IJISAC

BIG DATA STATISTICS FOR BUSINESS

AY 2023-24

Giovanni De Luca
Parthenope University of Naples

1

Exploratory analysis

- The collection and storage of data are not exhaustive in themselves.
- The processing step is fundamental: it allows the achieving of the goal of supporting business decisions.
- The purpose of collecting and processing large volumes of complex data is to understand the trends of the phenomena of interest, uncover hidden trends, detect anomalies, etc., to make data-driven decisions.

Data matrix

- Structured data can be arranged in a data matrix.
- The data matrix is a two-dimensional table whose rows are associated with statistical units and columns are associated with variables.
- The statistical units can represent the entire population or constitute a (representative) sample of the population.
- We denote by n the number of statistical units and by p the number of statistical variables ($n>p$).
- The data matrix is the starting point for data analysis.

3

Variables

- The number of variables, even if high, has to be lower than the number of statistical units.
- There are two main types of variables:

1. numerical variables
2. categorical variables

Numerical variables

- Numerical variables are quantitative and are classified into:
- discrete numerical variables (derive from a counting process, they take integer values, e.g. the number of cigarettes a person smokes a day).
- continuous numerical variables (can take any value such as heights if measured with enough precision, e.g. 68.1 or 68.09 or 68.092 inches).

5

Categorical variables

- Categorical variables are presented in non-numerical form (categories), and do not allow any metric statement on the differences between categories.
- They can be:
- Ordinal categorical variables (spiciness can be mild, medium, or hot. Even if they are not numbers per se, they can still be ordered)
- Non-ordinal categorical variables (sex at birth, or regions of a country)

Data matrix

- Data matrix can contain numerical as well as categorical variables.
- Sometimes, categorical variables are translated into numerical variables.

7

- Example: dataset Diamonds describes almost 54,000 diamonds using numerical and categorical variables. The data matrix has $n=53,940$ rows and $p=10$ columns.

\wedge	carat	cut \quad	color	\%	clarity		depth		table		price		x		y	z
1	0.23	Ideal	E		SI2		61.5		55.0		326		3.95		3.98	2.43
2	0.21	Premium	E		SI1		59.8		61.0		326		3.89		3.84	2.31
3	0.23	Good	E		VS1		56.9		65.0		327		4.05		4.07	2.31
4	0.29	Premium	1		VS2		62.4		58.0		334		4.20		4.23	2.63
5	0.31	Good	J		SI2		63.3		58.0		335		4.34		4.35	2.75
6	0.24	Very Good	J		VVS2		62.8		57.0		336		3.94		3.96	2.48
7	0.24	Very Good	1		VVS1		62.3		57.0		336		3.95		3.98	2.47
8	0.26	Very Good	H		SI1		61.9		55.0		337		4.07		4.11	2.53
9	0.22	Fair	E		VS2		65.1		61.0		337		3.87		3.78	2.49
10	0.23	Very Good	H		VS1		59.4		61.0		338		4.00		4.05	2.39
11	0.30	Good	J		SI1		64.0		55.0		339		4.25		4.28	2.73
12	0.23	Ideal	J		VS1		62.8		56.0		340		3.93		3.90	2.46
13	0.22	Premium	F		SI1		60.4		61.0		342		3.88		3.84	2.33

8

- Example: dataset $m t c a r s$ describes the performance of 32 cars based on 11 variables. The data matrix has $n=32$ rows and $p=11$ columns.

9

Exploratory data analysis and data visualization

Exploratory data analysis

- After getting data, an exploratory data analysis (or preliminary data analysis) is carried out to grasp its main characteristics.
- The analysis includes the calculation of simple statistics (summary measures) and the visualization of the data with the most appropriate graphics.
- This step is also known as pre-processing.

Summary measures for numerical variables

- The most important summary measures of a numerical variable are:

1. Mean
2. Median
3. Quartiles
4. Mode
5. Skewness

- The mean is the arithmetic average.
- Defined X the variable, the mean is

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- The mean is sensitive to outliers (extreme values).
- After sorting the data in ascending order, the median (Me) is the central value of the (preceded by 50% of the data and followed by the remaining 50% of the data).
- The median is not sensitive to outliers (extreme values). It is a robust measure.
- After sorting the data in ascending order, the first quartile $\left(Q_{1}\right)$ is the value preceded by 25% of the data and followed by the remaining 75% of the data.
- The first quartile equals the 25th percentile,

$$
\mathrm{Q}_{1}=\mathrm{P}_{25}
$$

- After sorting the data in ascending order, the third quartile $\left(Q_{3}\right)$ is the value preceded by 75% of the data and followed by the remaining 25% of the data.
- The third quartile equals the 75th percentile,

$$
\mathrm{Q}_{3}=\mathrm{P}_{75}
$$

- The median is also the second quartile.
- In general, the p-percentile is the value preceded by $p \%$ of the data.
- The mode is the most frequent number. It makes sense when we have discrete numerical variables.
- To find the mode, we first have to organize the data in a table.
- The skewness is the degree of asymmetry observed in data (a measure of the shape of the distribution).
- Skewness can be described as a measure of the extent to which a distribution departs from a symmetric (e.g. normal) distribution.
- A distribution shows left (negative) skewness if we observe a long tail on the left (values much smaller than the mean).
- A distribution shows right (positive) skewness if we observe a long tail on the right (values much larger than the mean).
- The skewness is usually detected graphically.

Data visualization

- Sometimes, extracting information just by looking at the numbers is quite difficult.
- Data visualization provides a powerful way to communicate a data-driven finding.
- Data visualization is one of the strongest tool for exploratory data analysis ("A picture is worth a thousand words").
- "The greatest value of a picture is when it forces us to notice what we never expected to see." (Tukey).
- Histogram.
- Box-plot.

Histogram

- The histogram is a representation of the distribution of data.
- It is obtained by dividing the entire range of values into a series of intervals and counting how many values fall into each interval.
- The bins are non-overlapping.

Histogram (example 1)

Histogram (example 2)

Histogram (example 3)

Histogram with density

- We can draw the histogram using frequency densities (on the y-axis) instead of frequencies.
- The frequency densities are computed in such a way that all histogram area is equal to 1 .
- We can interpret the bins of the histogram in terms of proportions (or probability).

Histogram (example 1)

Histogram (example 1)

The area of the bins sums to 1 .

Histogram (example 2)

Histogram (example 2)

Histogram (example 3)

Histogram (example 3)

Smooth density plot

- When the histogram is represented with densities, we can draw a smooth density plot.
- Smooth density plots are similar to histograms but are aesthetically more appealing.

Density plot (example 1)

Smooth density plot

- Instead of making a histogram with tiny bins, we can draw this smooth curve.
- Note that "smooth" is a relative term. We can control the degrees of smoothness of the curve.

Density plot (example 1)

Density plot (example 1)

Density plot (example 2)

Density plot (example 3)

Box plot

- The box and whiskers plot (or box plot) is a graphical representation to describe the distribution of a set of data through simple indexes.
- In its simplified version, the plot shows
- $\min (X)$
- 1° quartile of $X\left(Q_{1}\right)$
- Median of $X, \mathrm{Me}(X)$
-3° quartile of $X\left(Q_{3}\right)$
$-\max (X)$

Box plot (example 1, Temperature)

Box plot (example 3, Returns)

43

Histogram and Box plot (example 2)

Histogram and Box plot (example 3)

45

Scatterplot

- Scatterplot is one of the best known bivariate graphs.
- It highlights the (positive or negative) association between two variables.
- Positive association (or positive relationship, or concordance): the two variables tend to move in the same direction and a straight line (regression line) with a positive slope can be drawn.
- Negative association (or negative relationship or discordance): the two variables tend to move in opposite directions and a straight line (regression line) with a negative slope can be drawn.

Scatterplot (example 1)

Positive association (or concordance).

47

Scatterplot

- A more accurate analysis also tends to interpret the behavior also in the tails (thus evaluating the association between extreme values).
- Association between extremely high values: upper tail dependency
- Association between extremely low values: lower tail dependency

Scatterplot (example 1)

49

Scatterplot (example 2)

Scatterplot (example 2)

51

Correlation

- The correlation r measures the strength and the direction of the association between two numerical variables.
- Correlation always falls between -1 and +1 .
- Sign of correlation denotes direction:
- (-) indicates a negative association.
- (+) indicates a positive association.
- Correlation does not depend on the variables' units.
- Two variables have the same correlation no matter which is treated as the response variable.
- Correlation is not resistant to outliers.
- Correlation only measures the strength of a linear relationship.

Correlation

Correlation

- Hypothesis testing is usually carried out.
- The null hypothesis (no correlation) is

$$
H_{0}: r=0
$$

- We reject H_{0} if the p-value of the test is less than 0.05 ,

$$
p \text {-value }<0.05
$$

Caution in analyzing association (1)

- The direction of an association between two variables can change after including a third variable and analyzing the data at separate levels of that variable (Simpson's paradox).
- Example: we analyze the data of 114 employed three-year graduates; the time (in months) to graduate and the time (in months) to find employment are recorded.
- I assume that companies prefer those who graduate quickly.
- Therefore, I expect a direct relationship between the time to graduate and the time to find a job.

57

Coplot

- Coplot shows the relationship between two numerical variables, conditionally on the value (category) assumed by a third variable.
- Consider spending on insurance services as a function of income.

Coplot

- Let us introduce a third (categorical) variable: Economic Studies («YES», «NO»)

Coplot (2° version)

63

...with two regression lines

Caution in analyzing association (2)

- A lurking variable is a variable not measured in a study that influences the association between two variables.
- Example: the positive relationship between ice cream sales and the number of drowned is apparent because the temperature is a lurking variable.

Scatterplot matrix

- A scatterplot matrix highlights the two-by-two relationships between p variables.
- It is constituted in the form of a matrix ($p \times p$).
- The scatterplots are plotted on the cells above and below the main diagonal.

Scatterplot matrix ($p=4$)

We detect:
-concordance between var1 and var2; -no association between var1 and var3; - no association between var1 and var4 -discordance between var2 and var3;
-no association between var2 and var4; -no association between var3 and var4.

Scatterplot matrix ($p=8$)

Heatmap

- As the data size increases dramatically, a new graph, called heatmap, can effectively replace the scatterplot matrix.
- The heatmap is a mosaic of different colors associated with different degrees of correlation.

