

 Example: dataset <i>Diamonds</i> describes almost 54,000 diamonds using numerical and categorical variables. The data matrix has n = 53,940 rows and p = 10 columns. 										
^	carat 🗦	cut $\hat{~}$	color $\hat{}$	clarity 🗦	depth 🗦	table 🗦	price 🗘	x \Rightarrow	y \hat{z}	z ÷
1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
2	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
4	0.29	Premium	I.	VS2	62.4	58.0	334	4.20	4.23	2.63
5	0.31	Good	l	SI2	63.3	58.0	335	4.34	4.35	2.75
6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
7	0.24	Very Good	I	VVS1	62.3	57.0	336	3.95	3.98	2.47
8	0.26	Very Good	н	SI1	61.9	55.0	337	4.07	4.11	2.53
9	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
10	0.23	Very Good	н	VS1	59.4	61.0	338	4.00	4.05	2.39
11	0.30	Good	J	SI1	64.0	55.0	339	4.25	4.28	2.73
12	0.23	Ideal	J	VS1	62.8	56.0	340	3.93	3.90	2.46
13	0.22	Premium	F	SI1	60.4	61.0	342	3.88	3.84	2.33

• Defined X the variable, the mean is

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

• The mean is sensitive to outliers (extreme values).

