}{T}\frac{z-1}{z+1}$$

• The presence of a numerical control tends to destabilize the entire system.

$$U(z)=D(z)E(z).$$