

Artificial Intelligence

Artificial Intelligence Overview & Course Organization

LESSON 1

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Artificial Intelligence

• Ideas, techniques, and algorithms at the foundation of AI

The course

Course logistics

- Instructor: Antonino Staiano
- Time & location
 - Tuesday
 - 14:00 16:00
 - Room: Lab 2 (2nd floor, south side)
 - Friday
 - 11:00 13:00
 - Room: Lab 1 (2nd floor, south side)
- Office hours
 - Friday 14:00 15:00

Learning stuff

- Reference textbooks
 - S. Russell, P. Norvig, Artificial Intelligence A Modern Approach, 4° ed, Pearson
 - D.L. Poole, A.K. Mackworth, Artificial Intelligence Foundations of Rationale Agents, 2° ed, Cambridge University Press
 - Freely on line-version available at https://artint.info/2e/html/ArtInt2e.html
- Lecture slides
 - E-learning platform
- Grading
 - Oral + Project/Seminar

What this course is

- Introductory/survey course
 - Introduces many of the core activities in AI and discuss why they are challenging
 - Presents symbolic approaches and standard methods (algorithms) to Al
 - Provides sufficient background to be able to read current research papers on Al

Artificial Intelligence

• Search

- Looking for solutions to some kind of problem
 - Get driving directions from point A to point B
 - Figure out how to play a game, e.g., figuring out what move it ought to make in tic-tac-toe
- Optimization
 - Optimize for some sort of goal when there might be multiple ways to solve a problem, i.e., looking for, potentially, the best way
- Knowledge
 - An AI must be able to know and represent information
 - Draw inferences from that information
- Uncertainty
 - Ability to deal with uncertain information, that is, deal with events certain with a given probability

Today's lecture Outline

- What is AI?
- A brief history
- The state of the art

What is Intelligence?

- Hard to uniquely define Intelligence as it can manifest in such different ways
- A general definition
 - A set of capabilities that allows humans to learn, think, understand, communicate, be self-conscious, build abstract models of the world, plan, adapt to novel external conditions, etc.
 - Note that some of these capabilities are also of animals
 - Associative memory, reacting to stimuli, communicating

Artificial Intelligence

- AI was born as a result of the convergence of branched efforts in pursuing two research goals
 - Understanding human intelligence
 - The construction of machines that are able to autonomously carry out complex tasks that are considered to require "intelligence"
- Branched means that different aspects of intelligence have been studied by several disciplines for a long time and with different points of view
 - Philosophy, Logic, psychology, neurophysiology, ...

Defining Intelligence

PARTHENOPE

Acting humanly: The Turing test

- Can machines think? or Can machines behave intelligently?
 - Turing (1950): Computing Machinery and Intelligence
 - Operational test for intelligent behavior: The imitation game
 - Predicted that by 2000, a machine might have a 30% chance of fooling a layperson for 5 minutes
 - Anticipated all major arguments against AI in the following 50 years
 - Suggested major components of AI: knowledge, reasoning, language understanding, learning

Thinking humanly: Cognitive science

- 1960s cognitive revolution: information-processing psychology replaced the prevailing orthodoxy of behaviorism
 - Goal: bring together computer models and experimental techniques from psychology to construct theories of mind
- Requires scientific theories of internal activities of the brain
 - How to validate? Requires
 - Predicting and testing the behavior of human subjects
- Cognitive Science and Cognitive Neuroscience are now distinct from AI
- Both share with AI the following characteristic:
 - the available theories do not explain (or engender) anything resembling human-level general intelligence

Thinking rationally: Laws of thought

- Prescriptive rather than descriptive
 - Attempt to codify the right thinking, that is, the irrefutable reasoning processes
- Several Greek schools developed various forms of logic
 - Notation and rules of derivation for thoughts through a (not necessarily) mechanized process
- Direct line through mathematics and philosophy to modern AI
- Problems:
 - Not all intelligent behavior is mediated by logical reasoning

Aristotle

- The first man ever to define a precise set of laws trying to rule the rational component of the human mind
- An informal system of syllogisms for the "correct reasoning" that, in theory, allows generating conclusions, given a starting set of premises, mechanically
- Syllogism
 - From syn, "set" and logismòs, "computation" -> linked reasoning
- Example
 - All the men (M) are mortal (A)
 - Socrates (B) is a man (M)
 - Socrates is mortal (A)

Acting rationally

- Rational behavior: doing the right thing
- The right thing: that which is expected to maximize goal achievement, given the available information
 - It does not necessarily involve thinking, e.g., blinking reflex, but thinking should be in the service of rational action
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility
- AI has focused on the study and construction of agents that do the right thing

Designing Rational agents

- An agent is an entity that perceives and acts
- A rational agent selects actions that maximize its (expected) utility (internal subjective value of an outcome)
- Characteristics of the percepts, environment and action space dictate techniques for selecting rational actions
- We will learn general AI techniques for a variety of problem types
- Advantages
 - More general the approach based on thinking rationally
 - Correct inference is just one option for achieving rationality
 - Scientific modeling and development
 - Rationality is mathematically well-defined and general

Agents that plan: Reflex agents

- Reflex agents
 - Choose action based on current percept (and maybe memory)
 - May have a memory or a model of the world's current state
 - Do not consider the future consequences of their actions
 - Consider how the world is

Agents that plan: Planning agents

• Planning agents

- Ask "what if"
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal (test)
- Consider how the world would be

Fundamentals of Al

- Several disciplines involved in AI, each contributed as of ideas, points of view, and techniques
 - Philosophy:
 - logic, methods of reasoning, mind as a physical system, foundation of learning, language, rationality
 - Mathematics:
 - Formal representation and proof algorithms, computation, (un) decidability, (in) tractability, probability
 - Psychology:
 - adaption, phenomena of perception and motor control, experimental techniques (psychophysics)
 - Economy:
 - Formal theory of rational decisions, game theory
 - Linguistics:
 - Knowledge representation, grammar
 - Neuroscience:
 - Plastic physical substrate for mental activity
 - Control theory:
 - Homeostatic systems, stability, simple optimal agent design

A short (and incomplete) chronicle of AI

- 1940-1950: Early days
 - 1943: Warren McCulloch e Walter Pitts: an artificial Boolean neuron model for computation
 - First steps towards a connectionist computation and learning (Hebbian learning, 1949)

A short (and incomplete) chronicle of AI

- 1950: Alan Turing's "Computing Machinery and Intelligence" Mind, Vol. LIX, No. 263, 433–460, 1950
 - A first comprehensive vision of AI
 - Operational definition of intelligence: the Turing Test
 - Are electronic computers the right tool for building "intelligent" machines?

A short chronicle of AI

- Al as a discipline (1956)
 - Dartmouth Workshop where a group of very brilliant minds met together for studying intelligence and its development in machines
 - The next 20 years were dominated by these giants
 - 1952-1969: Excitement: "Look, Ma, no hands!"
 - Allen Newell and Herbert Simon: The logic theorist (the first non-numerical thinking program for theorem proving)
 - Newell & Simon General Problem Solver
 - Resembling the human problem-solving capacity
 - Arthur Samuel (1952-) checkers program
 - John McCarthy (1958-) :
 - Lisp (the second oldest high-level programming language)
 - Advice Tracker: a first complete AI system
 - Marvin Minsky (1958 -)
 - Microworlds
 - the society of mind
 - 1965: Robinson complete algorithm for logical reasoning (first-order logic theorem proving)

J. McCarthy, M. Minsky, A. Newell, H. Simon, C. Shannon, O. Selfridge, R. Solomonoff, and others

A short chronicle of AI: 1950s and 1960s

- Goals: Identifying specific tasks that require intelligence, and figuring out how to get machines to do them
- Great interest in mimicking high-level human thought and mental abilities
 - Reasoning
 - Understanding natural language
 - Understanding images
- Some investigations also on low-level abilities
 - Recognizing speech sounds
 - Distinguishing objects in images
 - Reading cursive script
- Main problem: how do humans do that?

A short chronicle of AI: 1950s and 1960s

- Starting point
 - Games and toy problems (easy to formalize and investigate), and some real-world ones
 - Game playing: 15-puzzle, checkers, chess, etc.
 - Theorem proving
 - Natural language processing (NLP)
 - Recognizing objects in images

A short chronicle of AI: 1950s and 1960s

- Fundamental viewpoint
 - the essence of intelligence is deemed to be **symbol processing**
- Early AI research focused therefore on a **symbolic** approach, aimed at simulating **high-level** manifestations of human intelligence
- Main tools:
 - heuristic search
 - syntax analysis/generation
 - symbolic knowledge representation (symbols, lists, graphs)
 - symbolic knowledge processing: new programming languages (LISP, etc.)

Heuristic search methods

- Symbol processing approach applied to problems like
 - Game playing: 15puzzle, checkers, chess (the "Drosophila of AI)

• Geometric analogy problems

- Theorem proving
- Mechanizing problem solving: A. Newell and H. Simon's General Problem Solver (1959)

Natural Language processing

- Aim: understanding, generating and translating natural language
- A difficult problem, due also to different linguistic levels:
 - Morphology: word parts (e.g., walking = walk + ing)
 - Syntax (grammar): rules that define well-formed sentences
 - John hit the ball and ball the hit John
 - Semantics: meaning of a sentence
 - Pragmatics: context and background knowledge
 - John went to the bank
 - John threw the ball to the window and broke it
 - John threw the glass to the wall and broke it

Natural Language Processing

Syntactic level (symbol processing)

- Seminal work: N. Chomsky, Syntactic Structures, 1957.
- Grammar definition: syntax rules for analyzing/generating sentences
 - parse tree

- Applications:
 - original goal: computer interfaces
 - machine translation: early optimism, but it turned out to be a very difficult task

Non-symbolic approaches

- A secondary (by then) approach was a non-symbolic one, aimed at simulating low-level manifestations/capabilities of intelligence, like perception (mainly, visual perception)
- This approach gave rise to
 - the pattern recognition discipline, which later emerged as a relevant branch of Al
 - artificial neural networks, that became one of the main AI tools (now reflourishing as *deep learning*)

Pattern Recognition

• Goal

 classifying different kinds of signals (images, sounds, electronic signals, etc.) into one of several categories

• First problem addressed: image classification

• First application: optical character recognition (OCR)

0123456789,456789

- Main approaches:
 - template matching
 - learning: image pre-processing (noise filtering, line thickening, edge enhancement, ...), feature extraction (e.g., shape), classification "rules" learnt from examples

Artificial Neural Networks

- Non-symbolic (low-level), connectionist approach
- The origins:
 - McCulloch and Pitts' mathematical model of neuron
 - the perceptron by F. Rosenblatt (1957): a potential model of human learning, cognition, and memory
 - network of McCulloch-Pitts' neural elements
 - learning algorithm for adjusting connection weights from examples
- First application: pattern (image) recognition
 - OCR
 - aerial images

A short chronicle of AI

- The first collapse in AI research (1966 1973)
 - Slow advancements as expected
 - Non-realistic predictions
 - Non-scalable systems
 - Combinatorial explosion
 - Limit in fundamentals and representations
 - Minsky and Papert (1969) Perceptrons

A short chronicle of AI

• 1969-1970: Al Revival

- Knowledge-based approaches
 - DENDRAL (Buchanan et al. 1969)
 - The first successful knowledge-based system
 - Molecular reconstruction from mass-spectrometer data
- Expert systems
 - MYCIN for blood infection diagnosis (Feigenbaum et al.)
 - Uncertainty in reasoning
- Knowledge representation research increase
 - Logic, frames, semantic networks, ...

Knowledge-based systems

- Knowledge representation and reasoning:
 - development of consulting systems, decision support systems, expert systems
- Main idea
 - solving domain-specific problems by embedding expert knowledge in the form of IF-THEN rules
- Applications
 - chemistry, medical diagnosis, geology, military; since the 1990s: business

A Brief history of Al

- 1980: Al industry boom
 - DEC R1 (McDermott, 1982)
 - To configure new system orders
 - Japan Fifth Generation Project (1981)
 - Intelligent computer development using prolog
 - Microelectronics, the US reaction
 - Research consortium for chips and human-machine interface
- 1988-1993: Expert systems industry busts: "AI Winter"

Al Winter

- Until the 1970s AI research is mainly based on the symbolprocessing conception of human intelligence
 - main approach: mimicking **high-level** human abilities through heuristic search and symbolic processing ("good, old-fashioned AI", GOFAI)
- many successful applications through a pragmatic approach in specific tasks. . .
- . . . but very limited achievements with respect to early expectations for a **general** AI

Al Winter

- Real-world tasks turned out to require much more "intelligence" than that achievable by heuristic search and symbolic processing (GOFAI)
- Two main issues emerge:
 - computational complexity: combinatorial explosion
 - human problem-solving relies on a large body of implicit background knowledge (including common sense)
- The non-symbolic, connectionist approach (artificial neural networks) exhibits limitations as well
- Main consequences ("AI winter"):
 - drop in interest in Al
 - scaling back Al's goals
 - reduction of research funding

A short chronicle of AI

• 1986: The connectionist revival

- Parallel distributed computation (Rumelhart and McClelland, 1986); backpropagation
- 1990: Statistical approaches
 - The resurgence of probability, focus on uncertainty
 - A general increase in technical depth
 - Agent and learning systems... "AI Spring"?
 - 1996: Kasparov defeats Deep Blue at chess
 - 1997: Deep Blue defeats Kasparov at chess

Towards the AI Spring

- The AI winter was overcome thanks to new results in several fields, based on solid theoretical foundations from:
 - Mathematics
 - statistics and probability theory
 - control engineering
- This enabled concrete progress in real-world tasks, albeit still **far** from early expectations:
 - knowledge representation and reasoning
 - machine learning
 - computer vision
 - Intelligent Agent architectures

Towards the AI Spring

- The rise of machine learning:
 - availability of large amounts of data in digital form, often manually annotated by users (e.g., user preferences, text translated into different languages by humans)
- Main idea
 - automatically inferring knowledge (patterns, rules, etc.) from data instead of eliciting it from domain experts
 - data analysis methods: data mining, etc.
- theoretical foundations: statistics
- Novel techniques:
 - inductive logic programming, decision trees, the resurgence of ANNs (1986: backpropagation algorithm), support vector machines, ensemble methods, etc.
- many application fields: computer vision, natural language processing, etc.

A Brief History of Al

- 2000: Where are we now?
 - Big Data, big computing, neural networks
 - Some re-unification of sub-fields
 - Al used in many industries
 - Chess engines running on ordinary laptops can defeat the world's best chess player
 - 2011: IBM's Watson defeats the Jeopardy champion
 - 2016: Google's AlphaGo beats Lee Sedol at Go
 - 2023: OpenAl's ChatGPT an amazing (with its own limits) conversational Agent

What Can AI Do?

- Play a decent game of table tennis
- Drive safely along a curving mountain road
- Drive safely along Telegraph Avenue
- Buy a week's worth of groceries on the web
- Buy a week's worth of groceries at Berkeley Bowl
- Play a decent game of bridge
- Discover and prove a new mathematical theorem
- Design and execute a research program in molecular biology
- Write an intentionally funny story
- Give competent legal advice in a specialized area of law
- Translate spoken English into spoken Swedish in real time
- Converse successfully with another person for an hour
- Perform a complex surgical operation
- Unload any dishwasher and put everything away

Today AI research fields and applications

PARTHENOPE

Risks and Benefits of Al

- First solve AI, then use AI to solve everything else
 - Demis Hassabis, CEO of Google DeepMind
- Benefits
 - Decrease repetitive works
 - Increase production of goods and services
 - Accelerate research (disease cures, climate change and resource shortages solutions)
- Risks
 - Lethal autonomous weapons
 - Surveillance and persuasion
 - Biased decision making
 - Impact on employment
 - Safety-critical applications
 - Cybersecurity threats

Risks and Benefits of Al

- Development of an artificial superintelligence that surpasses human intelligence may pose a significant risk
- Gorilla problem
 - Humans and gorillas evolved from the same species, but humans have more control than other primates
- Thus, we should design AI systems in such a way that they do not end up taking control in the way Turing suggests they might

Ethical issues

- Some ethical issues against AI
 - Even if we could build intelligent machines, should we?
 - Consequences on humans
 - loss of jobs, loss of the sense of being unique, end of humanity, etc
 - Accountability (e.g., driverless cars)

• • • • •

Philosophical issues

- A long-standing question: Can machines be "intelligent"?
- Two main hypotheses:
 - Weak AI: machines can **emulate** intelligence (act intelligently)
 - Strong AI: machines can be intelligent
 (if they act intelligently, they are intelligent, e.g.: Turing test)
- Another long-standing question: Is the human mind a machine?